SAND2015- 7627PE

Sandia

Exceptional service in the national interest National
Laboratories

Tools for Next Generation Platforms

Si Hammond
Scalable Computer Architectures, Sandia National Labs, NM, USA
sdhammo@sandia.gov

"' U5 DEPARTMENT OF
ENERGY JA" Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
.._.. r Sy Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Talk of Two Halves

Sandia
National
Laboratories

= Part 1: What tools do we currently have on the test beds that

you can use/what can they be used for?

= Parallel Enablement
= Code Correctness
= Performance optimizations

= Part 2: What are we adding to Kokkos to enable lightweight

profiling?
= KokkosP Interface
= APEX Connector

TooLS ON THE TEST BEDS

Categories of Tools e

Application
Parallel Enablement Code Correctness Appllcat!on Pe_rfo.rm§nce
Analysis/Optimization
Running in parallel Running correctly Running efficiently

= Most of these tools can be used throughout application
lifetime
= Possibly integrated into overnight builds

PARALLEL ENABLEMENT

Parallel Enablement h) e,

= |ntel Advisor XE — test beds (SON and SRN)
= Step 1: Lightweight profile of application including loops

Step 2: Annotate loops with macros

Step 3: Advisor generates a prediction of parallel performance
Cilk, TBB, OpenMP and pthreads on Xeon and Xeon Phi

Step 4: Limited correctness check

Step 5: Convert to parallel model (replace macros)

= Trinity will have Cray Reveal Tool (SRN)
= Requires compilation with the Cray compiler
= Similar approach, profile based assessment of loops

Parallel Enablement

= Parallel Advisor XE 2016 will also have initial support for:

= Vectorization analysis including efficiency metrics
AVX128, 256 and 512 (KNL)

= Loop-based analysis, does not look at block vectorization
= |nitial testing very successful

= Does not require feedback from counters (horray!)

= And... very initial support for:

= Data structure placement for HBM vs. DDR on the KNL
= Still a work in progress

= Assumes data structures will live in the allocation for ever

Sandia
National

Laboratories

File View Help
‘s & B R

Advisor Workflow

%1. Survey Target]
Where should | consider
adding parallelism? Locate
the loops and functions
[read more]

2 | Collect Survey Data

View Survey Result

{ 2. Annotate sources

Add Intel Advisor
annotations to identify
possible parallel tasks and
their enclosing parallel
sites.

+ Steps to annotate

View Annotations

W] 3. check suitability

Analyze the annotated
program to check its
predicted parallel
performance.

4 | Collect Suitability Da

View Suitability Resul

@ 4. Check Correctness
Predict parallel data
sharing problems for the
annotated tasks. Fix the
reported sharing problems.

@ | Collect Correctness [

View Correctness Re

’5. Add Parallel Frame... -

. Steps to replace
annotations ~]

Current Project: LULESHSerial

4 Project Navigator Adv) 5

X! /home/sdhammo/intel/advixe/projects/LULESHSerial - Intel Advisor

CH® & O

Welcome | LULESHSerial - @000 &

w Where should | add parallelism? ©

(T EA 27 Survey Report -G UTIELACLE:G L ad | Suitability Report »

& DUIME Largyesl mouauies uo rnoL cornuain uepuy miormation

Suggestion: enable debug information for relevant modules by adding the -g option and rebuild. For
details, see build settings. The Collection Log lists all modules.
Module(s) without debug information: libc-2.3.4.s0, libopen-pal.s0.6.2.1, libopen-rte.s0.7.0.5, mca_bml_r2.
so, mca_btl_openib.so, mca_ess_singleton.so, mca_osc_rdma.so, mca_pml_obl.so
[iDo not show this message again: -

[>)

4| 9| % View Source
Function Call Sites and Loops Total Time % Total Time Self Time Hot Loops Source Location =
“VTotal 100.0% mm 186.4494s 0s
“clone 98.3% I 183.3494s 0s clone.S:0 =
~[OpenMP worker] 98.3% I 183.3494s Os & z_Linux_util.c:699
v [loop at z_Linux_util.c:768 98.3% mmmmmm 183.3494s 170.8678s o & z_Linux_util.c:768
~[OpenMP dispatcher] 6.7%1 12.4716s 0s & kmp_runtime.c:7045 I
v__kmp_invoke_microtas| 6.7%1 12.4716s 0.0100s
main 3.5%lI 6.5998s 0s lulesh.cc:2007
P LagrangelLeapFrog 2.9%]1 5.3802s 0s lulesh.cc:1974
“ [loop at lulesh.h:] 0.7%1 1.2195s 0s e lulesh.h:1974
PLagrangeElemen 0.7%(1.2195s 0s lulesh.cc:1883
“LagrangeNodal 2.6%1 4.8298s 0s lulesh.cc:812
“vCalcForceForNodes 2.2%1 4.1836s 0s lulesh.cc:718
“vCalcVolumeForce 2.2%]1 4.1136s 0s lulesh.cc:686
“CalcHourglass(1.7%]1 3.1903s 0s lulesh.cc:627
1 A% [2 8902s 2 8902s fa lulesh cc:A39 E

A [lnon at
>)| <] n)

=3 Copy to Clipboard | | ¥

(< T
Example: |Iteration Loop,SingIeJ v

/ To copy compiler options, select Build Settings from the drop-down list.

/ Add to =ach module that contains Intel Advisor annotations

#include "advisor-annotate.h"
ANHNOTATE_SITE_BEGIN(MySit=l); // Place before the loop control statement to begin a parallel cods
/ loop control statement
ANNOTATE_ITERATION_TASK (MyTaskl / Place at the start of loop body. This annotation identi{

/ loop body
ANNOTATE_SITE_END () ;

a i | E\

/ End the parallel code region, after task execution completes

Intel Advisor XE 2015

% Collect Survey data

Pause

X/ /home/sdhammo/intel/advixe/projects/LULESHSerial - Intel Advisor
File View Help

MR YD & O

- -y _‘ l—————
sl ® | Welcome | LULESHSerial - €000

L]

ik /home/sdhammo/intel/advixe/projects

v [LULESHSerial
m Summary -, Survey Report ¢ Annotation Report EZEITHEHHA LS8 » Correctness Report

= What are the performance implications of the annotated sites? o Intel Advisor XE 2015

Maximum Program Target System: [CPU ‘ v | Threading Model: [OpenMP v | cPu Count: \
Gain For All Sites: 0.44x - - -
site Label Source Impact to Combined Site Metrics, All Instan... ¥ gjte Instance Metrics
Serial time: 0.9050s | >Ite Labe Location Program Gain : i Parallel Time '
predicted Parallel time: 206835 9 Total Serial ... Total Parallel... Site G...
CalcHourglassControlF... [lulesh.cc... 0.79x 0.0349s 0.2735s 0.13x 0.1368s
ApplyMaterialPropertie... [lulesh.cc... 1.03x 0.0862s 0.0613s 141x 0.0306s
CalcEnergyForElems lulesh.cc... 0.41x 0.0230s 1.3380s 0.02x 0.0191s
Site Performance Scalability
Scalability of Maximum Site Gain Loop Iterations (Tasks) Modeling Runtime Modeling
Avg. Number of Avg. Iteration Type of Change Gain Benefit if Checked
32x+ Iterations (Tasks): (Task) Duration: [Reduce Site Overhead
2 91125 <0.0001s (] Reduce Task Overhead +11D
Q -
5. 8x 0.008x 0.008x) Reduce Lock Overhead
2 4yl 0.040x 0.040x
3 0.200% 0.200x [] Reduce Lock Contention
2l
S 2XA i .
o —) — e] Enable Task Chunking +13.61>
D 1x 5x 5x
2 25x 25x
S R Iy Sy S s 125x 125x
N ES [++] = w (=] - N w
o N By O e Apply
CPU Count
62.4% Load Imbalance: 0.1708s v
99.9% Runtime Overhead: 0.2734s v
0.0% Lock Contention: Os
Warning -
Total Parallel Time: 0.2735s v 4 Current tasks are too fine-grain, and not
effective for multi-threading. Suggestion:
Increase task granularity/duration, reduce
task overhead, or consider vectorization.
I u | [>)

Sandia
rh National

Laboratories

Notes

= Advisor XE is loop based which maps well to OpenMP and Kokkos

= Does not “see” the modifications needed for algorithm refactoring

= Assumes data structures are not going to be changed to enable
vectorization or parallelism

= Likely not to get the performance than a well tuned algorithm by hand will
but very much quicker

= Good idea is to set the performance model to a large number of threads
(e.g. 256) to catch low-level serialization overheads

CODE CORRECTNESS

Code Correctness

= Wider range of tools than parallel enablement reflecting

longer history

= Valgrind

= Compilation based sanitizers (clang and GNU >= 4.9)
= ThreadSanitizer (thread race conditions)

= AddressSanitizer (buffer overflows and use-after-free)
= MemorySanitizer (finds reads from uninitialized memory)

Intel Inspector XE
= Memory leak detection
= Thread race conditions

Sandia
National
Laboratories

File View Help
- s

2

~

=

a @\

X /home/sdhammo/intel/inspxe/projects/LULESH - Intel Inspector

Project Navigator

v B LULESH

oot

r001mi3

fls /home/sdhammojintelfinsp...

| Welcome | r000ti3 X

¥ Locate Deadlocks and Data Races

@ Target

Analysis Type||F Collection Log m

@ Type Sources Modules State Severity
PP1 @ Datar... [Unknown]; lulesh.cc libopen-pal.so.6; libopen-rte.so.7; lulesh2.0; mca_grpco... R New Error
PP2 @ Datar... lulesh.cc; new_alloc... lulesh2.0 R New Type
vP3 @ Datar.. lulesh.cc; new_alloc... lulesh2.0 R New Data race
Datar... lulesh.cc:595; lulesh... lulesh2.0 R New
lulesh.cc:595; lulesh ... lulesh2.0 New source
Datar... lulesh.cc: g ! R [Unknown]
Datar... lulesh.cc:599; lulesh... lulesh2.0 R New lulesh.cc
Datar... lulesh.cc:599; lulesh... lulesh2.0 R New new_allocatorh
Datar... lulesh.cc:595; lulesh... lulesh2.0 R New
Module
Datar... lulesh.cc:595; lulesh... lulesh2.0 R New iib Ls0.6
ibopen-pal.so.
Datar... lulesh.cc:607; lulesh... lulesh2.0 R New iib P pt .
ibopen-rte.so.
Datar... lulesh.cc:599; lulesh... lulesh2.0 R New ul ph2 0
ulesh2.
Datar... lulesh.cc:599; lulesh... lulesh2.0 R New bad
mca comm_bad.so
Datar... lulesh.cc:603; lulesh... lulesh2.0 R New -9'P =
4 100 '10of1 | All || Code Locations: Di
Description Source Function Module
Read lulesh.cc:619 CalcFBHourglassForceForElems lulesh2.0
617 lulesh2.0!CalcFBHourglassForceForElems
618 domain. fx (n6si2) += hgfx[6]; lulesh2.0!CalcFBHourglassForceForElems
619 domain. fy (n6si2) += hgfy[6]; lulesh2.0!Lagrangsllodal - lulesh.cc:83]
620 domain. fz (n6si2) += hgfz[6]; lulesh2.0!main - lulesh.cc:2112
621 lulesh2.0!_start
Write lulesh.cc:595 CalcFBHourglassForceForElems lulesh2.0
593 lulesh2.0!CalcFBHourglassForceForElems
594 domain. fx (n0si2) += hgfx[0];
595 domain. fy (n0si2) += hgfy[0];
596 domain. fz (n0si2) += hgfz[0];
597
Allocation site new_allocator.h:89 _M_fill__insert lulesh2.0
87 std::__throw_bad_alloc(); libstdc++.s0.6!operator new
88 lulesh2.0!_M_fill_insert - new_allocatd
89 return static_cast<_Tp*> (::operator new(__n * size|(lulesh2.0!AllocatelNodePersistent - stl_|
90 } lulesh2.0!Domain - lulesh-init.cc:55
91 lulesh2.0!main - lulesh.cc:2088

HINT: Synchronization allocation site lulesh.cc:831

LagrangeNodal

lulesh2.0

¢°P Master Thread #0 (77139)

&MP Worker Thread #1 (77159)

v

Intel Inspector XE 2015

5item(s)

5 item(s)

1item(s)
5item(s)
4 item(s)

1item(s)
1item(s)
5 item(s)
1item(s)

Sandia
rh National
Laboratories

Notes

= Compilation based sanitizers slow code down a lot (>8X)
= And usually just fatal when the issue is detected (not always)

= |nspector XE will be able to catch multiple errors in a single
run
= Get along list presented back to the user
= Can be very slow to perform full thread memory analysis (> 20X)
= Not a perfect science, based on heuristics
= Very good for memory leak detection

= Valgrind still works on all the test beds

Sandia
f"! National
Laboratories

MPI Correctness

" |ntel’s new MPI 5.0 has an MPI correctness tracer
= Step 1: Trace MPI events using options on the MPI runtime
= Step 2: Use the Trace Analyzer for a correctness check

= Can check for errors:
= Data buffers provided to MPI

= Data type matching across calls
= Some message deadlock situations (even when the application doesn’t
complete correctly)

= Qverlapping buffers

= Scales reasonably well, Intel testing up to 64K cores

PERFORMANCE ANALYSIS/OPTIMIZATION

National

Performance Analysis .

= Lots of options here but not all map to platforms well

" |ntel Vtune Amplifier XE (Xeon, Xeon Phi)

"= Cray PAT (Xeon and will be on Trinity Phase-1l KNL)
= NVIDIA Nsight (NVIDIA GPUs)

= AMD CodeXL (AMD Fusion APUs)

= TAU
= QOpenSpeedShop

= On CORAL will be HPCToolkit (Rice Univ.)

Capabilities) &=

Tool Profile MPI OpenMP Perf. Count
Jobs

VTune XE Not really Yes (Intel)
Cray PAT Yes Yes No Yes
NSight No No Yes (NV) Yes (GPU)
CodeXL No No Yes (AMD) Yes (APU)
TAU Yes Yes Yes (NV) Yes
OpenSS Yes Yes No Yes
HPC Toolkit Yes Yes Yes (NV) Yes

= Big variation in usability across tools and built in analysis

X! /home/sdhammo/intel/amplxe/projects/LULESH - Intel VTune Amplifier

Project Navigat: S =
e Y B il P B BE @ ‘Welcome H r003cc roolhs X
fls /home/sdhammojintel/amplxe/projects

> @ LULESH % Basic Hotspots Hotspots by CPU Usage viewpoint (change) @ Intel VTune Amplifier XE 2015
f&m r000hs B Collection Log| | @ Analysis Target Analy Type| | ¥t Summary | |+% Bottom-up| |+% Ca CEMl @ Top-down Tree - RENGENRIEES
iz} ro01hs Grouping: | Call Stack o [‘E] ’Data Of Interest (CPU Metrics) H?]
ffm ro02cc ey e ~ —llxViewing 4 10f65 b selected stack
l& ro03cc , me’ . Tl 31.8% (2.5125 of 7.893s) |
b & miniaero-hsw Function Stack Effective Time by Utilization Spin Time Overhead Timg
@ !dle @ Poor Ok @ Ideal [Over Imb... | Loc..‘ Co. ‘Oth.. Cre..‘Sch..’Red.. lulesh2.0!CalcHou...Elems - lulesh.cc
¥ Total 13.5% [82.8% 0.0% 0.0% 3.5% 0.0% 0.0% 0.0%| (f lulesh2.0!CalcVo... - lulesh.cc:716
b uclone 0.0%] 82.5% 0.0% 0.0% 3.5% 0.0% 0.0% 0.0%| |} lulesh2.0!CalcFo... - lulesh.cc:740
¥y _libc_start_main 13.5% [03% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%| |l lulesh2.0!Lagrang... - lulesh.cc:827
< main 13.5% [03% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% |l jbiomps.sol[Ope... runtime.c:7060
~u LagrangeLeapFrog 13.2% (N 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% libiomp5.50!_km..._ runtime.c:2247
0, 0, 0, 0, 0, 0, 0, 0,
. LagrangeNodal 7.2% (N 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% libiomp5.501[Ope... Csupport.c:312
< CalcForceForNodes 7.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% luleshz.01CalcHou... - lulesh.cc:638
b u CalcVolumeForceForEle 6.8% (NN 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Y : . : '“] ash =
b . [OpenMP fork] 0.1%] 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%| ([Uesh2.0!CalcVo... - lulesh.cc:716
b CalcAccelerationForNod¢ 0.1%| 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% [ulesh2.0!CalcFo... - lulesh.cc:740
b CalcPositionForNodes 0.1%| 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%| [|ulesh2.0!Lagrang... - lulesh.cc:827
b CalcVelocityForNodes 0.0%] 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%| [lulesh2.0!Lagran...- lulesh.cc:1990
P ApplyAccelerationBound 0.0%]| 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% lulesh2.0!main+0x...- lulesh.cc:2090
b v LagrangeElements 5.9% (I 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%| | libc-2.12.s0!_lib... libc-start.c:226
1 CaleTimaranctrainte EnarFl nozl N1% NNO% N NO% NNO% N NO%A N NOA N NOL
Selected 1 row(s): 6.8% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
< [> Y || — >
Qb Ruler Area
OMP Mast... 7 Region In...
E Tread [v]
OMP Worke... o
OMP Worke (4 @8 Running
- -
& [OMP Worke... AL
£ [oMP Worke... [¥] du Spin and ...
OMP Worke MPI Commun...
OMP Worke [J¥ CPU Sample
OMP Worke AL
OMP Worke [¥] duk CPU Time
[] duk Spin and ...
CPU Usage MPI Commun...
T »

Sl No filters are applied. [RENTIa=EEF RICELHE Any Thread |t] LG Any Module 7| Utilization:

(o1 RS =T QLM User functions + 1 HC] Inline Mode: (IGLLRYLGEH Functions only

What can | do with VTune?) .

= |nVTune 2015 you can:
= Thread scalability analysis “concurrency”
= Memory bandwidth
= General Exploration (Why isn’t my application faster?)
= Hotspot analysis

= |nVTune 2016 we expect to have:
= Better support for Haswell (actually any support for Haswell!)
Including QPI counter analysis for multi-socket systems
= |nitial support for KNL models
= Possibly high-bandwidth memory access analysis
= |nitial energy profiling analysis (very early)

National

Summary T

= | want to work out where to add parallelism or vectorization
to my application

= Use Parallel Enablement tools (Advisor XE for vectorization)

= | want to work out if my code is thread safe and executes
correctly?

= Use Code Correctness tools (Inspector XE for heavyweight thread
safety)

= | want to work out where bottlenecks/performance issues
are with my code
= Use Performance Optimizations tools (Vtune/Nsight/Cray PAT)

KOkkosSP AND APEX

Sandia
r"! National
Laboratories

Profiling Kokkos

= Profiling Kokkos is actually quite difficult because of what
users without the abstraction expect

= CUDA seems to be OK because Kokkos behaves as CUDA is normally
compiled

= Directives are a problem (OpenMP, same problem would exist for
OpenACC)

= Understanding how Kokkos programs are constructed means
we can exploit context (parallel-for etc)

= Want to be able to utilize cross platform tools as much as
possible but allow vendors to link into the abstractions as
needed

KokkosP Connector) .

parallel for(.. [=](int 1) { __kp begin kernel(name, *id) {
})i }

I Compiled into __kp _end kernel(*id) {
parallel for(..) { // S

}

__begin_kernel (name, id);
dispatch kernel();
__end_kernel(id);

Application Profiling Tool

= KOKKOS_PROFILE_LIBRARY="“<path to library 1>:<path to library 2> ..”

= Full dynamic loading at runtime

= Parallel For, Reduce and Scan

KokkosP Connector h) e,

= Currently in testing but is part of the Kokkos master

* To enable: -DKOKKOS_ENABLE_PROFILING

= Builds hooks into your application but does not build any profiling
tools

= Qverhead to have calls in your code with tools not loaded is very low,
appears to be negligible in initial timing

= |f you name kernels you will get profiling output relating to that
otherwise we use type names to generate a name

= Hoping to make this a default for Kokkos programs but needs
to be tested in the community

= “Always” available profiling and logging, no recompile

Initial Performance Analysis Tools @&

= Simple kernel timing profiler (CPU, GPU)

= Aggregates time spent in individual kernels, time per call, can provide
variance to look out for potential load imbalance issues

= Very lightweight
= Works for Xeon, Xeon Phi, POWERS8 and for NVIDA GPU

= Kernel memory bandwidth profiler on Haswell (CPU only)
= Tracks demand memory requests made to the DRAM by kernel
= Total memory read (even writes are reads!) over time
= Aggregates over total run

= High watermark memory consumption of Kokkos application

Kernel Memory Bandwidth T .

MiniAero Kernel Bandwidth 512 x 512 Input,
OMP=32, Haswell Single Socket

B Bandwidth Demand load only

GBI/s

KokkosP Kernel Comparison (LULESH)) e,

Haswell 1x16 S=45 POWERS 1x40 S=45
1=1000 1=1000

B CalcFBHourglassForceForEl

emsA B CalcFBHourglassForceForEl
emsA

OCalcKinematicsForElems B CalcHourglassControlForEle

ms(Domain&

OCalcKinematicsForElems
B _INTERNAL_9 lulesh_cc_b

de2d54a::CalcHourglassCo

ntrolForElems(Domain& OlintegrateStressForElemsA

OlintegrateStressForElemsA
OEvalEOSForElemsA
OEvalEOSForElemsA OEvalEOSForElemsB

O CalcMonotonicQGradientsF

o C?EI(I:MonotonicQGradientsF orElems

orElems

B CalcMonotonicQRegionForE
lems

B CalcMonotonicQRegionForE

lems BEvalEOSForElemsC
BCalcFBHourglassForceForEl B EvalEOSForElemsD

emsB

See similar breakdown across architectures but we can profile them all using one tool

Sandia
rh National
Laboratories

Prototype Tools

= Kokkos OpenMP affinity check (CPU OpenMP backend)

= Will check that application does not have more threads than provided
in the CPU mask

= Prevent performance/benchmarking errors when using MPI

* Floating Point calculation by kernel (CPU, probably GPU)
= Counts hardware FLOP/s by kernel

= But possible to use APEX connector to perform heavyweight
vectorization analysis by kernel

= Will load at bytes loaded to calculation operations ratio

Prototype Prototype Tools

= Memory Load Imbalance Detector (CPU)
= We aggregate most counts by individual thread already
= So will be able to look at memory subsystem pressure by thread
= Use this analysis to detect kernel load imbalance

APEX — APPLICATION CHARACTERIZATION

Sandia
F"l National
Laboratories

Performance Characterization

= Counters for basic machine operations are almost impossible
to obtain accurately and predictably across platforms

= Why?
= Different chip designers think of events in different ways
= Performance counters are for validation not for counting operations

= Different chips behave in different ways, not everyone implements
operations the same way

= Different ISAs, micro-operations etc etc

= Conclusion: may need to have the ability to accurately count
events in a deterministic way

Sandia
Q P E X rh National
Laboratories

= APEX (Application Characterization for Exascale) is a Sandia
LDRD project to look at whether these tools can be made

= Xeon and Xeon Phi based to support problem diagnosis on KNL

" FocCus:

Vectorization analysis

Floating point operations vs. vectored logicals, conditionals etc
Memory load/store behavior

Gather/Scatter analysis

Eventually masked vector operation analysis

= Mostly complete but user experience is very poor

Emulation and Instruction Analysis for KNL @&

Instruction Breakdown by Vector Width for MiniAero
B Scalar BAVX128 BAVX256 BAVX512

100%
90% -
80% -
70% -
60% -
50% -
40% -
30% -
20% -
10% -

0% -

Percentage of Instructions Executed

SNB HSW KNL

Instruction Family Breakdown

100%

80% -

60% -

40% -

Instructions Executed

20%

0% -
KRIPKE PENNANT HPCG XSBench LULESH

Sandia
| National
Laboratories

Logical

® Branching

® Mask Handling
Scatter

® Gather

® Data Move
Vector FMA

mAVX-512

B AVX-Std

—

Codes compiled for KNL with MiniMPI, Intel 15.1 Compiler, AVX512-MIC Optimization, No Code Optimization Applied,

Instructions show for OMP_NUM_THREADS=1

Sandia
| National
Laboratories

Vector Lane Usage inc Data Move

100% — -
80% I I i '

geo)
@
5
0 B 8 Lanes w Mask
L 60%
u>j 2 Lanes w Mask
7))]
S 8 Lanes
>]
B 409 4 Lanes
) 2 Lanes
whd
0
< 1 Lane

20%

0%

KRIPKE PENNANT HPCG XSBench LULESH

—

Codes compiled for KNL with MiniMPI, Intel 15.1 Compiler, AVX512-MIC Optimization, No Code Optimization Applied,
Instructions show for OMP_NUM_THREADS=1

Sandia
rh National
Laboratories

Long Term Plans

= Merge the APEX analysis engines into KokkosP

= Will provide detailed multi-threaded analysis by kernel:
= Vectorization efficiency (including vector masks)
= Memory load/store behavior (widths of loads, stores etc)
= Gather/Scatter analysis
= Analysis of logical, compares etc

= Why?
= Want to begin to make NGP-based code analysis available to vendors
= Decide what instruction sequences etc need optimization
= Part of Sandia’s commitment to Exascale for industry

DISCUSSION: PERFORMANCE TOOLS

What do you guys want us to provide for you?

Performance Tools Questions) e

= Do you have what you think you need?

= Do you use the tools mentioned or others in your daily work?
* What don’t these tools do?

= Do they work with Kokkos?

= How many nodes do you need the tools to work on?

Summary & More Information?

" Lots of tools available for you to use:
= Parallel Enablement, Code Correctness and Performance Optimization
= Most of these available on Xeon and Xeon Phi (Trinity)

= Choices for GPU and compiler

= HAAPs website:
https://snl-wiki.sandia.gov/pages/viewpage.action?
pageld=92176414

€ attachmen... m NERSC-8 ... o losalamos/... @ Techweb o Remove tr... o Providean... | G Vtune201.. | @& Intei® VIu... | @ Intel®VTu... /| X, Guidet... +
| 1 1 1 1 1 / D

1

€ & nttps:/snl-wiki.sandia.gov/display/HAAPSs/Guide+to+using+Intel+VTune+on+Compton E]l~ @ | CPsearch B O 43I A0 =
" Person or Org Number
Techweb SMM Policies Orgs News -
Search Sandia
X Confluence Spaces - People Calendars Browse - Create [] _ ®- Q
Search Heterogeneous Advanced Architecture Platforms (HAAPS) /... # Edt © Watch [2 Share &% Tools ~
/ Testbed - Compton - - B
* HAAPS Schedul d Activiti : H
edue and Aciviies Guide to using Intel VTune on Compton
> How-to articles) .)
& Created by Simon David Hammond (-EXP), last modified on Jul 01, 2015
v Testbeds
* FAQ Intel's VTune product is an application and system profiler which can help you to diagnose performance issues in your serial, pthread or
+ Testbed - Compton OpenMP code (including some limited support for Kokkos), it does not currently supply MPI profile data but can be used on individual
. Best Practices Guide for Performance MPI ranks to collect performance profiles.
Benchmarking on Knights Corner
* Compton - Calendar Step 1: Configure Environment and Create a VTune Project

* Compton - FAQ
> Getting Started with Compton

~ Guide to using Intel VTune on
Compton « Configuring your environment to load Intel VTune
« Starting the VTune Graphical User Environment

» Creating a New Profiling Project

The Guide to using VTune on Compton is split into several categories depending on the use case, please follow the environment
configuration information (the first entries) and then select an analysis for your code:

Basic Hotspot Application Analysis

Configure Environment to Use Intel
VTune on Compton
Creating a New VTune Profiling

Step 2: Perform an Application Profile Analysis

Project
+ Starting the VTune Graphical User After creating a project, you want to select a type of analysis to perform:
Environment
> Programming Environments for « Basic Hotspot Analysis - Find out where time is being spent in your serial or threaded (pthreads/OpenMP) application code.
Compton

Resources for Intel Xeon Phi

v

Using the TAU Performance Analysis @ Unlike You like this. e/
Toolkit on Compton/Xeon Phi

* Testbed - Cooper
> Testbed - Curie

4 Child Pages

(2 Basic Hotspot Application Analysis
(2 Configure Environment to Use Intel VTune on Compton

* Testbed - Hammer
* Testbed - Morgan
* Testbed - Ride

> Testbed - Shannon

(3) Creating a New VTune Profiling Project
(5) Starting the VTune Graphical User Environment

Powered by Atlassian Confluence 5.5.3, the Enterprise Wiki - Reportabug - Atlassian News

One More Thing... T .

ATDM Test Beds coming online

= |nitial installation of OpenPOWER ATDM systems (white and ride K80)
= Haswell (SON hansen, SRN shiller)
= Will have ATDM specialized file systems for fast(er) compiles

= ASC Test Beds
= ARM®64 Cavium will be delivered shortly
= AMD Fusion APU (cooper) beginning to make some progress

= Still no dates on when KNL will arrive

= Keep an eye on the test bed announce email list!
= Thanks to the incredible test bed teams

Sandia
National
Laboratories

Exceptional service in the national interest

