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ABSTRACT

This report presents the test cases used to verify, validate and demonstrate the
features and capabilities of the first release of the 3D Direct Simulation Monte Carlo
(DSMC) code SPARTA (Stochastic Particle Real Time Analyzer). The test cases
included in this report exercise the most critical capabilities of the code like the
accurate representation of physical phenomena (molecular advection and collisions,
energy conservation, etc.) and implementation of numerical methods (grid adaptation,
load balancing, etc.). Several test cases of simple flow examples are shown to
demonstrate that the code can reproduce phenomena predicted by analytical solutions
and theory. A number of additional test cases are presented to illustrate the ability of
SPARTA to model flow around complicated shapes. In these cases, the results are
compared to other well-established codes or theoretical predictions. This compilation
of test cases is not exhaustive, and it is anticipated that more cases will be added in
the future.
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1. INTRODUCTION

The Direct Simulation Monte Carlo (DSMC) method was introduced in the early 1960s [1] to
compute re-entry flow fields between the free-molecular and continuum regimes, for which
results could not be obtained from more traditional approaches based on solving partial
differential equations (PDEs). Since then, the fundamental physics-based nature of the DSMC
algorithm in conjunction with ever-increasing computational power has allowed DSMC to attack
complicated non-equilibrium problems outside its original regime of applicability, even in the
near-continuum regime.

Over nearly a half-century of development, the capabilities of the DSMC method have been
dramatically enhanced with the addition of improved physical and chemical models. It is a
testament to the fundamental stochastic nature of the method that all these enhancements
provided continual improvement to the method without any major change to the basic algorithm
or significantly impacting the computational efficiency of the method. It is worth noting that
DSMC can provide simulations of flow fields even in cases where the Boltzmann equation
cannot be rigorously formulated, such as for chemically reacting polyatomic species.

Wagner [2] provides a rigorous proof that DSMC simulations actually provide solutions to the
Boltzmann equation for monatomic molecules in the limit of vanishing discretization and
statistical error. Further evidence indicates that highly refined DSMC simulations provide results
that agree with exact solutions to the Boltzmann equation, such as the near-equilibrium infinite-
approximation Chapman-Enskog and the non-equilibrium Moment Hierarchy methods [3,4] The
validity of the DSMC method for more complicated flow fields for which analytic solutions
cannot be obtained has been firmly established through comparisons with experimental data and
molecular-dynamics simulations.

Even today, more than 50 years since originally introduced, DSMC remains unchallenged for
non-continuum rarefied-gas-dynamics calculations. The advantages of DSMC compared to other
methods that predict flows in the non-equilibrium regime come at a cost: DSMC is
computationally intense, like most Monte Carlo methods. Therefore, its successful application to
real problems may depend heavily on the parallel performance of the particular implementation.
Monte Carlo methods usually have good parallel performance. This is because the workload
depends mainly on the simulators within a cell: there is relatively less need to communicate
information between cells. DSMC codes have demonstrated near-linear scaling up to several
thousand processors. With the advent of massively parallel computers, problems considered
impossible only a few years ago, such as transient three-dimensional simulations, are currently
within reach.

Since next-generation machines will require hybrid programming approaches, MPI in addition to
some kind of node-based parallelism, the DSMC kernels (particle moves, collisions, and
chemistry) need to be reworked in a manner that will allow for fine-grain parallelism within a
node. Since the computational architecture is subject to frequent and dramatic changes, it would
be ideal to decouple the physical aspects of the simulation from the computational ones. One
possible avenue would be to develop architecture-agnostic programming models for in-node
parallelism, such as the Sandia National Laboratories Kokkos project [5]. Its goal is to provide



data abstractions and parallel looping constructs that enable a single set of source code kernels in
an application code to run reasonably efficiently across a diverse spectrum of node hardware
(multi-core, many-core, GPU, etc.).

SPARTA is a new open source 3D DSMC code [6] developed at Sandia National Laboratories
with these ideas in mind. SPARTA employs a multi-level (practically up to 16 levels on 64 bit
architectures) Cartesian-grid with embedded geometries for the description of physical space.
Load balancing is based on the recursive coordinate bisection method. To enable efficient
communications, a buffer zone is assigned to each processor that includedes near-by cells. The
goal of this is to allow, in most cases, completion of molecular moves using a maximum of one
communication with a modest number of processors. However, the motion of a molecule is never
truncated, and multiple passes are possible. Currently, the DSMC algorithm as outlined in Bird’s
1994 monograph is implemented. Later versions will incorporate more advanced physical
models.

In this report, the ability of SPARTA to deliver improved computational efficiency while
maintaining the unprecedented accuracy of the DSMC method, in dealing with gas flows is
examined. The benchmark cases used for this purpose varying from ostensibly simple steady
flow in a closed box, to the continuum, transient Richtmyer-Meshkov instability [7,8]. These test
cases have been selected because they are amenable to theoretical as well as numerical
investigation.
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2. TEST CASES

2.1. Flow in a closed box
2.1.1. Motivation
Despite its simplicity, this class of test cases is one of the most useful test cases for DSMC codes

since it allows the development of an equilibrium steady state flow, where one can have
complete confidence in having achieved correct results.

Figure 1. Flow inside a closed box

Molecular collisions in a gas inside a closed box (1, 2 or 3-D) with diffuse or specular walls, will
lead the gas, regardless of its initial state, to complete thermodynamic equilibrium. Conservation
of mass, momentum and energy, exactly conserved in every DSMC collision, allow for a number
of code functions to be verified.

2.1.2. Description

The main test case is a uniform hard sphere gas in a 3-D box. The collision frequency of this gas
is exactly known (Eq. 4.63 of Reference 1). In a fully diffuse isothermal box the temperature of
the gas should converge to that of the walls. In a specular box, exact conservation of energy
should maintain the temperature at exactly the level to which it was set by the initial condition.
Variations of this test case include: Maxwell-molecule gas (all collision attempts are accepted for
collision), and VSS and VHS gases foe which the relevant functions of the code can be tested.

2.1.3. Parts of the code being checked
Molecular advection, Molecular tracking in a 3-D domain, Surface reflections, Particle collision

frequency, Conservation of mass, momentum and energy, Polyatomic gas collisions, Initial
conditions, diffuse, specular wall boundary condition, load balancing.
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2.1.3 Results

The following is a printout of the log file.

SPARTA (19 Aug 2014)
Created orthogonal box = (0 0 0) to (0.0001 0.0001 0.0001)
Created 1000 child grid cells

parent cells =1

CPU time = 0.000895977 secs

create/ghost percent = 98.3502 1.64981
Balance grid migrated 0 cells

CPU time = 0.00139093 secs

reassign/sort/migrate/ghost percent = 5.31368 0.154268 1.14844 93.3836
Created 10000 particles

CPU time = 0.00199509 secs
Memory usage per proc in Mbytes:

particles (ave,min,max) = 1.02997 1.02997 1.02997
grid (ave,min,max) = 1.83113 1.83113 1.83113
surf (ave,min,max) = 0 0 0
total (ave,min,max) = 2.8611 2.8611 2.8611
Step CPU Np Natt Ncollave temp
0 0 10000 0 0 274.40561
100 0.048908949 10000 968 700.8 274.40561
200 0.097182035 10000 985 702.64 274.40561
300 0.14856601 10000 1005 704.95333 274.40561
400 0.19848394 10000 998 705.7675 274.40561
500 0.24520898 10000 1022 706.47 274.40561
600 0.29146504 10000 1025 706.61833 274.40561
700 0.33719492 10000 1042 706.68571 274.40561
800 0.38323998 10000 1029 706.80125 274.40561
900 0.430583 10000 1052 706.89778 274.40561
1000 0.47937894 10000 1022 706.741 274.40561

Loop time of 0.479393 on 1 procs for 1000 steps with 10000 particles

Particle moves = 10000000 (10M)
Cells touched = 13606155 (13.6M)
Particle comms = 0 (0K)

Boundary collides = 401016 (0.401M)
Boundary exits = 0 (0K)

SurfColl checks = 0 (0K)

SurfColl occurs = 0 (0K)

Collide attempts = 1010885 (1.01M)
Collide occurs = 706741 (0.707M)
Reactions = 0 (0K)

Particles stuck 0
Particle-moves/CPUsec/proc: 2.08597e+07
Particle-moves/step: 10000
Cell-touches/particle/step: 1.36062
Particle comm iterations/step: 1

Particle fraction communicated: O

Particle fraction colliding with boundary: 0.0401016
Particle fraction exiting boundary: 0
Surface-checks/particle/step: 0
Surface-collisions/particle/step: 0
Collision-attempts/particle/step: 0.101088
Collisions/particle/step: 0.0706741
Reactions/particle/step: 0

oo

) = 0.240076 (50.0791)
) = 0.201777 (42.09)
) = 0.0367324 (7.66228)

Move time (
Coll time (
Sort time (

oo

oo



Comm time
Outpt time
Other time

Particles:
Histogram:
Cells:

Histogram:
GhostCell:
Histogram:
EmptyCell:
Histogram:

(
(
(

o° o

oo

) = 9.87053e-05 (0.0205896)

)
)

0.000492334 (0.1027)
0.000216961 (0.0452574)

10000 ave 10000 max 10000 min
100000O0O0OO0CO
1000 ave 1000

1

0
1
0
1

000O00O
ave 0 max
000O00O
ave 0 max
000O00O

2.1.4. Comments

0

0
0
0
0

max 1000 min
00O

min

00O

min

00O

There are many objectives of this simulation. Observing the number of simulators and the
temperature to be exactly constant is a clear indication that the three conservation principles are
satisfied during the simulation. Also, the collision frequency can be calculated and compared to
that given by equilibrium kinetic theory. For the particular problem simulated herein (argon at
2 torr pressure at 273.15 K) the theoretical and simulated collision frequencies were
(7.13949%10%° s and 7.13103x10% s™)) giving a theory to simulation ratio of 1.00014, an

indication that the collision frequency is correctly simulated.

If boundary conditions are changed to fully accommodating (diffuse), the simulation maintains a

constant number of simulators, but the temperature is only on average constant.
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2.2. Inflow in a closed box
2.2.1. Motivation

Starting with an empty box (see Figure 1) with one side open, at which a free stream boundary
condition is applied, the number of incoming molecules as a function of time is tracked.

2.2.2. Description

The hypersonic inflow boundary condition implemented in SPARTA allows a particular number
of molecules to enter the computational domain at every time step. Tracking this number after a
number of moves allows a direct comparison with the numerical results Eq. 4.24 of Reference 1.
2.2.3. Parts of the code being checked:

Inflow boundary condition.

2.2.4. Results

The following is a printout of the SPARTA log file.

SPARTA (19 Aug 2014)

Created orthogonal box = (0 0 0) to (0.001 0.001 0.001)
Created 1000000 child grid cells
parent cells =1

CPU time = 1.65443 secs

create/ghost percent = 20.8415 79.1585
Balance grid migrated 0 cells

CPU time = 0.633072 secs

reassign/sort/migrate/ghost percent = 4.42998 3.05717 21.9823 70.5305
Balance grid migrated 0 cells

CPU time = 0.821505 secs

reassign/sort/migrate/ghost percent = 8.85449 0.884218 7.524 82.7373
Memory usage per proc in Mbytes:

particles (ave,min,max) = 0 0 0
grid (ave,min,max) = 175.552 175.552 175.552
surf (ave,min,max) = 0 0 0
total (ave,min,max) = 175.552 175.552 175.552
Step CPU T/CPU Np
0 0 0
10 2.0094299 4.9765134e-08

Loop time of 2.00948 on 1 procs for 10 steps with 951305 particles

Particle moves = 5232207 (5.23M)
Cells touched = 8206731 (8.21M)
Particle comms = 0 (0K)

Boundary collides = 20366 (20.4K)
Boundary exits = 0 (0K)

SurfColl checks = 0 (0K)

SurfColl occurs = 0 (0K)

Collide attempts = 0 (O0K)

Collide occurs = 0 (0K)
Reactions = 0 (0K)
Particles stuck =0

14



Particle-moves/CPUsec/proc: 2.60376e+06
Particle-moves/step: 523221
Cell-touches/particle/step: 1.5685
Particle comm iterations/step: 1
Particle fraction communicated: O
Particle fraction colliding with boundary: 0.00389243
Particle fraction exiting boundary: 0
Surface-checks/particle/step: 0
Surface-collisions/particle/step: 0
Collision-attempts/particle/step: 0
Collisions/particle/step: 0
Reactions/particle/step: 0

Move time (%) = 0.355214 (17.6769)

Coll time (%) = 0 (0)

Sort time (%) = 0 (0)

Comm time (%) = 1.81198e-05 (0.000901717)
Outpt time (%) = 0.00825596 (0.410851)
Other time (%) = 1.64599 (81.9113)

Particles: 951305 ave 951305 max 951305 min
Histogram: 1 0 0 0 0 0 0 0 0 O

Cells: le+t06 ave le+06 max le+06 min
Histogram: 1 0 0 0 0 0 0 0 0 O
GhostCell: 0 ave 0 max 0 min

Histogram: 1 0 0 0 0 0 0 0 0 O
EmptyCell: 0 ave 0 max 0 min

Histogram: 1 0 0 0 0 0 0 0 0 O

2.2.5. Comments

The goal of this simulation is to compare the number of simulators that enter the domain over a
period of 10 time steps and compare it to that theoretically predicted in order to verify that the
inlet boundary condition introduces the correct number of simulators to the box. In the
simulation above, 951305 simulators were introduced in 10 time steps which is in very good
agreement (0.14% error) with the theoretically predicted (Eq. 4.24 of Reference 1) for the
conditions of test case 1 (zero velocity, 2 torr pressure, 273.15 K, argon gas.).
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2.3 Internal energy relaxation

2.3.1. Motivation

The ability of the internal energy exchange routines to achieve complete thermal equilibration
under conditions of thermodynamic equilibrium is examined.

2.3.2. Description

Large number of molecules of a diatomic gas are allowed to perform energy exchange through
successive molecular collisions (specular walls). Initially the molecules are assumed to have all
their energy in the translational mode. Eventually, all three energy modes, translational,
rotational and vibrational, reach thermal equilibration.

2.3.3. Parts of the code being checked

Collisions, non-reactive energy exchange.

2.3.4. Results

Figure 2 presents the relaxation of the three available degrees of freedom towards equilibration.

Initially all the energy is stored in the translational mode. After successive molecular collisions,
all of which are allowed to exchange energy, thermal equilibration is achieved.
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Figure 2. Relaxation of internal degrees of freedom

2.3.5. Comments

This test case demonstrates the ability of the code to reproduce thermodynamic equilibrium. The
rotational and vibrational relaxation numbers were assumed to be unity. Replacing them with
realistic ones the results can be compared to measured relaxation rates.
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2.4 Chemical reactions in a closed box
2.4.1. Motivation

The ability of the code to reproduce a reaction rate as specified in the chemistry input deck can
be tested by simulating the dissociation of a gas within an isothermal closed box.

2.4.2. Description

A large number of simulators are allowed to move and collide in a closed isothermal box. The
walls may be specular or diffuse. Diffuse walls will allow internal energy reassignment. In this
particular example molecular nitrogen dissociation reactions are simulated. However, The
reaction is set not to change the species type or reduce the energy content of the flow.

2.4.3. Parts of the code being checked
Chemical reactions, energy exchange, post collision velocity scattering, boundary conditions.
2.4.4. Results

The following is a printout of the SPARTA log file.

SPARTA (19 Aug 2014)
Created orthogonal box = (-0.5 -0.5 -0.5) to (0.5 0.5 0.5)
Created 1 child grid cells
parent cells =1
CPU time = 0.000795841 secs
create/ghost percent = 98.2624 1.73757
Created 1000000 particles
CPU time = 0.221867 secs
Memory usage per proc in Mbytes:

particles (ave,min,max) = 102.997 102.997 102.997
grid (ave,min,max) = 1.83113 1.83113 1.83113
surf (ave,min,max) = 0 0 0
total (ave,min,max) = 104.828 104.828 104.828
Step CPU Np Natt Ncoll temp Nattave
0 0 1000000 0 0 99956.821 0
10 1.4615109 1000000 401022 77222 99860.643 3911.6
20 2.902142 1000000 401022 77612 99811.567 3922.25
30 4.330446 1000000 401022 77550 99629.689 3924
40 5.7504139 1000000 401023 77286 99550.496 3924.825
50 7.179774 1000000 401022 77407 99531.592 3926.84
60 8.60816 1000000 401022 77385 99474 .452 3927.9167
70 10.030703 1000000 401022 77600 99506.309 3929.6143
80 11.454959 1000000 401023 77380 99448 3927.95
90 12.896433 1000000 401022 77064 99416.421 3927.3444
100 14.342392 1000000 401022 77280 99392.408 3925.49

Loop time of 14.3424 on 1 procs for 100 steps with 1000000 particles

Particle moves = 100000000 (100M)
Cells touched = 100000000 (100M)
Particle comms = 0 (0K)

Boundary collides = 1292185 (1.29M)
Boundary exits = 0 (0K)
SurfColl checks = 0 (0K)
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SurfColl occurs = 0 (0K)

Collide attempts 40102217 (40.1M)
Collide occurs 7725885 (7.73M)
Reactions 392549 (0.393M)
Particles stuck =0

Particle-moves/CPUsec/proc: 6.97233e+06
Particle-moves/step: 1e+06
Cell-touches/particle/step: 1

Particle comm iterations/step: 1

Particle fraction communicated: O

Particle fraction colliding with boundary: 0.0129219
Particle fraction exiting boundary: 0
Surface-checks/particle/step: O
Surface-collisions/particle/step: 0
Collision-attempts/particle/step: 0.401022
Collisions/particle/step: 0.0772589
Reactions/particle/step: 0.00392549

= 1.62788 (11.3501)

= 11.8648 (82.7251)

= 0.788682 (5.49895)

= 0.000124454 (0.000867737)
= 0.0608909 (0.424551)

= 6.36578e-05 (0.000443843)

Move time
Coll time
Sort time
Comm time
Outpt time
Other time

Particles: 1le+06 ave le+06 max le+06 min
Histogram: 1 0 0 0 0 0 0 0 0 O

Cells: 1 ave 1 max 1 min

Histogram: 1 0 0 0 0 0 0 0 0 O
GhostCell: 0 ave 0 max 0 min

Histogram: 1 0 0 0 0 0 0 0 0 O
EmptyCell: 0 ave 0 max 0 min

Histogram: 1 0 0 0 0 0 0 0 0 O

2.4.5 Comments

The goal of this simulation is to compare the simulated reaction rate to that of the Arrhenius rate
k that was used as part of the input deck. Repeating this simulation for a number of temperatures,
the reaction rate k(T) as a function of temperature is obtained. As shown in Table 1, the
Arrhenius rate and the simulated reaction rate are in good agreement for the range of
temperatures studied.

Table 1. Comparison of theoretical and simulated reaction rates for nitrogen dissociation.

Temperature Arrhenius rate | Simulated Rate
(K) (In(k(T)) (In(k(T))
15000 -17.89 -18.07
20000 -17.27 -17.36
25000 -16.93 -16.98
30000 -16.73 -16.75
35000 -16.61 -16.60
40000 -16.53 -16.50
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2.5. Flow in a closed cylinder
2.5.1. Motivation

For many applications, assumptions about axial symmetry can be made to reduce the complexity
of the simulation. Similar to two-dimensional flow assumptions in DSMC, the domain is
represented on two axes; however, out-of-plane motion cannot be ignored, and azimuthal
velocities must be considered. Therefore, the axisymmetric boundary condition requires
additional geometric transformations that must be performed at every time step. To verify that
the implementation of this boundary condition is correct, axially symmetric flow in a closed
cylinder was studied to show that molecule number densities and temperatures are conserved as
the flow approaches thermodynamic equilibrium.

2.5.2. Description

Consider a cylinder with a height of 1 mm and a radius, r, of 1 mm. The container walls are
specularly reflective and located at x = 0 mm, x = 1 mm, and r = 1 mm as diagrammed in Figure
3. The azimuthal, or out-of-plane, boundary condition is periodic. The container is initially
filled by a monatomic gas at a nominal temperature and pressure. Any initial state will
eventually reach thermodynamic equilibrium. In this particular case, room-temperature argon
molecules populated the cylinder with no initial velocity and hard-sphere collisions are assumed.
As a result, the flow is governed purely by diffusion maintaining the thermal equilibrium of the
initial state.
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Figure 3. Initial configuration and boundary conditions for flow in a closed cylinder
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2.5.3. Parts of the code being checked
Axially symmetric boundary condition, axisymmetric move (molecule cloning and deleting.)
2.5.4. Results

To verify the implementation of the axisymmetric boundary condition, a simulation is run per the
above description such that the gas within the cylinder reaches equilibrium. As the flow
equilibrates, the number density and temperature of the molecules can be tracked to determine
deviations from the initial conditions. Any bias or significant difference would indicate issues
with the implementation of the algorithm.
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Figure 4. Normalized number density and temperature for flow in a closed cylinder
As seen in Figure 4, the density and temperature of the molecules normalized by the initial state
are approximately equally distributed with no clear bias or trend that would indicate loss of

molecules or errors in collisional calculations. Random walks that could appear in long duration
axially symmetric calculations also appear to be avoided.
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2.6 Sonine polynomials
2.6.1. Motivation

All previous test cases involved gases at equilibrium. Although this is an important limit for the
code to reach, it is hardly ever the desired state. This test case examines the ability of the code
reproduce a known, non-equilibrium, steady state of a gas.

2.6.2. Description

A gas under the influence of an external shearing force or thermal gradient is expected to reach a
non-equilibrium steady state. For a modest gradient (near-equilibrium non-equilibrium), the state
of the gas can be adequately described by the Chapman-Enskog Theory [9]. The non-equilibrium
state of the gas can be best described by the velocity distribution function. First-order CE theory
generates a closed-form expression for the velocity distribution function in terms of macroscopic

hydrodynamic ~ fields  and  their  gradients: F=r20+o" +¥") where
£ =nexp[-&1/(x"%c),) and @V =—(8/5)A[¢e-§ P =-2B[¢](&0¢:T).

Fourier Flow Couette Flow
T1 - T2 V1 "l"t'_:":*" -- V2
heat flux q shear stress ©
x=0 x=L x=0 x=L

Figure 5. Schematic of Fourier and Couette flow

Here, f'© is the equilibrium (Maxwellian) distribution, ®" and W are the first-order non-

equilibrium perturbations from this distribution, ¢, =/2k,T /m is the most probable molecular

thermal speed for the equilibrium distribution, m is the molecular mass, n is the number
density, T is the temperature, k; is the Boltzmann constant, ¢=u—U is the thermal velocity of

a molecule, u= (u,v,w) is the velocity of a molecule, U= U,V ,W)= (u) is the average value of

u, ¢=c/c, is the normalized molecular thermal velocity, Eoézéé—(&z/ 3)I is a traceless

3
m

dyadic, q=q/(mnc;) and 7= ’L'/ (mnci) are the non-dimensional heat-flux vector and shear-

stress tensor, and A and B are expansions in the Sonine polynomials Sj."):

- e e e LO(+HRWEY
Alé]= g(ak Ja)SVIE1, Blé]= ;(bk /b)S; (7] where SYV[E]= Zol (§J+ i)!z?!((k i)! :
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2.6.3. Parts of the code being checked

Molecular advection, molecular tracking in a 3-D domain, surface reflections, particle collision
frequency, conservation of mass, momentum and energy, polyatomic gas collisions, onitial
conditions, diffuse, specular wall boundary condition, load balancing

2.6.4. Results

Figure 6 and Figure 7 present the temperature and velocity profiles as calculated with SPARTA
and DSMCI1 (a modified code based on G.A Bird’s DSMCI [1]), the code which was used in
Reference 3. Figure 8 and Figure 9 present the Sonine polynomial coefficients as calculated by
SPARTA in comparison with the theoretically calculated Sonine coefficients [3]. In both cases
(DSMC1 and SPARTA), a hard-sphere molecular model was assumed.
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Figure 6. Temperature profile
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2.6.5. Comments

The calculation of the Sonine polynomials is probably the most comprehensive test case for
monatomic gases. Since the Sonine polynomials represent the velocity distribution function
outside the Knudsen layers, their accurate calculation indicates that the simulation reproduces the
correct velocity distribution function.
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2.7. Volume around a sphere
2.7.1. Motivation

SPARTA uses Cartesian cells to discretize physical space. Cells near surfaces are “cut” by the
geometry. For the accurate calculation of the collision frequency,- an accurate calculation of the
cut-cell volume is needed.

2.7.2. Description

The “flowfield” volume, ie. the volume between the bounding box and an enclosed sphere is
calculated. Two different-resolution spheres are used. SPARTA calculates the volume of the
bounding box outside the enclosed sphere. This volume is also calculated analytically.

2.7.3. Parts of the code being checked
Gas-phase and surface grid description.
2.7.4. Results

Using a 1,200 (Figure 11) and a 15,000 (Figure 11) surface cell element description of a 1 m-
radius sphere, the flow field volume of a 4x4x4 bounding box is calculated. The results are
presented in Table 2. Volume calculations for two different-resolution spheres. As the surface
resolution increases, the calculated volume approaches the theoretical value. Evidently the
theoretical volume is retrieved for a number of cells tending to infinity.

Figure 10. 1,200 surface element sphere description.
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Figure 11. 15,000 surface element sphere description.

Table 2. Volume calculations for two different-resolution spheres.

Method/resolution

Flow-field volume (m°)

1200 elements 59.86171
15000 elements 59.81132
Theory 59.81121

The volume appears to be converging to the right volume from higher values. This is because the
simulated sphere is contained in the unit radius theoretical sphere. Therefore the volume of the
sphere is always less than the theoretical limit, and the flow-filed volume greater than the
theoretical limit. It should be noted that the volume calculation is insensitive to the gas-phase
grid resolution. The previous volume calculations were repeated with 10° (10x10x10) and a 100°
(100x100x100) grids, yielding identical results.

2.7.5. Comments

The goal of this simulation is to examine the ability of the code to calculate the cut-cell volumes
accurately. Since these cells are usually near body cells, the accurate calculation of the volume is
critical for the simulation of the correct collision frequency, and therefore transport properties to

the surface.
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2.8. MIR space station
2.8.1. Motivation

SPARTA uses a grid generation function to handle complex shapes and geometries. As an
example and demonstration of this feature, a grid has been created from a representative
geometry of the MIR space station and used in a stylized re-entry simulation.

2.8.2. Description

The simulation of flow around the MIR space station is an example of the complexity the
SPARTA grid generation function can accomdate. The MIR geometry comprises 12 concave
bodies with thicknesses varying from 1 cell to multiple cells. Figure 12 shows the surface grid
geometry for the MIR space station. The surface description was provided by NASA JSC (G.J.
LeBeau).
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Figure 12. Diagrams of the MIR grid.

In SPARTA, a surface is a collection of surface elements that represent the surface of one or
more physical objects which will be embedded in the global simulation box. The surface
elements are triangles in 3D or line segments in 2D. Within the input deck, the user can specify a
number of options to control the way in which the surface elements are treated. Firstly, particle
collisions with the surface must be designated through a surface collision model, which can
optionally handle surface chemistry. Additionally, geometric scaling, rotation and placement of
the surface elements within the global box can be specified. For simplicity, the MIR space
station is centered within the global grid with diffuse particle reflections from the surfaces
prescribed. The global box is given open boundary conditions with inflow of air at 7500 m/s at
an angle of 30° below the horizontal plane.
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2.8.3. Parts of the code being checked

Gas-phase and surface grid description, molecular collisions, surface reflections, chemical
reactions, energy exchange. Complex grid generation with cut cells. Diffuse surface reflections.
Reading surface geometry. Computing surface properties.

2.8.4. Results

With surface geometries, SPARTA can calculate and output properties on the surface elements.
Figure 13 not only shows slices across the y- and z-planes of the global box with temperature
contours normalized by the maximum temperature of the flow but also shows contours of
absorbed heat flux on the surface elements of MIR normalized by the maximum value.
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Figure 13. Normalized contours of temperature and surface heat flux on MIR.

28



2.9 Grid adaptation

2.9.1. Motivation

Spatially resolving three-dimensional calculations can be particularly expensive. Thus, a grid
adaptation may be required to resolve the grid where needed. SPARTA offers the ability to
create multiple level grids, up to 16 in 64 bit architectures.

2.9.2 Description

In SPARTA, the computational grid can be adapted to match a particular solution. Currently this
operation is “static”. In the following examples, part of the flow-field domain was refined to a
second level, where each cell was partitioned in 8 level-2 cells.

2.9.3. Parts of the code being checked

Grid generation, grid adaptation, cut-cell volume calculation.

2.9.4. Results

Figure 14 shows a variation of the computational grid used in the previous simulation, where the
center part of the grid has been adapted to a second level by 2x2x2.

Figure 14. Grid adaptation around MIR space station

Likewise, Figure 15 presents the refinement of a small area around the nose tip of a space-
shuttle-like geometry. In both cases, the background properties are seamlessly reproduced.
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Figure 15. Grid adaptation around a space shuttle-like geometry
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2.10. Flow around a sphere
2.10.1. Motivation

The classical fluid dynamics problem of flow around a sphere is simulated to demonstrate the
functionality of SPARTA options for simplifying computations of symmetric flows. The
implementation of symmetric boundary conditions can be checked by comparing results from
simulations of the full, half, and quarter flow fields. Additional checks to the validity of the
SPARTA results can be performed by running the same test case in NASA’s established DSMC
Analysis Code (DAC) [10] and comparing the results of the two codes for quantifiable
parameters like maximum number density, temperature, velocity and drag force on the sphere.

2.10.2. Description

The nominal case is defined by a 1-m-diameter sphere centered in a 10-m cube composed of
100x100x100 cells. The boundary conditions of all sides are open, while argon gas at a
temperature of 300 K and velocity of 2500 m/s flows into the grid along the x axis. Variations
on this nominal case make use of options available to the user to simplify the simulation based
on symmetry planes. Results from simulations of a half sphere and a quarter sphere are shown
here for reference. In this example, the input deck for the full sphere uses open boundaries on all
six sides and also allows inflow of particles through these open boundaries. To adjust to the
symmetric geometry, the input deck must be changed to clip the sphere at the planes of
symmetry. Also, the box and grid must be redefined to the symmetric geometry. The boundary
conditions at the planes must be updated to specularly reflect particles and closed to the injection
of new particles. The table below shows the difference in inputs for the full, half, and quarter
geometries.

Table 3. Input deck modifications to reduce the flow around a sphere by symmetry

ommang | LUt Sphere Quarter Sphers
boundary 000 oroo 0ororo

create_box -5.05.0-5.05.0-5.05.0 |-5.05.00.05.0-5.05.0 [-5.05.00.05.00.05.0
create_grid 100 100 100 100 50 100 100 50 50

fix in inflow air  |All xlo xhi yhi zlo zhi xlo xhi yhi zhi
read_surf data.big.tri 1 data.big.tri 1 clip data.big.tri 1 clip

Figure 16 shows slices of temperature contours for the full, half, and quarter sphere cases. The
slices are shown along the y- and z- planes at a distance of 0.1 m from each axis. It is worthy to
note here that the results from the simplified symmetric runs do not fully represent the flow
around the sphere as the data output is cell-centered and therefore cannot be interpolated to the
bounds of the region, which includes the sphere centerline.
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Figure 16. Temperature contours for flow around a sphere using geometric symmetry to

simplify computations.
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These results illustrate that the simulations produce identical results when utilizing the specular
boundary condition at the planes of symmetry.

2.10.3. Parts of the code being checked
Surface clipping. Diffuse reflection boundary condition.

2.10.4. Results

To verify the SPARTA simulations of flow around a sphere, the results for the full sphere case
shown above were compared to a simulation of identical input parameters executed using DAC.
Contour comparisons of temperature, velocity, and number density are shown in Figure 17 while
the maximum values for these flow properties are given in Table 4. The contours are generally in
good agreement and capture the phenomenology of the flow including the wake structure. Slight
variances in the resultant flow properties may be attributed to differences in the duration of the
simulations.

Table 4. Maximal values of flow properties for flow around a sphere

Property DAC SPARTA
Temperature (K) 4677 4506
x Velocity (m/s) 2501 2495
Number Density (1/m?) 1.024 x 10 1.282x 107
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Nd (1/r) Nd

1.5E+20 1.5E+20
1.4E+20 1.4E+20
1.3E+20 1.3E+20
1.2E+20 1.2E+20
1.1E+20 1.1E+20
1E+20 1E+20
SE+19 SE+19
8E+19 8E+19
7E+19 7E+19
B6E+19 BE+19
5E+19 5E+19
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3E+19 3E+19
2E+19 2E+19
1E+19 1E+19

Figure 17. Contours for flow around a sphere on the y-plane for (a) temperature, (b)
velocity in x direction, and (c) number density, as calculated by DAC (first column) and
SPARTA (second column).



2.11. Richtmyer-Meshkov instability
2.11.1 Motivation

SPARTA has an unprecedented capability to utilize the largest supercomputers available. As a
challenging scenario with broad scientific applications, the Richtmyer-Meshkov instability
(RMI) was selected to attempt to extend SPARTA to flow regimes untested by traditional DSMC
codes. RMI is a hydrodynamic instability that results from the misalignment of density and
pressure gradients across a fluid interface perturbation due to an impulsive acceleration, such as
a shock wave. RMI is commonly observed in inertial confinement fusion and supernova events.

2.11.2 Description

Following the refraction of the incident shock wave at the interface between two gases, a
distorted shock is transmitted into the second gas. Then, and depending on the properties of the
two gases, a distorted shock or rarefaction wave is reflected back in to the first gas. As a result of
this process, the interface is impulsively accelerated to a constant velocity and travels in the same
direction as the transmitted shock. Vorticity is deposited baroclinically along the interface
wherever the density gradient (due to the initial interface) and pressure gradient (due to the
shock) are misaligned. This results in time dependent growth of the initial perturbation. Initially
the growth is linear. When the amplitude of the perturbation becomes comparable to its
characteristic wavelength the growth becomes non-linear. The non-linear growth regime is
followed by a regime influenced by the Kelvin-Helmoltz instability, which causes roll-up
structures resembling mushrooms in the heavy fluid.

2.11.3. Results

In the simulations shown in Figure 18, a region 1mm wide and 4mm high with 1mm depth, is
filled with two monatomic gases (helium and argon) at atmospheric pressure and temperature.
The gases are initially separated such that the lighter gas (helium) rests atop the heavier gas
(argon) with an interface, sinusoidally perturbed with a wavelength of 0.5 mm and a crest to
trough amplitude of 0.2 mm, as shown in Figure 18a. In this case, a Mach = 1.2 shock in helium
enters the computational domain from the top. Figure 18 show late-time stages of development
of the instability in which Kelvin-Helmoltz instability occurs and progresses eventually to
turbulence. This qualitative description of RMI is in good agreement with published
experimental data as shown in Morgan et al. (2012).
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Figure 18. Development of the Richtmyer-Meshkov instability.

The amplitude of the instability is often used as a more quantifiable measure of RMI growth, and
comparisons to theory and empirical correlations are common in the literature. In Figure 19, the
non-dimensional amplitude growth is shown as a function of time as calculated by DSMC and
the impulsive linear model (Richtmyer, 1960). We note that, while the two models are in good
agreement for small times, as the perturbation amplitude increases and becomes comparable to
unity, non-linear phenomena appear.
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Figure 19. Time-dependent growth of the Richtmyer-Meshkov instability.
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2.12. Parallel efficiency
2.12.1. Motivation

The advantages of DSMC compared to other methods that predict flows in the non-equilibrium
regime come at a cost: DSMC 1is computationally intense like most Monte Carlo methods.
Therefore, its successful application to real problems may depend heavily on the parallel
performance of the particular implementation. Monte Carlo methods usually have good parallel
performance. This is because the workload depends mainly on the simulators within a cell: there
is relatively less need to communicate information between cells. DSMC codes have
demonstrated near-linear scaling up to several thousand processors. With the advent of massively
parallel computers, problems considered impossible only a few years ago, such as transient
three-dimensional simulations, are currently within reach. Here, the test case for flow in a closed
box is revisited to determine the parallel efficiency of SPARTA.

2.12.2. Description

Since next-generation machines will require hybrid programming approaches (MPI + node-based
parallelism), the DSMC kernels (particle moves, per-cell collisions and chemistry) were
reworked within SPARTA in a manner that allows for fine-grain parallelism within a node. To
estimate the parallel efficiency of SPARTA, the flow inside a closed, isothermal box was
simulated. All physical and numerical parameters are fixed except for the cells per processor and
the size of the domain, which is adjusted to keep the number of particles per cell constant (10).
Maintaining the same number of particles per cell increases the communication load as the
number of processors is increased. Thus, this constitutes a worst-case scenario for a scaling
assessment. The number of cells was ranging from 10* to 10'".

2.12.3. Parts of the code being checked
Node and core-level communications.

2.12.4. Results

Figure 20 to Figure 22 present the performance of SPARTA on Sequoia, a 17-Pflop, 1.57-million
core platform at Lawrence Livermore National Laboratory. Here, the performance is defined as
the number of particle moves (time steps X number of particles) per CPU second and node. In
both plots, the x-axis is node count and the y-axis is per-node performance. Single curves show
strong scaling. Weak scaling is demonstrated following performance parallel to the x-axis from
curve to curve. The left-side speed-up (in each curve) is a cache effect as the particle/processor
count gets smaller; the right-side slow-down is when there are too few particles/processor.

Through hyper-threading, up to 4 tasks per core were utilized, while each node employed 16

cores. A total of 98,304 nodes were used in this scaling study. The left plot presents the
performance for 1 task/core and the right one for 4 tasks/core. The maximum number of particles
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was 1 trillion (in 100 billion cells). The maximum number of particles simulated was 3 trillion in
1 trillion cells. Meaningful simulations were performed up to a maximum of 2.6 million tasks
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Figure 20. Weak and strong scaling of SPARTA on Sequoia using 1 MPI task/node.
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Figure 21. Weak and strong scaling of SPARTA on Sequoia using 2 MPI tasks/node.
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3. CONCLUSIONS

Sandia’s new DSMC code SPARTA has been demonstrated to accurately reproduce
known solutions for a number of cases, ranging from steady state equilibrium flow
fields to continuum transient flow fields. Simulations include flows around
complicated three-dimensional vehicles and have been validated against theoretical
solutions and other established simulations when possible.

SPARTA has been demonstrated to be able to take advantage of new exascale
technologies demonstrating a thousand-fold improvement in computational speed.
Such an improvement will bring many problems that are currently impossible to
simulate within the reach of DSMC.
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