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● UQ in computational models:

✦ Validation of physical models

✦ Statistical inverse problems

✦ Calibration and design optimization

✦ Use of computational predictions for decision-support

✦ Assessment of confidence in computational predictions

● UQ methods:

✦ Local sensitivity analysis and error propagation

✦ Fuzzy logic; Evidence theory

✦ Probabilistic framework; Measure theory

■ Sampling (Monte Carlo)

■ Polynomial Chaos
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● Solution of statistical inverse problems and optimization problems can

be computationally taxing

✦ Large dimensionality of the input space

✦ Large-scale forward model (arising from PDEs)

✦ Complex (non-linear) behavior is input-output map

● Reducing computational cost:

✦ Reducing dimension of input space

■ Parameter-space reduction

■ Truncated Karhunen-Loève expansions for stochastic processes

✦ Reduction in number of forward simulations

■ Smarter sampling schemes for inverse problems

■ More efficient optimization algorithms

✦ Reducing cost of forward simulations

■ Surrogate models

■ Reduced-order models

■ Multigrid/multiscale approaches
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● Classically, surrogate models can be categorized into [Eldred et al.,

2004]

✦ Data-fit models

■ Based on interpolation or regression

■ Rely on repeated forward simulations (Black-box)

■ Examples: Gaussian processes, radial basis functions

✦ Reduced-order models

■ Derived using a projection framework

■ Rely on full forward problem simulations, or ”snapshots”

■ Examples: Proper orthogonal decomposition, reduced basis

methods

✦ Hierarchical surrogate models

■ Based on constructing a series of physics-based models of

decreasing accuracy

■ Rely on using high and low accuracy models in tandem

■ Examples: mesh coarsening methods, alternative basis

expansions



Polynomial chaos expansion surrogates

Introduction

Surrogate Modeling

Polynomial Chaos
Expansion

❖ Polynomial chaos
expansion surrogates

❖ Polynomial Chaos
Expansion (PCE)

❖ PCE example: a map
from standard RV to QoI

Application to Reacting

Flows

Hybrid PCE-Padé
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● Represent model inputs/outputs as random variables

● Construct PCEs for uncertain parameters

● Obtain PCEs for model outputs using Non-intrusive Spectral Projection:

✦ Sampling-based

✦ Relies on black-box utilization of the computational model

✦ Evaluate projection integrals numerically using

■ A variety of Monte Carlo methods

◆ Slow convergence; ∼ indep. of dimensionality

■ Quadrature/Sparse-Quadrature methods

◆ Fast convergence; depends on dimensionality
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● Model uncertain quantities as random variables (RVs)

● Any RV in L2(Ω,S(ξ), P ) can be written as a PCE:

u(x, t, ξ) ≃
N
∑

k=0

uk(x, t)Ψk(ξ)

● ξ = {ξ1, · · · , ξn} a set of i.i.d. RVs

● uk(x, t) are coefficients (deterministic):

uk(x, t) =
〈u(x, t, ξ)Ψk(ξ)〉

〈Ψ2
k(ξ)〉

● Ψk() are functions orthogonal w.r.t. p(ξ)

✦ e.q. Legendre polynomials with Uniform germ

● Advantage: numerous functional analysis methods

✦ Computational efficiency

✦ Sensitivity information
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Collaborators:

● Guilhem Lacaze, Joe Oefelein, and Habib

Najm (Sandia)

Flame specifications:

● Sydney Bluff-body burner

● Fuel: 50/50 mixture of methane and hy-

drogen injected at 108 m/s with coflow at

35 m/s at the combustor section

Large-Eddy simulation theoretical framework

[Oefelein 2006]:

● Fully-coupled, compressible conservation

equations

● Transport of mass, momentum, energy and

mixture fraction

● Combustion closure: Flamelet (tabulation of heat-release) with

presumed-pdf

● Dynamic SGS modeling turned off



Application: Numerics

Introduction

Surrogate Modeling

Polynomial Chaos
Expansion

Application to Reacting
Flows

❖ Application: Turbulent
bluff-body non-premixed
flame

❖ Application: Numerics

❖ Response Surfaces

❖ Global Sensitivity
Analysis

Hybrid PCE-Padé
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Current UQ investigation focuses on

● 0.065 < Cs < 0.346 [Piomelli 1989]

● 0.5 < Prt < 1.7 [Erlebacher 1992]

● 0.5 < Sct < 1.7 [Reynolds 1976]

Computational aspects:

● 25 LESs: explore the parametric space and

build surrogate

● 18 LESs: test surrogate accuracy

● Mesh: 12 million hexahedral cells

● Simulation is run for 400ms to attain steady state and the subsequent

30ms used to gather statistics

● One forward simulation ∼ 62 hours on 1024 processors

● Total CPU consumption ∼ 2.7× 106 cpu hours

● NERSC’s newest supercomputer Edison (Cray XC30)
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Approximant surrogates

Application to Chemical
Kinetics

Conclusion

M. Khalil Hybrid approach to surrogate modeling 11 / 17

● From the 25 simulations at quadrature points, the following selected

second order PC surrogate models are obtained:

NRMSE error estimated from 18 additional LESs to be 4.4%
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● The PC surrogate models allow us to perform global sensitivity analysis

analytically in order to quantify the uncertainty in the QoIs due to each

uncertain parameter:
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● Constructing an accurate PCE surrogate over the entire parameter

space may be prohibitive due to strong nonlinearities in the quantities

of interest

● Two approaches to increase the accuracy of PCE surrogates

✦ Domain decomposition

■ Split the parameter space into non-overlapping subdomains

■ For each subdomain, construct a low-order local PCE surrogate

✦ Hybrid construction using Padé Approximants

■ Expand output using PCE along N − 1 dimensions

■ Use Padé Approximant representation along N th dimension

exhibiting strong nonlinearity

■ Padé Approximant is formulated as a ratio of PCEs

u(x, t, ξ) = u(θ) ≃

N
∑

n=0

un(θi)Ψn(θ(∼i))

=

N
∑

n=0

∑M

m=0 pm,kΦm(θi)
∑L

l=0 ql,kΦl(θi)
Ψn(θ(∼i))
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● Bayesian inference of chemical kinetic rate parameters from measured

species concentration profiles

● Unknown rate coefficients for two reactions

H + O2 → OH + O

OH + H2 → H2O + H
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[OH](k1, k2, t) ≃
N∑

n=0

[OH]n(t)Ψn(k1, k2)

=
N∑

n=0

∑M
m=0 pm,kΦm(t)
∑L

l=0 ql,kΦl(t)
Ψn(k1, k2)

Padé PCE



Bayesian Inference

Introduction

Surrogate Modeling

Polynomial Chaos
Expansion

Application to Reacting
Flows

Hybrid PCE-Padé
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● The PC surrogate is used to expedite MCMC sampling of parameters

from their associated posterior pdf
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● Polynomial chaos expansion surrogates for large-scale systems via

efficient sparse-quadrature

✦ Forward UQ in LES of a turbulent non-premixed hydrocarbon flame

● Hybrid surrogate model formulation using Padé approximants and

polynomial chaos expansion for strong nonlinear behavior

✦ Application: Inference of the Arrhenius parameters for the rate

coefficient of the H2/O2 mechanism branching reaction

H+O2→OH+O

● Methodology can be extended to combine PCE with other techniques

✦ Radial basis functions

✦ Neural networks
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