
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed 
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.  

Tools	
  for	
  Next	
  Genera/on	
  Pla1orms	
  
Si	
  Hammond	
  

Scalable	
  Computer	
  Architectures,	
  Sandia	
  Na/onal	
  Labs,	
  NM,	
  USA	
  
sdhammo@sandia.gov	
  

	
  

SAND2015-7627PE



Talk	
  of	
  Two	
  Halves	
  

§  Part	
  1:	
  What	
  tools	
  do	
  we	
  currently	
  have	
  on	
  the	
  test	
  beds	
  that	
  
you	
  can	
  use/what	
  can	
  they	
  be	
  used	
  for?	
  
§  Parallel	
  Enablement	
  
§  Code	
  Correctness	
  
§  Performance	
  op5miza5ons	
  

§  Part	
  2:	
  What	
  are	
  we	
  adding	
  to	
  Kokkos	
  to	
  enable	
  lightweight	
  
profiling?	
  
§  KokkosP	
  Interface	
  
§  APEX	
  Connector	
  



TOOLS	
  ON	
  THE	
  TEST	
  BEDS	
  



Categories	
  of	
  Tools	
  

§  Most	
  of	
  these	
  tools	
  can	
  be	
  used	
  throughout	
  applica/on	
  
life/me	
  

§  Possibly	
  integrated	
  into	
  overnight	
  builds	
  

Parallel Enablement Code Correctness Application Performance 
Analysis/Optimization 

Application 

Running in parallel Running correctly Running efficiently 



PARALLEL	
  ENABLEMENT	
  



Parallel	
  Enablement	
  

§  Intel	
  Advisor	
  XE	
  –	
  test	
  beds	
  (SON	
  and	
  SRN)	
  
§  Step	
  1:	
  Lightweight	
  profile	
  of	
  applica/on	
  including	
  loops	
  
§  Step	
  2:	
  Annotate	
  loops	
  with	
  macros	
  
§  Step	
  3:	
  Advisor	
  generates	
  a	
  predic/on	
  of	
  parallel	
  performance	
  

§  Cilk,	
  TBB,	
  OpenMP	
  and	
  pthreads	
  on	
  Xeon	
  and	
  Xeon	
  Phi	
  

§  Step	
  4:	
  Limited	
  correctness	
  check	
  
§  Step	
  5:	
  Convert	
  to	
  parallel	
  model	
  (replace	
  macros)	
  

§  Trinity	
  will	
  have	
  Cray	
  Reveal	
  Tool	
  (SRN)	
  
§  Requires	
  compila/on	
  with	
  the	
  Cray	
  compiler	
  
§  Similar	
  approach,	
  profile	
  based	
  assessment	
  of	
  loops	
  



Parallel	
  Enablement	
  	
  

§  Parallel	
  Advisor	
  XE	
  2016	
  will	
  also	
  have	
  ini/al	
  support	
  for:	
  
§  Vectoriza/on	
  analysis	
  including	
  efficiency	
  metrics	
  

§  AVX128,	
  256	
  and	
  512	
  (KNL)	
  
§  Loop-­‐based	
  analysis,	
  does	
  not	
  look	
  at	
  block	
  vectoriza/on	
  
§  Ini/al	
  tes/ng	
  very	
  successful	
  
§  Does	
  not	
  require	
  feedback	
  from	
  counters	
  (horray!)	
  

§  And…	
  very	
  ini/al	
  support	
  for:	
  
§  Data	
  structure	
  placement	
  for	
  HBM	
  vs.	
  DDR	
  on	
  the	
  KNL	
  
§  S/ll	
  a	
  work	
  in	
  progress	
  
§  Assumes	
  data	
  structures	
  will	
  live	
  in	
  the	
  alloca/on	
  for	
  ever	
  







Notes	
  

§  Advisor	
  XE	
  is	
  loop	
  based	
  which	
  maps	
  well	
  to	
  OpenMP	
  and	
  Kokkos	
  

§  Does	
  not	
  “see”	
  the	
  modifica/ons	
  needed	
  for	
  algorithm	
  refactoring	
  

§  Assumes	
  data	
  structures	
  are	
  not	
  going	
  to	
  be	
  changed	
  to	
  enable	
  
vectoriza/on	
  or	
  parallelism	
  

§  Likely	
  not	
  to	
  get	
  the	
  performance	
  than	
  a	
  well	
  tuned	
  algorithm	
  by	
  hand	
  will	
  
but	
  very	
  much	
  quicker	
  

§  Good	
  idea	
  is	
  to	
  set	
  the	
  performance	
  model	
  to	
  a	
  large	
  number	
  of	
  threads	
  
(e.g.	
  256)	
  to	
  catch	
  low-­‐level	
  serializa/on	
  overheads	
  



CODE	
  CORRECTNESS	
  



Code	
  Correctness	
  

§  Wider	
  range	
  of	
  tools	
  than	
  parallel	
  enablement	
  reflec/ng	
  
longer	
  history	
  

§  Valgrind	
  
§  Compila/on	
  based	
  sani/zers	
  (clang	
  and	
  GNU	
  >=	
  4.9)	
  

§  ThreadSani/zer	
  (thread	
  race	
  condi/ons)	
  
§  AddressSani/zer	
  (buffer	
  overflows	
  and	
  use-­‐aner-­‐free)	
  
§  MemorySani/zer	
  (finds	
  reads	
  from	
  unini/alized	
  memory)	
  

§  Intel	
  Inspector	
  XE	
  
§  Memory	
  leak	
  detec/on	
  
§  Thread	
  race	
  condi/ons	
  





Notes	
  

§  Compila/on	
  based	
  sani/zers	
  slow	
  code	
  down	
  a	
  lot	
  (>8X)	
  
§  And	
  usually	
  just	
  fatal	
  when	
  the	
  issue	
  is	
  detected	
  (not	
  always)	
  

§  Inspector	
  XE	
  will	
  be	
  able	
  to	
  catch	
  mul/ple	
  errors	
  in	
  a	
  single	
  
run	
  
§  Get	
  a	
  long	
  list	
  presented	
  back	
  to	
  the	
  user	
  
§  Can	
  be	
  very	
  slow	
  to	
  perform	
  full	
  thread	
  memory	
  analysis	
  (>	
  20X)	
  
§  Not	
  a	
  perfect	
  science,	
  based	
  on	
  heuris/cs	
  
§  Very	
  good	
  for	
  memory	
  leak	
  detec/on	
  

§  Valgrind	
  s/ll	
  works	
  on	
  all	
  the	
  test	
  beds	
  



MPI	
  Correctness	
  

§  Intel’s	
  new	
  MPI	
  5.0	
  has	
  an	
  MPI	
  correctness	
  tracer	
  
§  Step	
  1:	
  Trace	
  MPI	
  events	
  using	
  op/ons	
  on	
  the	
  MPI	
  run/me	
  
§  Step	
  2:	
  Use	
  the	
  Trace	
  Analyzer	
  for	
  a	
  correctness	
  check	
  

§  Can	
  check	
  for	
  errors:	
  
§  Data	
  buffers	
  provided	
  to	
  MPI	
  
§  Data	
  type	
  matching	
  across	
  calls	
  
§  Some	
  message	
  deadlock	
  situa/ons	
  (even	
  when	
  the	
  applica/on	
  doesn’t	
  

complete	
  correctly)	
  
§  Overlapping	
  buffers	
  

§  Scales	
  reasonably	
  well,	
  Intel	
  tes/ng	
  up	
  to	
  64K	
  cores	
  



PERFORMANCE	
  ANALYSIS/OPTIMIZATION	
  



Performance	
  Analysis	
  

§  Lots	
  of	
  op/ons	
  here	
  but	
  not	
  all	
  map	
  to	
  pla1orms	
  well	
  

§  Intel	
  Vtune	
  Amplifier	
  XE	
  (Xeon,	
  Xeon	
  Phi)	
  
§  Cray	
  PAT	
  (Xeon	
  and	
  will	
  be	
  on	
  Trinity	
  Phase-­‐II	
  KNL)	
  
§  NVIDIA	
  Nsight	
  (NVIDIA	
  GPUs)	
  
§  AMD	
  CodeXL	
  (AMD	
  Fusion	
  APUs)	
  

§  TAU	
  
§  OpenSpeedShop	
  

§  On	
  CORAL	
  will	
  be	
  HPCToolkit	
  (Rice	
  Univ.)	
  



Capabili/es	
  

§  Big	
  varia/on	
  in	
  usability	
  across	
  tools	
  and	
  built	
  in	
  analysis	
  

Tool Profile MPI 
Jobs 

OpenMP GPU Perf. Count 

VTune XE Not really Yes Yes (Intel) Yes 
Cray PAT Yes Yes No Yes 

NSight No No Yes (NV) Yes (GPU) 
CodeXL No No Yes (AMD) Yes (APU) 

TAU Yes Yes Yes (NV) Yes 
OpenSS Yes Yes No Yes 

HPC Toolkit Yes Yes Yes (NV) Yes 





What	
  can	
  I	
  do	
  with	
  VTune?	
  

§  In	
  VTune	
  2015	
  you	
  can:	
  
§  Thread	
  scalability	
  analysis	
  “concurrency”	
  
§  Memory	
  bandwidth	
  
§  General	
  Explora/on	
  (Why	
  isn’t	
  my	
  applica/on	
  faster?)	
  
§  Hotspot	
  analysis	
  

§  In	
  VTune	
  2016	
  we	
  expect	
  to	
  have:	
  
§  Berer	
  support	
  for	
  Haswell	
  (actually	
  any	
  support	
  for	
  Haswell!)	
  

§  Including	
  QPI	
  counter	
  analysis	
  for	
  mul/-­‐socket	
  systems	
  

§  Ini/al	
  support	
  for	
  KNL	
  models	
  
§  Possibly	
  high-­‐bandwidth	
  memory	
  access	
  analysis	
  
§  Ini/al	
  energy	
  profiling	
  analysis	
  (very	
  early)	
  



Summary	
  

§  I	
  want	
  to	
  work	
  out	
  where	
  to	
  add	
  parallelism	
  or	
  vectoriza5on	
  
to	
  my	
  applica5on	
  
§  Use	
  Parallel	
  Enablement	
  tools	
  (Advisor	
  XE	
  for	
  vectoriza/on)	
  

§  I	
  want	
  to	
  work	
  out	
  if	
  my	
  code	
  is	
  thread	
  safe	
  and	
  executes	
  
correctly?	
  
§  Use	
  Code	
  Correctness	
  tools	
  (Inspector	
  XE	
  for	
  heavyweight	
  thread	
  

safety)	
  

§  I	
  want	
  to	
  work	
  out	
  where	
  boVlenecks/performance	
  issues	
  
are	
  with	
  my	
  code	
  
§  Use	
  Performance	
  Op/miza/ons	
  tools	
  (Vtune/Nsight/Cray	
  PAT)	
  



KOKKOSP	
  AND	
  APEX	
  



Profiling	
  Kokkos	
  

§  Profiling	
  Kokkos	
  is	
  actually	
  quite	
  difficult	
  because	
  of	
  what	
  
users	
  without	
  the	
  abstrac/on	
  expect	
  
§  CUDA	
  seems	
  to	
  be	
  OK	
  because	
  Kokkos	
  behaves	
  as	
  CUDA	
  is	
  normally	
  

compiled	
  
§  Direc/ves	
  are	
  a	
  problem	
  (OpenMP,	
  same	
  problem	
  would	
  exist	
  for	
  

OpenACC)	
  

§  Understanding	
  how	
  Kokkos	
  programs	
  are	
  constructed	
  means	
  
we	
  can	
  exploit	
  context	
  (parallel-­‐for	
  etc)	
  

§  Want	
  to	
  be	
  able	
  to	
  u/lize	
  cross	
  pla1orm	
  tools	
  as	
  much	
  as	
  
possible	
  but	
  allow	
  vendors	
  to	
  link	
  into	
  the	
  abstrac/ons	
  as	
  
needed	
  



KokkosP	
  Connector	
  

§  KOKKOS_PROFILE_LIBRARY=“<path	
  to	
  library	
  1>:<path	
  to	
  library	
  2>	
  ..”	
  

§  Full	
  dynamic	
  loading	
  at	
  run/me	
  
§  Parallel	
  For,	
  Reduce	
  and	
  Scan	
  

parallel_for(.. [=](int i) {
   . . .
});

parallel_for( .. ) {
    __begin_kernel(name, id);
    dispatch_kernel();
    __end_kernel(id);
}

Compiled into 

__kp_begin_kernel(name, *id) {
   . . . 
}

__kp_end_kernel(*id) {
   . . . 
}

Application Profiling Tool 



KokkosP	
  Connector	
  

§  Currently	
  in	
  tes/ng	
  but	
  is	
  part	
  of	
  the	
  Kokkos	
  master	
  

§  To	
  enable:	
  -­‐DKOKKOS_ENABLE_PROFILING	
  
§  Builds	
  hooks	
  into	
  your	
  applica/on	
  but	
  does	
  not	
  build	
  any	
  profiling	
  

tools	
  
§  Overhead	
  to	
  have	
  calls	
  in	
  your	
  code	
  with	
  tools	
  not	
  loaded	
  is	
  very	
  low,	
  

appears	
  to	
  be	
  negligible	
  in	
  ini/al	
  /ming	
  
§  If	
  you	
  name	
  kernels	
  you	
  will	
  get	
  profiling	
  output	
  rela/ng	
  to	
  that	
  

otherwise	
  we	
  use	
  type	
  names	
  to	
  generate	
  a	
  name	
  

§  Hoping	
  to	
  make	
  this	
  a	
  default	
  for	
  Kokkos	
  programs	
  but	
  needs	
  
to	
  be	
  tested	
  in	
  the	
  community	
  

§  “Always”	
  available	
  profiling	
  and	
  logging,	
  no	
  recompile	
  



Ini/al	
  Performance	
  Analysis	
  Tools	
  

§  Simple	
  kernel	
  /ming	
  profiler	
  (CPU,	
  GPU)	
  
§  Aggregates	
  /me	
  spent	
  in	
  individual	
  kernels,	
  /me	
  per	
  call,	
  can	
  provide	
  

variance	
  to	
  look	
  out	
  for	
  poten/al	
  load	
  imbalance	
  issues	
  
§  Very	
  lightweight	
  
§  Works	
  for	
  Xeon,	
  Xeon	
  Phi,	
  POWER8	
  and	
  for	
  NVIDA	
  GPU	
  

§  Kernel	
  memory	
  bandwidth	
  profiler	
  on	
  Haswell	
  (CPU	
  only)	
  
§  Tracks	
  demand	
  memory	
  requests	
  made	
  to	
  the	
  DRAM	
  by	
  kernel	
  
§  Total	
  memory	
  read	
  (even	
  writes	
  are	
  reads!)	
  over	
  /me	
  
§  Aggregates	
  over	
  total	
  run	
  

§  High	
  watermark	
  memory	
  consump/on	
  of	
  Kokkos	
  applica/on	
  



Kernel	
  Memory	
  Bandwidth	
  

0 
5 

10 
15 
20 
25 

G
B

/s
 

MiniAero Kernel Bandwidth 512 x 512 Input, 
OMP=32, Haswell Single Socket 

Bandwidth Demand load only 



KokkosP	
  Kernel	
  Comparison	
  (LULESH)	
  

Haswell 1x16 S=45 
I=1000 

CalcFBHourglassForceForEl
emsA 

CalcKinematicsForElems 

_INTERNAL_9_lulesh_cc_b
de2d54a::CalcHourglassCo
ntrolForElems(Domain& 

IntegrateStressForElemsA 

EvalEOSForElemsA 

CalcMonotonicQGradientsF
orElems 

CalcMonotonicQRegionForE
lems 

CalcFBHourglassForceForEl
emsB 

POWER8 1x40 S=45 
I=1000 

CalcFBHourglassForceForEl
emsA 

CalcHourglassControlForEle
ms(Domain& 

CalcKinematicsForElems 

IntegrateStressForElemsA 

EvalEOSForElemsA 

EvalEOSForElemsB 

CalcMonotonicQGradientsF
orElems 

CalcMonotonicQRegionForE
lems 

EvalEOSForElemsC 

EvalEOSForElemsD 

See similar breakdown across architectures but we can profile them all using one tool 



Prototype	
  Tools	
  

§  Kokkos	
  OpenMP	
  affinity	
  check	
  (CPU	
  OpenMP	
  backend)	
  
§  Will	
  check	
  that	
  applica/on	
  does	
  not	
  have	
  more	
  threads	
  than	
  provided	
  

in	
  the	
  CPU	
  mask	
  
§  Prevent	
  performance/benchmarking	
  errors	
  when	
  using	
  MPI	
  

§  Floa/ng	
  Point	
  calcula/on	
  by	
  kernel	
  (CPU,	
  probably	
  GPU)	
  
§  Counts	
  hardware	
  FLOP/s	
  by	
  kernel	
  
§  But	
  possible	
  to	
  use	
  APEX	
  connector	
  to	
  perform	
  heavyweight	
  

vectoriza/on	
  analysis	
  by	
  kernel	
  
§  Will	
  load	
  at	
  bytes	
  loaded	
  to	
  calcula/on	
  opera/ons	
  ra/o	
  



Prototype	
  Prototype	
  Tools	
  

§  Memory	
  Load	
  Imbalance	
  Detector	
  (CPU)	
  
§  We	
  aggregate	
  most	
  counts	
  by	
  individual	
  thread	
  already	
  
§  So	
  will	
  be	
  able	
  to	
  look	
  at	
  memory	
  subsystem	
  pressure	
  by	
  thread	
  
§  Use	
  this	
  analysis	
  to	
  detect	
  kernel	
  load	
  imbalance	
  



APEX	
  –	
  APPLICATION	
  CHARACTERIZATION	
  



Performance	
  Characteriza/on	
  

§  Counters	
  for	
  basic	
  machine	
  opera/ons	
  are	
  almost	
  impossible	
  
to	
  obtain	
  accurately	
  and	
  predictably	
  across	
  pla1orms	
  

§  Why?	
  
§  Different	
  chip	
  designers	
  think	
  of	
  events	
  in	
  different	
  ways	
  
§  Performance	
  counters	
  are	
  for	
  valida/on	
  not	
  for	
  coun/ng	
  opera/ons	
  
§  Different	
  chips	
  behave	
  in	
  different	
  ways,	
  not	
  everyone	
  implements	
  

opera/ons	
  the	
  same	
  way	
  
§  Different	
  ISAs,	
  micro-­‐opera/ons	
  etc	
  etc	
  

§  Conclusion:	
  may	
  need	
  to	
  have	
  the	
  ability	
  to	
  accurately	
  count	
  
events	
  in	
  a	
  determinis/c	
  way	
  



APEX	
  

§  APEX	
  (Applica/on	
  Characteriza/on	
  for	
  Exascale)	
  is	
  a	
  Sandia	
  
LDRD	
  project	
  to	
  look	
  at	
  whether	
  these	
  tools	
  can	
  be	
  made	
  
§  Xeon	
  and	
  Xeon	
  Phi	
  based	
  to	
  support	
  problem	
  diagnosis	
  on	
  KNL	
  

§  Focus:	
  
§  Vectoriza/on	
  analysis	
  
§  Floa/ng	
  point	
  opera/ons	
  vs.	
  vectored	
  logicals,	
  condi/onals	
  etc	
  
§  Memory	
  load/store	
  behavior	
  
§  Gather/Scarer	
  analysis	
  
§  Eventually	
  masked	
  vector	
  opera/on	
  analysis	
  

§  Mostly	
  complete	
  but	
  user	
  experience	
  is	
  very	
  poor	
  



Emula/on	
  and	
  Instruc/on	
  Analysis	
  for	
  KNL	
  

0% 
10% 
20% 
30% 
40% 
50% 
60% 
70% 
80% 
90% 

100% 

SNB HSW KNL 

Pe
rc

en
ta

ge
 o

f I
ns

tr
uc

tio
ns

 E
xe

cu
te

d 

Instruction Breakdown by Vector Width for MiniAero 
Scalar AVX128 AVX256 AVX512 



Instruc/on	
  Family	
  Breakdown	
  

0% 

20% 

40% 

60% 

80% 

100% 

KRIPKE PENNANT HPCG XSBench LULESH 

In
st

ru
ct

io
ns

 E
xe

cu
te

d Logical 
Branching 
Mask Handling 
Scatter 
Gather 
Data Move 
Vector FMA 
AVX-512 
AVX-Std 

Codes compiled for KNL with MiniMPI, Intel 15.1 Compiler, AVX512-MIC Optimization, No Code Optimization Applied,  
Instructions show for OMP_NUM_THREADS=1 



Vector	
  Lane	
  Usage	
  inc	
  Data	
  Move	
  

0% 

20% 

40% 

60% 

80% 

100% 

KRIPKE PENNANT HPCG XSBench LULESH 

In
st

ru
ct

io
ns

 E
xe

cu
te

d 

8 Lanes w Mask 
2 Lanes w Mask 
8 Lanes 
4 Lanes 
2 Lanes 
1 Lane 

Codes compiled for KNL with MiniMPI, Intel 15.1 Compiler, AVX512-MIC Optimization, No Code Optimization Applied,  
Instructions show for OMP_NUM_THREADS=1 



Long	
  Term	
  Plans	
  

§  Merge	
  the	
  APEX	
  analysis	
  engines	
  into	
  KokkosP	
  

§  Will	
  provide	
  detailed	
  mul/-­‐threaded	
  analysis	
  by	
  kernel:	
  
§  Vectoriza/on	
  efficiency	
  (including	
  vector	
  masks)	
  
§  Memory	
  load/store	
  behavior	
  (widths	
  of	
  loads,	
  stores	
  etc)	
  
§  Gather/Scarer	
  analysis	
  
§  Analysis	
  of	
  logical,	
  compares	
  etc	
  

§  Why?	
  
§  Want	
  to	
  begin	
  to	
  make	
  NGP-­‐based	
  code	
  analysis	
  available	
  to	
  vendors	
  
§  Decide	
  what	
  instruc/on	
  sequences	
  etc	
  need	
  op/miza/on	
  
§  Part	
  of	
  Sandia’s	
  commitment	
  to	
  Exascale	
  for	
  industry	
  



DISCUSSION:	
  PERFORMANCE	
  TOOLS	
  
What	
  do	
  you	
  guys	
  want	
  us	
  to	
  provide	
  for	
  you?	
  



Performance	
  Tools	
  Ques/ons	
  

§  Do	
  you	
  have	
  what	
  you	
  think	
  you	
  need?	
  

§  Do	
  you	
  use	
  the	
  tools	
  men/oned	
  or	
  others	
  in	
  your	
  daily	
  work?	
  

§  What	
  don’t	
  these	
  tools	
  do?	
  

§  Do	
  they	
  work	
  with	
  Kokkos?	
  

§  How	
  many	
  nodes	
  do	
  you	
  need	
  the	
  tools	
  to	
  work	
  on?	
  



Summary	
  &	
  More	
  Informa/on?	
  

§  Lots	
  of	
  tools	
  available	
  for	
  you	
  to	
  use:	
  
§  Parallel	
  Enablement,	
  Code	
  Correctness	
  and	
  Performance	
  Op/miza/on	
  
§  Most	
  of	
  these	
  available	
  on	
  Xeon	
  and	
  Xeon	
  Phi	
  (Trinity)	
  

§  Choices	
  for	
  GPU	
  and	
  compiler	
  

§  HAAPs	
  website:	
  
hrps://snl-­‐wiki.sandia.gov/pages/viewpage.ac/on?
pageId=92176414	
  

	
  





One	
  More	
  Thing...	
  

§  ATDM	
  Test	
  Beds	
  coming	
  online	
  
§  Ini/al	
  installa/on	
  of	
  OpenPOWER	
  ATDM	
  systems	
  (white	
  and	
  ride	
  K80)	
  
§  Haswell	
  (SON	
  hansen,	
  SRN	
  shiller)	
  
§  Will	
  have	
  ATDM	
  specialized	
  file	
  systems	
  for	
  fast(er)	
  compiles	
  

§  ASC	
  Test	
  Beds	
  
§  ARM64	
  Cavium	
  will	
  be	
  delivered	
  shortly	
  
§  AMD	
  Fusion	
  APU	
  (cooper)	
  beginning	
  to	
  make	
  some	
  progress	
  

§  S/ll	
  no	
  dates	
  on	
  when	
  KNL	
  will	
  arrive	
  

§  Keep	
  an	
  eye	
  on	
  the	
  test	
  bed	
  announce	
  email	
  list!	
  
§  Thanks	
  to	
  the	
  incredible	
  test	
  bed	
  teams	
  




