
‹#› ‹#›

Unstructured Mesh Technologies
Deveci, Devine, Leung, Prokopenko, Rajamanickam

Sandia National Laboratories
With collaborators at Knox College, Ohio State University,

Sandia National Laboratories (ASC and LDRD program)

Architecture-aware Task Placement

FASTMath SciDAC Institute!

SAND2015-7610PE

‹#› ‹#›

At high core counts, scalability can drop due to bad
placement of tasks in nodes and network

§  Motivation: In a typical parallel computing environment:

•  Applications’ MPI tasks are assigned to node
allocations without regard for app’s communication
patterns and data locality

•  Allocations may be sparse; spread far across network
•  Communication messages may travel long routes

§  Status in 2011:
•  Scalability lost above 8K cores

even in simple stencil-based apps
•  Grouping with respect to node only

(without considering the network)
recovers some but not all scalability

§  Key gaps:
•  Ideal metric to optimize (max hops,

avg hops, congestion, etc.) unknown
•  Software for general, inexpensive

task placement lacking
•  Analysis of new topologies needed Figure courtesy of Barrett & Vaughan (Sandia)!

Performance of MiniGhost Mini-App on Cielo!

Default task placement!

Custom 2x2x4 Grouping!

Non-contiguous node  
allocation  

in a mesh network!

‹#› ‹#›

§  Goal: Given a (possibly non-contiguous) allocation of nodes in a parallel
computer, assign interdependent MPI tasks to “nearby” allocated nodes
within the network

§  Related work:
•  Much work focused on contiguous allocations (e.g., IBM BlueGene)
•  Several graph-based approaches (LibTopoMap, Scotch, Jostle)

§  Approach:
•  For tasks, use geometric proximity as a proxy for interdependence
•  For nodes, use nodes’ geometric coordinates in torus/mesh network
•  Apply inexpensive geometric partitioning algorithms to both

application tasks and nodes, giving consistent ordering of both

Architecture-Aware Geometric Task Placement

Tasks!

0!

1!

2!

3!

4!

5!

6!

7!

8!
Allocated  
Nodes in  
Torus Network!

0!

1!

2!

3!

4!

5!

6!

7!

8!
Zoltan2’s MultiJagged  
Geometric Partitioner  

(IEEE TPDS 2015)  
assigns related tasks to  

“nearby” nodes in the torus.!

‹#› ‹#›

§  Accomplishment:
•  Experimentation/simulation indicates Average Number of Hops

is good proxy for communication costs in task placement
algorithms (ACM PPoPP14)

•  Zoltan2’s Geometric Task
Placement reduced
MiniGhost execution time
on 64K cores (IEEE IPDPS14)
-  by 34% relative to default
-  by 24% relative to node-only

grouping

§  Impact: Adopted by Trilinos’ MueLu multigrid solver
•  Applying geometric task placement at the finest multigrid level

reduced overall solve time by >10%

Accomplishment and Impact

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 4.0

 4.5

4K 8K 16K 32K 64K

C
om

m
un

ic
at

io
n

T
im

e
(s

)

Number of Processors

None
Group
Geom+R+S
TopoMap

Default!
2x2x4 Grouping for Node!
Zoltan2 Geometric!
LibTopoMap (Hoeffler)!

C
om

m
un

ic
at

io
n

Ti
m

e
(s

)!

Number of Processors!

‹#› ‹#›

§  Challenge:
•  Dragonfly topology is not completely specified
•  Inter-group topology affects bisection bandwidth, task

placement
§  Accomplishments (IEEE Cluster 2015):

•  Characterized bisection bandwidth as function of the
numbers of groups and switches per group, and the ratio
of global to local bandwidths for three common topologies
(Camarero et al.)

§  Impact:
•  Absolute topology (used by Cray, IBM) is most

straightforward
•  But Absolute has constant bisection bandwidth even as

switches and groups are added
•  With Relative and Circulant, bisection bandwidth

increases linearly with number of groups, quadratically
with number of switches per group

Upcoming Systems: Analysis of Dragonfly Networks

3

0

2

3

4 5

6

7

81
10 2 3

0

0

0

0

0

0
0

0

1

1

1

1

1

1
1

1
2

2
2

2 2

2

2

2

3

3
3

3

3

3

3

Absolute!

3

0 1 2 3

0

1

2

3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

0

1

2

Relative!

3

0 1 2 3

0

1

2

3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

0

1

2

Circulant!

