
SANDIA REPORT 
SAND2014-19198 
Unlimited Release 
September 2014 

SPARTA 
Stochastic Particle Real Time Analyzer 
Validation and Verification Test Suite 

Michael A. Gallis, Timothy P. Koehler, Steven J. Plimpton 

Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico  87185 and Livermore, California  94550 

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, 
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's  
National Nuclear Security Administration under contract DE-AC04-94AL85000. 

Approved for public release; further dissemination unlimited. 



2

Issued by Sandia National Laboratories, operated for the United States Department of Energy 
by Sandia Corporation. 

NOTICE:  This report was prepared as an account of work sponsored by an agency of the 
United States Government.  Neither the United States Government, nor any agency thereof, 
nor any of their employees, nor any of their contractors, subcontractors, or their employees, 
make any warranty, express or implied, or assume any legal liability or responsibility for the 
accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represent that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government, any agency thereof, or any of 
their contractors or subcontractors.  The views and opinions expressed herein do not 
necessarily state or reflect those of the United States Government, any agency thereof, or any 
of their contractors. 

Printed in the United States of America. This report has been reproduced directly from the best 
available copy. 

Available to DOE and DOE contractors from 
U.S. Department of Energy 
Office of Scientific and Technical Information 
P.O. Box 62 
Oak Ridge, TN  37831 

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov 
Online ordering: http://www.osti.gov/bridge 

Available to the public from 
U.S. Department of Commerce 
National Technical Information Service 
5285 Port Royal Rd. 
Springfield, VA  22161 

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online



3

 SAND2014-19198 
Unlimited Release 

Printed October 2014 

Stochastic Particle Real Time Analyzer (SPARTA) 
Validation and Verification Suite 

Michael A. Gallis, Timothy P. Koehler 
Fluid Science and Engineering Department 

P.O. Box 5800-0840 
Albuquerque, New Mexico 87185-MS0840 

Steven J. Plimpton 
Multi Scale Science Department 

Sandia National Laboratories 
P.O. Box 5800-1316 

Albuquerque, New Mexico 87185-MS1316 

ABSTRACT 

This report presents the test cases used to verify, validate and demonstrate the 
features and capabilities of the first release of the 3D Direct Simulation Monte Carlo 
(DSMC) code SPARTA (Stochastic Particle Real Time Analyzer). The test cases 
included in this report exercise the most critical capabilities of the code like the 
accurate representation of physical phenomena (molecular advection and collisions, 
energy conservation, etc.) and implementation of numerical methods (grid adaptation, 
load balancing, etc.). Several test cases of simple flow examples are shown to 
demonstrate that the code can reproduce phenomena predicted by analytical solutions 
and theory. A number of additional test cases are presented to illustrate the ability of 
SPARTA to model flow around complicated shapes. In these cases, the results are 
compared to other well-established codes or theoretical predictions. This compilation 
of test cases is not exhaustive, and it is anticipated that more cases will be added in 
the future. 
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1.  INTRODUCTION  
 
The Direct Simulation Monte Carlo (DSMC) method was introduced in the early 1960s [1] to 
compute re-entry flow fields between the free-molecular and continuum regimes, for which 
results could not be obtained from more traditional approaches based on solving partial 
differential equations (PDEs). Since then, the fundamental physics-based nature of the DSMC 
algorithm in conjunction with ever-increasing computational power has allowed DSMC to attack 
complicated non-equilibrium problems outside its original regime of applicability, even in the 
near-continuum regime. 
 
Over nearly a half-century of development, the capabilities of the DSMC method have been 
dramatically enhanced with the addition of improved physical and chemical models. It is a 
testament to the fundamental stochastic nature of the method that all these enhancements 
provided continual improvement to the method without any major change to the basic algorithm 
or significantly impacting the computational efficiency of the method. It is worth noting that 
DSMC can provide simulations of flow fields even in cases where the Boltzmann equation 
cannot be rigorously formulated, such as for chemically reacting polyatomic species.  
 
Wagner [2] provides a rigorous proof that DSMC simulations actually provide solutions to the 
Boltzmann equation for monatomic molecules in the limit of vanishing discretization and 
statistical error. Further evidence indicates that highly refined DSMC simulations provide results 
that agree with exact solutions to the Boltzmann equation, such as the near-equilibrium infinite-
approximation Chapman-Enskog and the non-equilibrium Moment Hierarchy methods [3,4] The 
validity of the DSMC method for more complicated flow fields for which analytic solutions 
cannot be obtained has been firmly established through comparisons with experimental data and 
molecular-dynamics simulations. 
 
Even today, more than 50 years since originally introduced, DSMC remains unchallenged for 
non-continuum rarefied-gas-dynamics calculations. The advantages of DSMC compared to other 
methods that predict flows in the non-equilibrium regime come at a cost: DSMC is 
computationally intense, like most Monte Carlo methods. Therefore, its successful application to 
real problems may depend heavily on the parallel performance of the particular implementation. 
Monte Carlo methods usually have good parallel performance. This is because the workload 
depends mainly on the simulators within a cell: there is relatively less need to communicate 
information between cells. DSMC codes have demonstrated near-linear scaling up to several 
thousand processors. With the advent of massively parallel computers, problems considered 
impossible only a few years ago, such as transient three-dimensional simulations, are currently 
within reach.  
 
Since next-generation machines will require hybrid programming approaches, MPI in addition to 
some kind of node-based parallelism, the DSMC kernels (particle moves, collisions, and 
chemistry) need to be reworked in a manner that will allow for fine-grain parallelism within a 
node. Since the computational architecture is subject to frequent and dramatic changes, it would 
be ideal to decouple the physical aspects of the simulation from the computational ones. One 
possible avenue would be to develop architecture-agnostic programming models for in-node 
parallelism, such as the Sandia National Laboratories Kokkos project [5]. Its goal is to provide 
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data abstractions and parallel looping constructs that enable a single set of source code kernels in 
an application code to run reasonably efficiently across a diverse spectrum of node hardware 
(multi-core, many-core, GPU, etc.). 
 
SPARTA is a new open source 3D DSMC code [6] developed at Sandia National Laboratories 
with these ideas in mind. SPARTA employs a multi-level (practically up to 16 levels on 64 bit 
architectures) Cartesian-grid with embedded geometries for the description of physical space. 
Load balancing is based on the recursive coordinate bisection method. To enable efficient 
communications, a buffer zone is assigned to each processor that includedes near-by cells. The 
goal of this is to allow, in most cases, completion of molecular moves using a maximum of one 
communication with a modest number of processors. However, the motion of a molecule is never 
truncated, and multiple passes are possible. Currently, the DSMC algorithm as outlined in Bird’s 
1994 monograph is implemented. Later versions will incorporate more advanced physical 
models.  
 
In this report, the ability of SPARTA to deliver improved computational efficiency while 
maintaining the unprecedented accuracy of the DSMC method, in dealing with gas flows is 
examined. The benchmark cases used for this purpose varying from ostensibly simple steady 
flow in a closed box, to the continuum, transient Richtmyer-Meshkov instability [7,8]. These test 
cases have been selected because they are amenable to theoretical as well as numerical 
investigation. 
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2.  TEST CASES 
 
2.1. Flow in a closed box 
 
2.1.1. Motivation 
 
Despite its simplicity, this class of test cases is one of the most useful test cases for DSMC codes 
since it allows the development of an equilibrium steady state flow, where one can have 
complete confidence in having achieved correct results. 
 

 
Figure 1. Flow inside a closed box 

 
Molecular collisions in a gas inside a closed box (1, 2 or 3-D) with diffuse or specular walls, will 
lead the gas, regardless of its initial state, to complete thermodynamic equilibrium. Conservation 
of mass, momentum and energy, exactly conserved in every DSMC collision, allow for a number 
of code functions to be verified. 
 
2.1.2. Description 
 
The main test case is a uniform hard sphere gas in a 3-D box. The collision frequency of this gas 
is exactly known (Eq. 4.63 of Reference 1). In a fully diffuse isothermal box the temperature of 
the gas should converge to that of the walls. In a specular box, exact conservation of energy 
should maintain the temperature at exactly the level to which it was set by the initial condition. 
Variations of this test case include: Maxwell-molecule gas (all collision attempts are accepted for 
collision), and VSS and VHS gases foe which the relevant functions of the code can be tested. 
 
2.1.3. Parts of the code being checked 
 
Molecular advection, Molecular tracking in a 3-D domain, Surface reflections, Particle collision 
frequency, Conservation of mass, momentum and energy, Polyatomic gas collisions, Initial 
conditions, diffuse, specular wall boundary condition, load balancing. 
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2.1.3 Results 
 
The following is a printout of the log file. 
 
SPARTA (19 Aug 2014) 
Created orthogonal box = (0 0 0) to (0.0001 0.0001 0.0001) 
Created 1000 child grid cells 
  parent cells = 1 
  CPU time = 0.000895977 secs 
  create/ghost percent = 98.3502 1.64981 
Balance grid migrated 0 cells 
  CPU time = 0.00139093 secs 
  reassign/sort/migrate/ghost percent = 5.31368 0.154268 1.14844 93.3836 
Created 10000 particles 
  CPU time = 0.00199509 secs 
Memory usage per proc in Mbytes: 
  particles (ave,min,max) = 1.02997 1.02997 1.02997 
  grid      (ave,min,max) = 1.83113 1.83113 1.83113 
  surf      (ave,min,max) = 0 0 0 
  total     (ave,min,max) = 2.8611 2.8611 2.8611 
Step CPU Np Natt Ncollave temp  
       0            0    10000        0            0    274.40561  
     100  0.048908949    10000      968        700.8    274.40561  
     200  0.097182035    10000      985       702.64    274.40561  
     300   0.14856601    10000     1005    704.95333    274.40561  
     400   0.19848394    10000      998     705.7675    274.40561  
     500   0.24520898    10000     1022       706.47    274.40561  
     600   0.29146504    10000     1025    706.61833    274.40561  
     700   0.33719492    10000     1042    706.68571    274.40561  
     800   0.38323998    10000     1029    706.80125    274.40561  
     900     0.430583    10000     1052    706.89778    274.40561  
    1000   0.47937894    10000     1022      706.741    274.40561  
Loop time of 0.479393 on 1 procs for 1000 steps with 10000 particles 
 
Particle moves    = 10000000 (10M) 
Cells touched     = 13606155 (13.6M) 
Particle comms    = 0 (0K) 
Boundary collides = 401016 (0.401M) 
Boundary exits    = 0 (0K) 
SurfColl checks   = 0 (0K) 
SurfColl occurs   = 0 (0K) 
Collide attempts  = 1010885 (1.01M) 
Collide occurs    = 706741 (0.707M) 
Reactions         = 0 (0K) 
Particles stuck   = 0 
 
Particle-moves/CPUsec/proc: 2.08597e+07 
Particle-moves/step: 10000 
Cell-touches/particle/step: 1.36062 
Particle comm iterations/step: 1 
Particle fraction communicated: 0 
Particle fraction colliding with boundary: 0.0401016 
Particle fraction exiting boundary: 0 
Surface-checks/particle/step: 0 
Surface-collisions/particle/step: 0 
Collision-attempts/particle/step: 0.101088 
Collisions/particle/step: 0.0706741 
Reactions/particle/step: 0 
 
Move  time (%) = 0.240076 (50.0791) 
Coll  time (%) = 0.201777 (42.09) 
Sort  time (%) = 0.0367324 (7.66228) 
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Comm  time (%) = 9.87053e-05 (0.0205896) 
Outpt time (%) = 0.000492334 (0.1027) 
Other time (%) = 0.000216961 (0.0452574) 
 
Particles: 10000 ave 10000 max 10000 min 
Histogram: 1 0 0 0 0 0 0 0 0 0 
Cells:     1000 ave 1000 max 1000 min 
Histogram: 1 0 0 0 0 0 0 0 0 0 
GhostCell: 0 ave 0 max 0 min 
Histogram: 1 0 0 0 0 0 0 0 0 0 
EmptyCell: 0 ave 0 max 0 min 
Histogram: 1 0 0 0 0 0 0 0 0 0 
 

2.1.4. Comments 
 
There are many objectives of this simulation. Observing the number of simulators and the 
temperature to be exactly constant is a clear indication that the three conservation principles are 
satisfied during the simulation. Also, the collision frequency can be calculated and compared to 
that given by equilibrium kinetic theory. For the particular problem simulated herein (argon at 
2 torr pressure at 273.15 K) the theoretical and simulated collision frequencies were 
(7.13949×1029 s-1 and 7.13103×1029 s-1))  giving a theory to simulation ratio of 1.00014, an 
indication that the collision frequency is correctly simulated. 
 
If boundary conditions are changed to fully accommodating (diffuse), the simulation maintains a 
constant number of simulators, but the temperature is only on average constant. 
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2.2. Inflow in a closed box 
 
2.2.1. Motivation 
 
Starting with an empty box (see Figure 1) with one side open, at which a free stream boundary 
condition is applied, the number of incoming molecules as a function of time is tracked.  
 
2.2.2. Description 
 
The hypersonic inflow boundary condition implemented in SPARTA allows a particular number 
of molecules to enter the computational domain at every time step. Tracking this number after a 
number of moves allows a direct comparison with the numerical results Eq. 4.24 of Reference 1. 
 
2.2.3. Parts of the code being checked: 
 
Inflow boundary condition. 
 
2.2.4. Results 
 
The following is a printout of the SPARTA log file. 
 
SPARTA (19 Aug 2014) 
Created orthogonal box = (0 0 0) to (0.001 0.001 0.001) 
Created 1000000 child grid cells 
  parent cells = 1 
  CPU time = 1.65443 secs 
  create/ghost percent = 20.8415 79.1585 
Balance grid migrated 0 cells 
  CPU time = 0.633072 secs 
  reassign/sort/migrate/ghost percent = 4.42998 3.05717 21.9823 70.5305 
Balance grid migrated 0 cells 
  CPU time = 0.821505 secs 
  reassign/sort/migrate/ghost percent = 8.85449 0.884218 7.524 82.7373 
Memory usage per proc in Mbytes: 
  particles (ave,min,max) = 0 0 0 
  grid      (ave,min,max) = 175.552 175.552 175.552 
  surf      (ave,min,max) = 0 0 0 
  total     (ave,min,max) = 175.552 175.552 175.552 
Step CPU T/CPU Np  
       0            0            0  
      10    2.0094299 4.9765134e-08  
Loop time of 2.00948 on 1 procs for 10 steps with 951305 particles 
 
Particle moves    = 5232207 (5.23M) 
Cells touched     = 8206731 (8.21M) 
Particle comms    = 0 (0K) 
Boundary collides = 20366 (20.4K) 
Boundary exits    = 0 (0K) 
SurfColl checks   = 0 (0K) 
SurfColl occurs   = 0 (0K) 
Collide attempts  = 0 (0K) 
Collide occurs    = 0 (0K) 
Reactions         = 0 (0K) 
Particles stuck   = 0 
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Particle-moves/CPUsec/proc: 2.60376e+06 
Particle-moves/step: 523221 
Cell-touches/particle/step: 1.5685 
Particle comm iterations/step: 1 
Particle fraction communicated: 0 
Particle fraction colliding with boundary: 0.00389243 
Particle fraction exiting boundary: 0 
Surface-checks/particle/step: 0 
Surface-collisions/particle/step: 0 
Collision-attempts/particle/step: 0 
Collisions/particle/step: 0 
Reactions/particle/step: 0 
 
Move  time (%) = 0.355214 (17.6769) 
Coll  time (%) = 0 (0) 
Sort  time (%) = 0 (0) 
Comm  time (%) = 1.81198e-05 (0.000901717) 
Outpt time (%) = 0.00825596 (0.410851) 
Other time (%) = 1.64599 (81.9113) 
 
Particles: 951305 ave 951305 max 951305 min 
Histogram: 1 0 0 0 0 0 0 0 0 0 
Cells:     1e+06 ave 1e+06 max 1e+06 min 
Histogram: 1 0 0 0 0 0 0 0 0 0 
GhostCell: 0 ave 0 max 0 min 
Histogram: 1 0 0 0 0 0 0 0 0 0 
EmptyCell: 0 ave 0 max 0 min 
Histogram: 1 0 0 0 0 0 0 0 0 0 
 

2.2.5. Comments 
 
The goal of this simulation is to compare the number of simulators that enter the domain over a 
period of 10 time steps and compare it to that theoretically predicted in order to verify that the 
inlet boundary condition introduces the correct number of simulators to the box. In the 
simulation above, 951305 simulators were introduced in 10 time steps which is in very good 
agreement (0.14% error) with the theoretically predicted (Eq. 4.24 of Reference 1) for the 
conditions of test case 1 (zero velocity, 2 torr pressure, 273.15 K, argon gas.). 
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2.3 Internal energy relaxation 
 
2.3.1. Motivation 
 
The ability of the internal energy exchange routines to achieve complete thermal equilibration 
under conditions of thermodynamic equilibrium is examined. 
 
2.3.2. Description 
 
Large number of molecules of a diatomic gas are allowed to perform energy exchange through 
successive molecular collisions (specular walls). Initially the molecules are assumed to have all 
their energy in the translational mode. Eventually, all three energy modes, translational, 
rotational and vibrational, reach thermal equilibration. 
 
2.3.3. Parts of the code being checked 
 
Collisions, non-reactive energy exchange. 
 
2.3.4. Results 
 
Figure 2 presents the relaxation of the three available degrees of freedom towards equilibration. 
Initially all the energy is stored in the translational mode. After successive molecular collisions, 
all of which are allowed to exchange energy, thermal equilibration is achieved. 
 

 
 

Figure 2. Relaxation of internal degrees of freedom 
 
2.3.5. Comments 
 
This test case demonstrates the ability of the code to reproduce thermodynamic equilibrium. The 
rotational and vibrational relaxation numbers were assumed to be unity. Replacing them with 
realistic ones the results can be compared to measured relaxation rates. 
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2.4 Chemical reactions in a closed box 
 
2.4.1. Motivation 
 
The ability of the code to reproduce a reaction rate as specified in the chemistry input deck can 
be tested by simulating the dissociation of a gas within an isothermal closed box. 
 
2.4.2. Description 
 
A large number of simulators are allowed to move and collide in a closed isothermal box. The 
walls may be specular or diffuse. Diffuse walls will allow internal energy reassignment. In this 
particular example molecular nitrogen dissociation reactions are simulated. However, The 
reaction is set not to change the species type or reduce the energy content of the flow. 
 
2.4.3. Parts of the code being checked 
 
Chemical reactions, energy exchange, post collision velocity scattering, boundary conditions. 
 
2.4.4. Results 
 
The following is a printout of the SPARTA log file. 
 
SPARTA (19 Aug 2014) 
Created orthogonal box = (-0.5 -0.5 -0.5) to (0.5 0.5 0.5) 
Created 1 child grid cells 
  parent cells = 1 
  CPU time = 0.000795841 secs 
  create/ghost percent = 98.2624 1.73757 
Created 1000000 particles 
  CPU time = 0.221867 secs 
Memory usage per proc in Mbytes: 
  particles (ave,min,max) = 102.997 102.997 102.997 
  grid      (ave,min,max) = 1.83113 1.83113 1.83113 
  surf      (ave,min,max) = 0 0 0 
  total     (ave,min,max) = 104.828 104.828 104.828 
Step CPU Np Natt Ncoll temp Nattave  
       0            0  1000000        0        0    99956.821            0  
      10    1.4615109  1000000   401022    77222    99860.643       3911.6  
      20     2.902142  1000000   401022    77612    99811.567      3922.25  
      30     4.330446  1000000   401022    77550    99629.689         3924  
      40    5.7504139  1000000   401023    77286    99550.496     3924.825  
      50     7.179774  1000000   401022    77407    99531.592      3926.84  
      60      8.60816  1000000   401022    77385    99474.452    3927.9167  
      70    10.030703  1000000   401022    77600    99506.309    3929.6143  
      80    11.454959  1000000   401023    77380        99448      3927.95  
      90    12.896433  1000000   401022    77064    99416.421    3927.3444  
     100    14.342392  1000000   401022    77280    99392.408      3925.49  
Loop time of 14.3424 on 1 procs for 100 steps with 1000000 particles 
 
Particle moves    = 100000000 (100M) 
Cells touched     = 100000000 (100M) 
Particle comms    = 0 (0K) 
Boundary collides = 1292185 (1.29M) 
Boundary exits    = 0 (0K) 
SurfColl checks   = 0 (0K) 
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SurfColl occurs   = 0 (0K) 
Collide attempts  = 40102217 (40.1M) 
Collide occurs    = 7725885 (7.73M) 
Reactions         = 392549 (0.393M) 
Particles stuck   = 0 
 
Particle-moves/CPUsec/proc: 6.97233e+06 
Particle-moves/step: 1e+06 
Cell-touches/particle/step: 1 
Particle comm iterations/step: 1 
Particle fraction communicated: 0 
Particle fraction colliding with boundary: 0.0129219 
Particle fraction exiting boundary: 0 
Surface-checks/particle/step: 0 
Surface-collisions/particle/step: 0 
Collision-attempts/particle/step: 0.401022 
Collisions/particle/step: 0.0772589 
Reactions/particle/step: 0.00392549 
 
Move  time (%) = 1.62788 (11.3501) 
Coll  time (%) = 11.8648 (82.7251) 
Sort  time (%) = 0.788682 (5.49895) 
Comm  time (%) = 0.000124454 (0.000867737) 
Outpt time (%) = 0.0608909 (0.424551) 
Other time (%) = 6.36578e-05 (0.000443843) 
 
Particles: 1e+06 ave 1e+06 max 1e+06 min 
Histogram: 1 0 0 0 0 0 0 0 0 0 
Cells:     1 ave 1 max 1 min 
Histogram: 1 0 0 0 0 0 0 0 0 0 
GhostCell: 0 ave 0 max 0 min 
Histogram: 1 0 0 0 0 0 0 0 0 0 
EmptyCell: 0 ave 0 max 0 min 
Histogram: 1 0 0 0 0 0 0 0 0 0 

 
2.4.5 Comments 
 
The goal of this simulation is to compare the simulated reaction rate to that of the Arrhenius rate 
k that was used as part of the input deck. Repeating this simulation for a number of temperatures, 
the reaction rate k(T) as a function of temperature is obtained. As shown in Table 1, the 
Arrhenius rate and the simulated reaction rate are in good agreement for the range of 
temperatures studied. 
 
Table 1. Comparison of theoretical and simulated reaction rates for nitrogen dissociation. 

Temperature 
(K) 

Arrhenius rate 
(ln(k(T)) 

Simulated Rate 
(ln(k(T)) 

15000 -17.89 -18.07 
20000 -17.27 -17.36 
25000 -16.93 -16.98 
30000 -16.73 -16.75 
35000 -16.61 -16.60 
40000 -16.53 -16.50 

 



 19 

2.5. Flow in a closed cylinder 
 
2.5.1. Motivation 
 
For many applications, assumptions about axial symmetry can be made to reduce the complexity 
of the simulation.  Similar to two-dimensional flow assumptions in DSMC, the domain is 
represented on two axes; however, out-of-plane motion cannot be ignored, and azimuthal 
velocities must be considered.  Therefore, the axisymmetric boundary condition requires 
additional geometric transformations that must be performed at every time step.  To verify that 
the implementation of this boundary condition is correct, axially symmetric flow in a closed 
cylinder was studied to show that molecule number densities and temperatures are conserved as 
the flow approaches thermodynamic equilibrium. 
 
2.5.2. Description 
 
Consider a cylinder with a height of 1 mm and a radius, r, of 1 mm.  The container walls are 
specularly reflective and located at x = 0 mm, x = 1 mm, and r = 1 mm as diagrammed in Figure 
3.  The azimuthal, or out-of-plane, boundary condition is periodic.  The container is initially 
filled by a monatomic gas at a nominal temperature and pressure.  Any initial state will 
eventually reach thermodynamic equilibrium.  In this particular case, room-temperature argon 
molecules populated the cylinder with no initial velocity and hard-sphere collisions are assumed.  
As a result, the flow is governed purely by diffusion maintaining the thermal equilibrium of the 
initial state.   
 

 
Figure 3. Initial configuration and boundary conditions for flow in a closed cylinder 

 
 

r 

x 

Specular 
Axisymmetric 
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2.5.3. Parts of the code being checked 
 
Axially symmetric boundary condition, axisymmetric move (molecule cloning and deleting.) 
 
2.5.4. Results 
 
To verify the implementation of the axisymmetric boundary condition, a simulation is run per the 
above description such that the gas within the cylinder reaches equilibrium. As the flow 
equilibrates, the number density and temperature of the molecules can be tracked to determine 
deviations from the initial conditions. Any bias or significant difference would indicate issues 
with the implementation of the algorithm.  

 
Figure 4. Normalized number density and temperature for flow in a closed cylinder 

 
As seen in Figure 4, the density and temperature of the molecules normalized by the initial state 
are approximately equally distributed with no clear bias or trend that would indicate loss of 
molecules or errors in collisional calculations. Random walks that could appear in long duration 
axially symmetric calculations also appear to be avoided. 
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2.6 Sonine polynomials 
 
2.6.1. Motivation 
 
All previous test cases involved gases at equilibrium. Although this is an important limit for the 
code to reach, it is hardly ever the desired state. This test case examines the ability of the code 
reproduce a known, non-equilibrium, steady state of a gas. 
 
2.6.2. Description 
 
A gas under the influence of an external shearing force or thermal gradient is expected to reach a 
non-equilibrium steady state. For a modest gradient (near-equilibrium non-equilibrium), the state 
of the gas can be adequately described by the Chapman-Enskog Theory [9]. The non-equilibrium 
state of the gas can be best described by the velocity distribution function. First-order CE theory 
generates a closed-form expression for the velocity distribution function in terms of macroscopic 
hydrodynamic fields and their gradients: f = f (0)(1+Φ(1) +Ψ(1) )  where

 
f (0) = nexp[− !c2 ] π 3/2cm

3( )  and  Φ
(1) = − 8 5( ) !A[ !c]!c ⋅ !q  Ψ

(1) = −2 !B[ !c](!c " !c : !τ ) . 
 

   
Figure 5. Schematic of Fourier and Couette flow  

 
Here, f (0)  is the equilibrium (Maxwellian) distribution, Φ(1)  and Ψ(1)  are the first-order non-
equilibrium perturbations from this distribution, cm = 2kBT m  is the most probable molecular 
thermal speed for the equilibrium distribution, m  is the molecular mass, n  is the number 
density, T  is the temperature, kB  is the Boltzmann constant, c = u−U  is the thermal velocity of 
a molecule, u = (u,v,w)  is the velocity of a molecule, U = (U,V ,W ) = u  is the average value of 
u ,  !c = c cm  is the normalized molecular thermal velocity,  !c " !c = !c!c − ( !c2 3)I  is a traceless 
dyadic,  !q = q / (mncm

3 )  and  !τ = τ (mncm
2 )  are the non-dimensional heat-flux vector and shear-

stress tensor, and  !A  and  !B  are expansions in the Sonine polynomials Sj
(k ) : 

 
!A[ !c]= (ak a1

k=1

∞

∑ )S3/2
(k )[ !c2 ] , 

 
!B[ !c]= (bk b1

k=1

∞

∑ )S5/2
(k−1)[ !c2 ]  where Sj

(k )[ξ ]= ( j + k)!(−ξ )i

( j + i)!i!(k − i)!i=0

k

∑ . 
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2.6.3. Parts of the code being checked 
 
Molecular advection, molecular tracking in a 3-D domain, surface reflections, particle collision 
frequency, conservation of mass, momentum and energy, polyatomic gas collisions, onitial 
conditions, diffuse, specular wall boundary condition, load balancing 
 
2.6.4. Results 
 
Figure 6 and Figure 7 present the temperature and velocity profiles as calculated with SPARTA 
and DSMC1 (a modified code based on G.A Bird’s DSMC1 [1]), the code which was used in 
Reference 3. Figure 8 and Figure 9 present the Sonine polynomial coefficients as calculated by 
SPARTA in comparison with the theoretically calculated Sonine coefficients [3]. In both cases 
(DSMC1 and SPARTA), a hard-sphere molecular model was assumed. 
 

 
 

Figure 6. Temperature profile 
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Figure 7. Velocity profiles 

 
 

Figure 8.   Sonine Coefficients 
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Figure 9. bk /b1  Sonine Coefficients. 

 
2.6.5. Comments 
 
The calculation of the Sonine polynomials is probably the most comprehensive test case for 
monatomic gases. Since the Sonine polynomials represent the velocity distribution function 
outside the Knudsen layers, their accurate calculation indicates that the simulation reproduces the 
correct velocity distribution function. 
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2.7. Volume around a sphere 
 
2.7.1. Motivation 
 
SPARTA uses Cartesian cells to discretize physical space. Cells near surfaces are “cut” by the 
geometry. For the accurate calculation of the collision frequency,- an accurate calculation of the 
cut-cell volume is needed. 
 
2.7.2. Description 
 
The “flowfield” volume, ie. the volume between the bounding box and an enclosed sphere is 
calculated. Two different-resolution spheres are used. SPARTA calculates the volume of the 
bounding box outside the enclosed sphere. This volume is also calculated analytically. 
 
2.7.3. Parts of the code being checked 
 
Gas-phase and surface grid description. 
 
2.7.4. Results 
 
Using a 1,200 (Figure 11) and a 15,000 (Figure 11) surface cell element description of a 1 m-
radius sphere, the flow field volume of a 4×4×4 bounding box is calculated.  The results are 
presented in Table 2. Volume calculations for two different-resolution spheres. As the surface 
resolution increases, the calculated volume approaches the theoretical value. Evidently the 
theoretical volume is retrieved for a number of cells tending to infinity. 
 
 

 
Figure 10. 1,200 surface element sphere description. 
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Figure 11. 15,000 surface element sphere description. 

. 
Table 2. Volume calculations for two different-resolution spheres. 

 
Method/resolution Flow-field volume (m3) 

1200 elements 59.86171 
15000 elements 59.81132 

Theory 59.81121 
 
The volume appears to be converging to the right volume from higher values. This is because the 
simulated sphere is contained in the unit radius theoretical sphere. Therefore the volume of the 
sphere is always less than the theoretical limit, and the flow-filed volume greater than the 
theoretical limit. It should be noted that the volume calculation is insensitive to the gas-phase 
grid resolution. The previous volume calculations were repeated with 103 (10×10×10) and a 1003 
(100×100×100) grids, yielding identical results. 
 
2.7.5. Comments 
 
The goal of this simulation is to examine the ability of the code to calculate the cut-cell volumes 
accurately. Since these cells are usually near body cells, the accurate calculation of the volume is 
critical for the simulation of the correct collision frequency, and therefore transport properties to 
the surface. 
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2.8. MIR space station 
 
2.8.1. Motivation 
 
SPARTA uses a grid generation function to handle complex shapes and geometries. As an 
example and demonstration of this feature, a grid has been created from a representative 
geometry of the MIR space station and used in a stylized re-entry simulation. 
 
2.8.2. Description 
 
The simulation of flow around the MIR space station is an example of the complexity the 
SPARTA grid generation function can accomdate. The MIR geometry comprises 12 concave 
bodies with thicknesses varying from 1 cell to multiple cells. Figure 12 shows the surface grid 
geometry for the MIR space station. The surface description was provided by NASA JSC (G.J. 
LeBeau). 

  
 

Figure 12. Diagrams of the MIR grid. 
 
In SPARTA, a surface is a collection of surface elements that represent the surface of one or 
more physical objects which will be embedded in the global simulation box. The surface 
elements are triangles in 3D or line segments in 2D. Within the input deck, the user can specify a 
number of options to control the way in which the surface elements are treated. Firstly, particle 
collisions with the surface must be designated through a surface collision model, which can 
optionally handle surface chemistry. Additionally, geometric scaling, rotation and placement of 
the surface elements within the global box can be specified. For simplicity, the MIR space 
station is centered within the global grid with diffuse particle reflections from the surfaces 
prescribed. The global box is given open boundary conditions with inflow of air at 7500 m/s at 
an angle of 30° below the horizontal plane.  
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2.8.3. Parts of the code being checked 
 
Gas-phase and surface grid description, molecular collisions, surface reflections, chemical 
reactions, energy exchange. Complex grid generation with cut cells. Diffuse surface reflections. 
Reading surface geometry. Computing surface properties. 
 
2.8.4. Results 
 
With surface geometries, SPARTA can calculate and output properties on the surface elements. 
Figure 13 not only shows slices across the y- and z-planes of the global box with temperature 
contours normalized by the maximum temperature of the flow but also shows contours of 
absorbed heat flux on the surface elements of MIR normalized by the maximum value. 

 
Figure 13. Normalized contours of temperature and surface heat flux on MIR. 
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2.9 Grid adaptation  
 
2.9.1. Motivation 
 
Spatially resolving three-dimensional calculations can be particularly expensive. Thus, a grid 
adaptation may be required to resolve the grid where needed. SPARTA offers the ability to 
create multiple level grids, up to 16 in 64 bit architectures.  
 
2.9.2 Description 
 
In SPARTA, the computational grid can be adapted to match a particular solution. Currently this 
operation is “static”. In the following examples, part of the flow-field domain was refined to a 
second level, where each cell was partitioned in 8 level-2 cells. 
 
2.9.3. Parts of the code being checked 
 
Grid generation, grid adaptation, cut-cell volume calculation. 
 
2.9.4. Results 
 
Figure 14 shows a variation of the computational grid used in the previous simulation, where the 
center part of the grid has been adapted to a second level by 2×2×2. 
 

 
Figure 14. Grid adaptation around MIR space station 

 
Likewise, Figure 15 presents the refinement of a small area around the nose tip of a space-
shuttle-like geometry. In both cases, the background properties are seamlessly reproduced. 
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Figure 15. Grid adaptation around a space shuttle-like geometry 
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2.10. Flow around a sphere 
 
2.10.1. Motivation 
 
The classical fluid dynamics problem of flow around a sphere is simulated to demonstrate the 
functionality of SPARTA options for simplifying computations of symmetric flows. The 
implementation of symmetric boundary conditions can be checked by comparing results from 
simulations of the full, half, and quarter flow fields. Additional checks to the validity of the 
SPARTA results can be performed by running the same test case in NASA’s established DSMC 
Analysis Code (DAC) [10] and comparing the results of the two codes for quantifiable 
parameters like maximum number density, temperature, velocity and drag force on the sphere.   
 
2.10.2. Description 
 
The nominal case is defined by a 1-m-diameter sphere centered in a 10-m cube composed of 
100×100×100 cells. The boundary conditions of all sides are open, while argon gas at a 
temperature of 300 K and velocity of 2500 m/s flows into the grid along the x axis.  Variations 
on this nominal case make use of options available to the user to simplify the simulation based 
on symmetry planes. Results from simulations of a half sphere and a quarter sphere are shown 
here for reference. In this example, the input deck for the full sphere uses open boundaries on all 
six sides and also allows inflow of particles through these open boundaries. To adjust to the 
symmetric geometry, the input deck must be changed to clip the sphere at the planes of 
symmetry. Also, the box and grid must be redefined to the symmetric geometry. The boundary 
conditions at the planes must be updated to specularly reflect particles and closed to the injection 
of new particles. The table below shows the difference in inputs for the full, half, and quarter 
geometries. 
 

Table 3. Input deck modifications to reduce the flow around a sphere by symmetry 
 

Command Full Sphere  
Arguments 

Half Sphere 
Arguments 

Quarter Sphere 
Arguments 

boundary o o o o ro o o ro ro 

create_box -5.0 5.0 -5.0 5.0 -5.0 5.0 -5.0 5.0 0.0 5.0 -5.0 5.0 -5.0 5.0 0.0 5.0 0.0 5.0 

create_grid 100 100 100 100 50 100 100 50 50 

fix in inflow air All xlo xhi yhi zlo zhi xlo xhi yhi zhi 

read_surf data.big.tri 1 data.big.tri 1 clip data.big.tri 1 clip 
 
Figure 16 shows slices of temperature contours for the full, half, and quarter sphere cases.  The 
slices are shown along the y- and z- planes at a distance of 0.1 m from each axis. It is worthy to 
note here that the results from the simplified symmetric runs do not fully represent the flow 
around the sphere as the data output is cell-centered and therefore cannot be interpolated to the 
bounds of the region, which includes the sphere centerline.  
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Figure 16. Temperature contours for flow around a sphere using geometric symmetry to 

simplify computations. 
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These results illustrate that the simulations produce identical results when utilizing the specular 
boundary condition at the planes of symmetry. 
 
2.10.3. Parts of the code being checked 
 
Surface clipping. Diffuse reflection boundary condition. 
 
2.10.4. Results 
 
To verify the SPARTA simulations of flow around a sphere, the results for the full sphere case 
shown above were compared to a simulation of identical input parameters executed using DAC.  
Contour comparisons of temperature, velocity, and number density are shown in Figure 17 while 
the maximum values for these flow properties are given in Table 4. The contours are generally in 
good agreement and capture the phenomenology of the flow including the wake structure.  Slight 
variances in the resultant flow properties may be attributed to differences in the duration of the 
simulations. 
 

Table 4. Maximal values of flow properties for flow around a sphere 
 

Property DAC SPARTA 

Temperature (K) 4677 4506 

x Velocity (m/s) 2501 2495 

Number Density (1/m3) 1.024 × 10-5 1.282 × 10-5 
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Figure 17. Contours for flow around a sphere on the y-plane for (a) temperature, (b) 
velocity in x direction, and (c) number density, as calculated by DAC (first column) and 
SPARTA (second column). 
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2.11. Richtmyer-Meshkov instability 
 
2.11.1 Motivation 
 
SPARTA has an unprecedented capability to utilize the largest supercomputers available.  As a 
challenging scenario with broad scientific applications, the Richtmyer-Meshkov instability 
(RMI) was selected to attempt to extend SPARTA to flow regimes untested by traditional DSMC 
codes. RMI is a hydrodynamic instability that results from the misalignment of density and 
pressure gradients across a fluid interface perturbation due to an impulsive acceleration, such as 
a shock wave.  RMI is commonly observed in inertial confinement fusion and supernova events. 
 
2.11.2 Description 
 
Following the refraction of the incident shock wave at the interface between two gases, a 
distorted shock is transmitted into the second gas. Then, and depending on the properties of the 
two gases, a distorted shock or rarefaction wave is reflected back in to the first gas. As a result of 
this process, the interface is impulsively accelerated to a constant velocity and travels in the same 
direction as the transmitted shock. Vorticity is deposited baroclinically along the interface 
wherever the density gradient (due to the initial interface) and pressure gradient (due to the 
shock) are misaligned. This results in time dependent growth of the initial perturbation. Initially 
the growth is linear. When the amplitude of the perturbation becomes comparable to its 
characteristic wavelength the growth becomes non-linear. The non-linear growth regime is 
followed by a regime influenced by the Kelvin-Helmoltz instability, which causes roll-up 
structures resembling mushrooms in the heavy fluid. 
 
2.11.3. Results 
 
In the simulations shown in Figure 18, a region 1mm wide and 4mm high with 1mm depth, is 
filled with two monatomic gases (helium and argon) at atmospheric pressure and temperature.  
The gases are initially separated such that the lighter gas (helium) rests atop the heavier gas 
(argon) with an interface, sinusoidally perturbed with a wavelength of 0.5 mm and a crest to 
trough amplitude of 0.2 mm, as shown in Figure 18a.  In this case, a Mach = 1.2 shock in helium  
enters the computational domain from the top. Figure 18 show late-time stages of development 
of the instability in which Kelvin-Helmoltz instability occurs and progresses eventually to 
turbulence. This qualitative description of RMI is in good agreement with published 
experimental data as shown in Morgan et al. (2012). 
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Figure 18. Development of the Richtmyer-Meshkov instability. 

 
 
The amplitude of the instability is often used as a more quantifiable measure of RMI growth, and 
comparisons to theory and empirical correlations are common in the literature. In Figure 19, the 
non-dimensional amplitude growth is shown as a function of time as calculated by DSMC and 
the impulsive linear model (Richtmyer, 1960). We note that, while the two models are in good 
agreement for small times, as the perturbation amplitude increases and becomes comparable to 
unity, non-linear phenomena appear.  
 

 
Figure 19. Time-dependent growth of the Richtmyer-Meshkov instability. 

  

c d b a 
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2.12. Parallel efficiency 
 
2.12.1. Motivation 
 
The advantages of DSMC compared to other methods that predict flows in the non-equilibrium 
regime come at a cost: DSMC is computationally intense like most Monte Carlo methods. 
Therefore, its successful application to real problems may depend heavily on the parallel 
performance of the particular implementation. Monte Carlo methods usually have good parallel 
performance. This is because the workload depends mainly on the simulators within a cell: there 
is relatively less need to communicate information between cells. DSMC codes have 
demonstrated near-linear scaling up to several thousand processors. With the advent of massively 
parallel computers, problems considered impossible only a few years ago, such as transient 
three-dimensional simulations, are currently within reach.  Here, the test case for flow in a closed 
box is revisited to determine the parallel efficiency of SPARTA. 
 
2.12.2. Description 
 
Since next-generation machines will require hybrid programming approaches (MPI + node-based 
parallelism), the DSMC kernels (particle moves, per-cell collisions and chemistry) were 
reworked within SPARTA in a manner that allows for fine-grain parallelism within a node.  To 
estimate the parallel efficiency of SPARTA, the flow inside a closed, isothermal box was 
simulated.  All physical and numerical parameters are fixed except for the cells per processor and 
the size of the domain, which is adjusted to keep the number of particles per cell constant (10). 
Maintaining the same number of particles per cell increases the communication load as the 
number of processors is increased. Thus, this constitutes a worst-case scenario for a scaling 
assessment. The number of cells was ranging from 104 to 1011. 
 
2.12.3. Parts of the code being checked 
 
Node and core-level communications. 
 
2.12.4. Results 
 
Figure 20 to Figure 22 present the performance of SPARTA on Sequoia, a 17-Pflop, 1.57-million 
core platform at Lawrence Livermore National Laboratory. Here, the performance is defined as 
the number of particle moves (time steps × number of particles) per CPU second and node. In 
both plots, the x-axis is node count and the y-axis is per-node performance. Single curves show 
strong scaling. Weak scaling is demonstrated following performance parallel to the x-axis from 
curve to curve. The left-side speed-up (in each curve) is a cache effect as the particle/processor 
count gets smaller; the right-side slow-down is when there are too few particles/processor.  
 
Through hyper-threading, up to 4 tasks per core were utilized, while each node employed 16 
cores. A total of 98,304 nodes were used in this scaling study. The left plot presents the 
performance for 1 task/core and the right one for 4 tasks/core. The maximum number of particles 
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was 1 trillion (in 100 billion cells). The maximum number of particles simulated was 3 trillion in 
1 trillion cells. Meaningful simulations were performed up to a maximum of 2.6 million tasks  
 

 
Figure 20. Weak and strong scaling of SPARTA on Sequoia using 1 MPI task/node. 

 
Figure 21. Weak and strong scaling of SPARTA on Sequoia using 2 MPI tasks/node. 

 



 39 

 
Figure 22. Weak and strong scaling of SPARTA on Sequoia using 4 MPI tasks/node. 
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3.  CONCLUSIONS 

 
Sandia’s new DSMC code SPARTA has been demonstrated to accurately reproduce 
known solutions for a number of cases, ranging from steady state equilibrium flow 
fields to continuum transient flow fields. Simulations include flows around 
complicated three-dimensional vehicles and have been validated against theoretical 
solutions and other established simulations when possible. 
 
SPARTA has been demonstrated to be able to take advantage of new exascale 
technologies demonstrating a thousand-fold improvement in computational speed. 
Such an improvement will bring many problems that are currently impossible to 
simulate within the reach of DSMC.   
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