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—— At high core counts, scalability can drop due to bad
—ASTMATH Pplacement of tasks in nodes and network

= Motivation: In a typical parallel computing environment: ® ® @
* Applications’ MPI tasks are assigned to node *® ®
allocations without regard for app’s communication o o
patterns and data locality ®
* Allocations may be sparse; spread far across network .
) } on-contiguous node
e« Communication messages may travel long routes . allocation
. in a mesh network
= Status in 2011:
e Scalability lost above 8K cores
even in Simp|e stencil-based apps Performance of MiniGhost Mini-App on Cielo
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e Grouping with respect to node only
(without considering the network)
recovers some but not all scalability

= Key gaps:
e |deal metric to optimize (max hops,

Default task placement
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avg hops, congestion, etc.) unknown .

o Software for general, inexpensive 0
task placement Iacking 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K

Number of processor cores

e Analysis of new topologies needed  Figure courtesy of Barrett & Vaughan (Sandia)
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MA%—I Architecture-Aware Geometric Task Placement
L

= Goal: Given a (possibly non-contiguous) allocation of nodes in a parallel
computer, assign interdependent MPI tasks to “nearby” allocated nodes

within the network

= Related work:
e Much work focused on contiguous allocations (e.g., IBM BlueGene)

e Several graph-based approaches (LibTopoMap, Scotch, Jostle)
= Approach:
e Fortasks, use geometric proximity as a proxy for interdependence
* For nodes, use nodes’ geometric coordinates in torus/mesh network

 Apply inexpensive geometric partitioning algorithms to both
application tasks and nodes, giving consistent ordering of both

Tasks 5 5 8 2 5 @ Allocated
e P ’;’O()r‘;is /\Il,; wone Zoltan2’s MultiJagged
1 4 7 et Geometric Partitioner
& 6 (IEEE TPDS 2015)
0 3 6 =0 1L assigns related tasks to
0 3 ‘nearby” nodes in the torus.
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STMATH Accomplishment and Impact

= Accomplishment:

* Experimentation/simulation indicates Average Number of Hops
is good proxy for communication costs in task placement
algorithms (ACM PPoPP14) .

« Zoltan2’s Geometric Task 2 .1 W Default

E [ 2x2x4 Grouping for Node
Placement reduced [ > B Zoltan2 Geometric

MiniGhost execution time c [ W LibTopoMap (Hoeffler)

O 25t

on 64K cores (IEEE IPDPS14) .|

- by 34% relative to default S 15|

- by 24% relative to node-only € 5|
g rou pl n g ) 4K 8K 16K 32K 64K

Number of Processors

= |mpact: Adopted by Trilinos’ MueLu multigrid solver

e Applying geometric task placement at the finest multigrid level
reduced overall solve time by >10%
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FASTMATH Upcoming Systems: Analysis of Dragonfly Networks

= Challenge:

e Dragonfly topology is not completely specified

e Inter-group topology affects bisection bandwidth, task
placement

= Accomplishments (/EEE Cluster 2015).
e Characterized bisection bandwidth as function of the

numbers of groups and switches per group, and the ratio &7 /1 XX_
of global to local bandwidths for three common topologies 4./ 4
(Camarero et al.) AN

= |mpact:

e Absolute topology (used by Cray, IBM) is most
straightforward

e But Absolute has constant bisection bandwidth even as
switches and groups are added

e With Relative and Circulant, bisection bandwidth

increases linearly with number of groups, quadratically
with number of switches per group
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