

LA-UR-16-26780

Approved for public release; distribution is unlimited.

Title: Safeguards by Design Challenge

Author(s): Alwin, Jennifer Louise

Intended for: University Engagement- U RI

Issued: 2016-09-06

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Safeguards by Design Challenge

Presented to University of Rhode Island
Department of Mechanical, Industrial,
and Systems Engineering

Jennifer Alwin

September 13, 2016

Safeguards by Design Challenge

Introduction

- The International Atomic Energy Agency (IAEA) defines Safeguards as a system of inspection and verification of the peaceful uses of nuclear materials as part of the Nuclear Nonproliferation Treaty.
- IAEA oversees safeguards worldwide.
- Safeguards by Design (SBD) involves incorporation of safeguards technologies, techniques, and instrumentation during the design phase of a facility, rather than after the fact.

Safeguards by Design Challenge

Design Challenge Goals

Design a system of safeguards technologies, techniques, and instrumentation for inspection and verification of the peaceful uses of nuclear materials.

- Cost should be minimized to work with the IAEA's limited budget.
- Dose to workers should always be as low as reasonably achievable (ALARA).
- Time is of the essence in operating facilities and flow of material should not be interrupted significantly.
- Proprietary process information in facilities may need to be protected, thus the amount of information obtained by inspectors should be the minimum required to achieve the measurement goal.

Design Challenge #1- Plutonium Waste Item Measurement System

- Waste items from glovebox lines are placed into 55-gallon drums for waste disposal
- The waste items come from:
 - contaminated materials and consumables such as glovebox gloves,
 - used process equipment in which a holdup of process materials occurs.
- The waste items are bulky and do not fit within the current nondestructive assay (NDA) Instruments

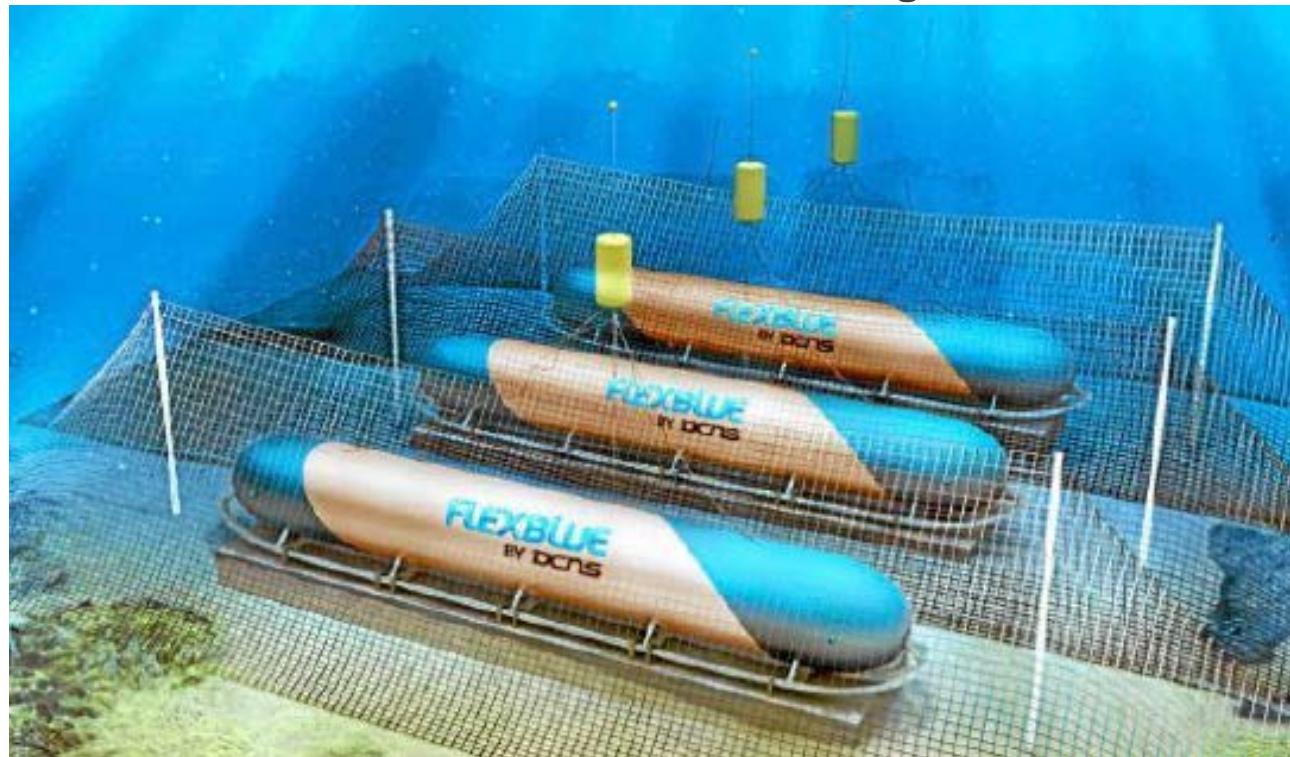
Design a method for determining the nuclear material content of waste items before they are placed into a drum and moved to the NDA lab

Design Challenge #1- Plutonium Waste Item Measurement System

- If the drum limits are exceeded, the operators must declare a process deviation, pause the work, and eventually conduct a more hazardous job to open the drum while suited out in respirator and split the contents into two or more drums.
- The result of drums that are over the limit has repercussions with respect to: worker dose [ALARA], contamination control, criticality safety, and waste minimization.
- The design challenge includes technical aspects – how to properly characterize the material and develop a technique to measure various material forms.
- The waste in the gloveboxes can range from contaminated metal to hydrogenous nuclear materials.

Design a method for determining the nuclear material content of waste items before they are placed into a drum and moved to the NDA lab

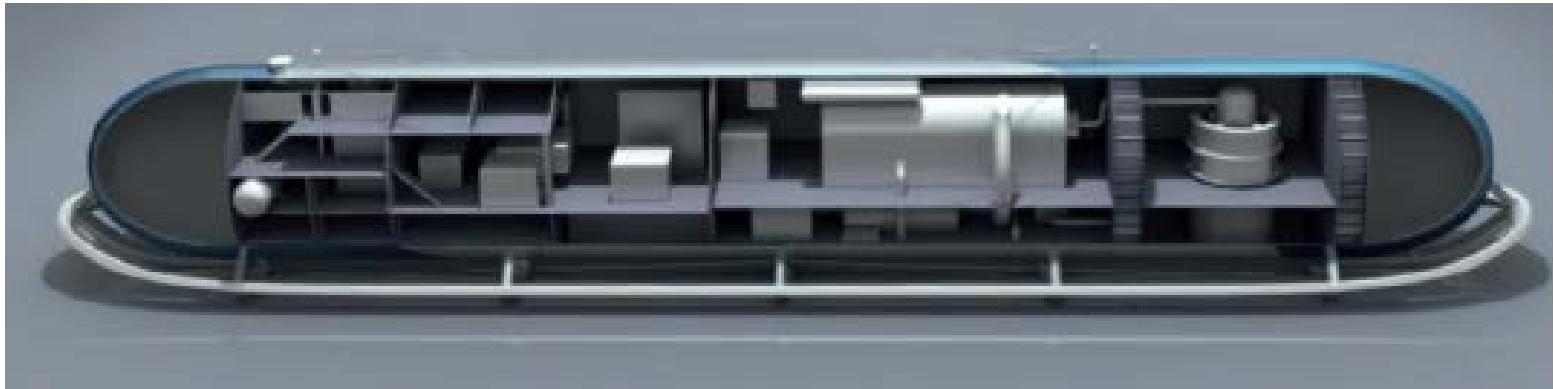
Design Challenge #1- Plutonium Waste Item Measurement System


- The design challenge includes technical aspects – how to properly characterize the material and then develop a technique that can measure various material forms.
- The waste in the gloveboxes range from contaminated metal items to hydrogenous nuclear materials.
- Potentially novel approaches could be developed using methods to measure items through gloves, windows, or ports; applying novel technology; or developing a unique application for an already existing technology.

Design a method for determining the nuclear material content of waste items before they are placed into a drum and moved to the NDA lab

Design Challenge #2- Marine-based Modular Reactor

- Direction of Construction of Naval and Submarines (DCNS) in France is pursuing development of the Flexblue, a small marine based modular designed reactor.
- 160 MWe operated on sea floor
- Water cooled reactor



Flexblue marine based nuclear power plant.^{1,2,3}

Design marine-based modular reactor safeguards considering physical security, material control and accountability , nuclear security infrastructure, & IAEA inspections

Design Challenge #2- Marine-based Modular Reactor

- The water cooled reactor uses naval offshore and passive nuclear technologies to take advantage of the sea's infinite and permanently available heat sink for cooling.^{1,2,3}

Inside of Flexblue marine based nuclear power plant.^{1,2,3}

1. “Nuclear Technology Review,” Fifty-eighth regular session of the General Conference, International Atomic Energy Agency (IAEA), GC(58)/INF/4, 17 July 2014, Paragraph 150 <https://www.rt.com/news/floating-nuclear-plant-Russia-759/>, July 9 2013 (accessed Oct 5, 2015)
2. “France’s DCNS, AREVA, EDF, CEAR Plan Underwater Nuclear Plant (US),” France-Metallurgie, 24 January 2011, available at” [http://www.france-metallurgie.com/index.php/category/recherché-developpement/page/10/#s\(hash.qFg0nvax.dpbs](http://www.france-metallurgie.com/index.php/category/recherché-developpement/page/10/#s(hash.qFg0nvax.dpbs) (accessed October 2015).
3. “France’s Underwater Nuclear Reactor,” available at: <http://large.Stanford.edu/courses/2011/ph241/nazir1/> (accessed October 2015).

Design marine-based modular reactor safeguards considering physical security, material control and accountability , nuclear security infrastructure, & IAEA inspections

Design Challenge #3- Floating Nuclear Power Plant (FNPP)

- There is recent increased interest in small modular reactors (SMR), one of which is the floating nuclear power plant (FNPP).
- FNPPs are built by countries with extensive knowledge of nuclear energy (Russia, France, China, US)
- FNPPs are sent to countries in need of power and/or seawater desalination.

15 countries have expressed interest

Russia's floating nuclear power plant.¹

including China, Indonesia, Malaysia, Algeria, Namibia, Cape Verde and Argentina¹.

1. “World’s first floating nuclear power plant to begin operating in Russia in 2016,” <https://www.rt.com/news/floating-nuclear-plant-Russia-759/>, July 9 2013 (accessed Oct 5, 2015)

Design FNPP safeguards considering physical security, material control and accountability , nuclear security infrastructure, & IAEA inspections

Design Challenge #3- Floating Nuclear Power Plant (FNPP)

“Afkantov OKBM” to design, manufacture, supply FNPPs in Russia, design is based on Russia’s KLT-40S, used in icebreakers, smaller version, the KLT-20, for FNPPs.

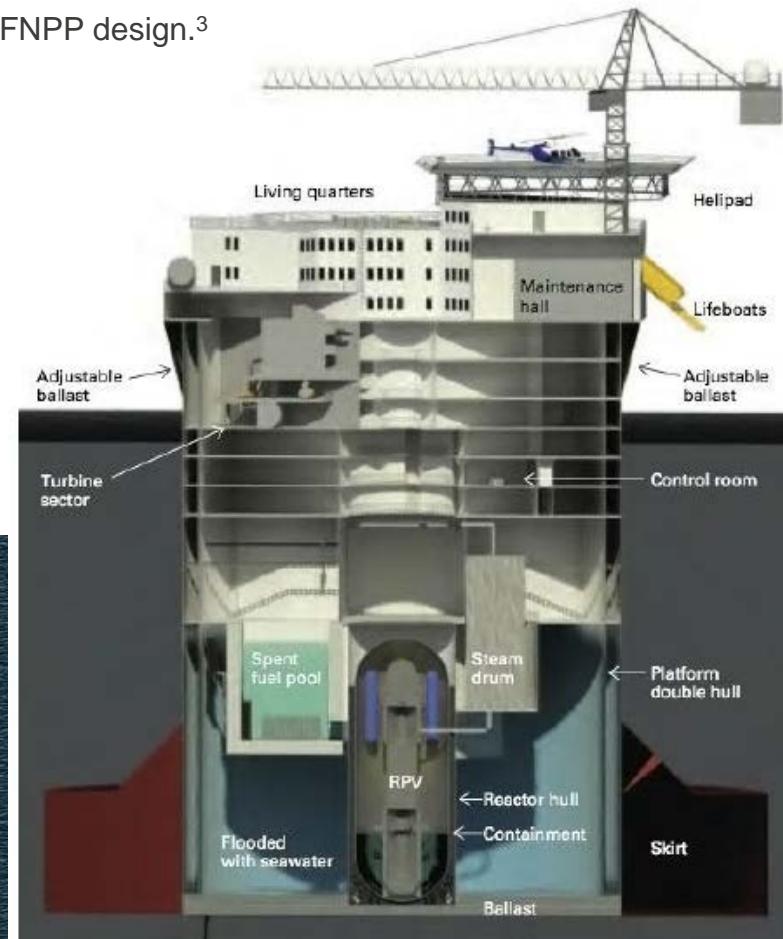
- LEU aluminum silicide fuel
- <20% enriched with ^{235}U
- 150 MWt
- 35 Mwe
- 35 MW of heat for desalination or district heating
- 3-4 years before refueling
- onboard refueling capability
- includes storage for used fuel
- two reactors per barge

Russia's FNPP design.²

2. <http://www.okbm.nnov.ru>

Design FNPP safeguards considering physical security, material control and accountability , nuclear security infrastructure, & IAEA inspections

Design Challenge #3- Floating Nuclear Power Plant (FNPP)


US FNPP design by MIT

- Use oil platform technology
- Ocean for natural cooling
- Designed to withstand Tsunamis & earthquakes if far from shore
- Located well away from population
- Linked by underwater transmission lines
- 45 m diameter
- 300 Mwe
- alternate design 1,100 MWe (75 m dia.)

US FNPP design.³

US FNPP design.³

3. Floating Nuclear Power Plant that is Safer and Cheaper," in TechDaily, June 25, 2015, available at

http://scitechdaily.com/floating_nuclear_power_plant_safer_cheaper/ (accessed 5 October 2015).

Design FNPP safeguards considering physical security, material control and accountability , nuclear security infrastructure, & IAEA inspections