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At high core counts, scalability can drop due to bad 
placement of tasks in nodes and network 

 
§  Motivation:  In a typical parallel computing environment: 

•  Applications’ MPI tasks are assigned to node  
allocations without regard for app’s communication  
patterns and data locality 

•  Allocations may be sparse; spread far across network 
•  Communication messages may travel long routes 

§  Status in 2011: 
•  Scalability lost above 8K cores  

even in simple stencil-based apps 
•  Grouping with respect to node only  

(without considering the network)  
recovers some but not all scalability 

§  Key gaps: 
•  Ideal metric to optimize (max hops,  

avg hops, congestion, etc.) unknown 
•  Software for general, inexpensive  

task placement lacking 
•  Analysis of new topologies needed Figure courtesy of Barrett & Vaughan (Sandia)!

Performance of MiniGhost Mini-App on Cielo!
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§  Goal:  Given a (possibly non-contiguous) allocation of nodes in a parallel 
computer, assign interdependent MPI tasks to “nearby” allocated nodes 
within the network 

§  Related work: 
•  Much work focused on contiguous allocations (e.g., IBM BlueGene) 
•  Several graph-based approaches (LibTopoMap, Scotch, Jostle) 

§  Approach: 
•  For tasks, use geometric proximity as a proxy for interdependence  
•  For nodes, use nodes’ geometric coordinates in torus/mesh network 
•  Apply inexpensive geometric partitioning algorithms to both 

application tasks and nodes, giving consistent ordering of both 

Architecture-Aware Geometric Task Placement 
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§  Accomplishment:   
•  Experimentation/simulation indicates Average Number of Hops 

is good proxy for communication costs in task placement 
algorithms (ACM PPoPP14) 

•  Zoltan2’s Geometric Task  
Placement reduced  
MiniGhost execution time  
on 64K cores (IEEE IPDPS14) 
-  by 34% relative to default  
-  by 24% relative to node-only  

grouping 

§  Impact: Adopted by Trilinos’ MueLu multigrid solver 
•  Applying geometric task placement at the finest multigrid level 

reduced overall solve time by >10% 

Accomplishment and Impact 
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§  Challenge:   
•  Dragonfly topology is not completely specified 
•  Inter-group topology affects bisection bandwidth, task 

placement 
§  Accomplishments (IEEE Cluster 2015):   

•  Characterized bisection bandwidth as function of the 
numbers of groups and switches per group, and the ratio 
of global to local bandwidths for three common topologies 
(Camarero et al.) 

§  Impact:   
•  Absolute topology (used by Cray, IBM) is most 

straightforward 
•  But Absolute has constant bisection bandwidth even as 

switches and groups are added 
•  With Relative and Circulant, bisection bandwidth 

increases linearly with number of groups, quadratically 
with number of switches per group 

Upcoming Systems:  Analysis of Dragonfly Networks 
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