
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.  

Aug.	
  18,	
  2015	
  

3D	
  microstructure	
  modeling	
  using	
  	
  
phase	
  field	
  grain	
  growth	
  model	
  

Hojun Lim, Fadi Abdeljawad, Jacob Gruber, Jay Foulk III, 
Corbett Battaile, Steven Owen, Byron Hanks 

Sandia National Laboratories 

SAND2015-7400PE



Mo.va.on	
  

Need	
  a	
  technique	
  to	
  create	
  physically-­‐based	
  three-­‐dimensional	
  microstructures!	
  

Large-scale continuum simulations with microstructure fidelity are hindered 
by limited capabilities to model realistic 3D microstructures (Fig (a)). 

 
§  Most finite element based polycrystalline models use idealized grain shapes or Voronoi 

tesselations (Fig. (b)). 

§  3D microstructures digitized from experiments conform to a uniform grid. (Fig. (c)) 
 

Microstructures from (a) electron back scatter diffraction, (b) Voronoi tesselation and (c) voxelated 3D 
structure of I-beam [Bishop et al., 2014]. 

(a) (b) (c) 
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  field	
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  growth	
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§  Total free energy 

Bulk thermodynamics: 
chemical, elastic, etc… 

Interfacial energy: GBs  

§  Dynamics 

Allen-Cahn Eq. (Gradient flow of         ) F
tot

- Model A: 

Non-conserved quantities (grain orientation, solidification, phase transitions) 
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Phase field grain growth model  

Finite element mesh Atomistic microstructure 



Approach:	
  Phase	
  field	
  to	
  CP-­‐FEM	
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PHASE FIELD GRAIN GROWTH 
SIMULATIONS 

CRYSTAL PLASTICITY  
FINITE ELEMENT SIMULATIONS 

CUBIT ‘SCULPT’ TECHNOLOGY 

INPUT:  (x, y, z, Φ(i))   

OUTPUT: Exodus mesh 



Sculpt	
  technology	
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Volume Fraction Data All-hex mesh STL File 

Insert hex buffer 
layer 

Smooth Establish parallel 
Cartesian grid 

Estimate gradients 
at cell centers 

Compute virtual edge 
crossings and move grid 
points to iso-surface. 

Assign materials to 
cell. Resolve non-
Manifold cases 



Case	
  1:	
  sphere	
  in	
  a	
  cube	
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(b) (a) 

Phase field 

Finite element mesh 



3D	
  polycrystal:	
  10%	
  deforma.on	
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Grain 15 

Grain 11 

Grain 15 

Grain 11 
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z x 
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Stress distributions at 10% deformation 

Voxelated mesh Conformal mesh 



Mesh	
  convergence	
  test:	
  Ini.al	
  mesh	
  

Voxelated mesh 

Conformal mesh 

4,096 elements 13,824 elements 32,768 elements 110,592 elements 

17,730 elements 42,922 elements 81,838 elements 215,714 elements 

884,736 elements 

1,281,856 elements 



Von	
  Mises	
  Stress	
  (20%	
  deforma.on)	
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280 
 
MPa 
 
0 

Min=76.3 MPa 
Max=264.2 MPa 

Min=67.7 MPa 
Max=292 MPa 

Min=65.2 MPa 
Max=258.4 MPa 

Min=57.5 MPa 
Max=266.3 MPa 

Min=66.4 MPa 
Max=247.7 MPa 

Min=62.2 MPa 
Max=257.6 MPa 

Min=59.8 MPa 
Max=261.1 MPa 

Min=55.3 MPa 
Max=271.9 MPa 

Voxelated mesh 

Conformal mesh 

4,096 elements 13,824 elements 32,768 elements 110,592 elements 

17,730 elements 42,922 elements 81,838 elements 215,714 elements 

884,736 elements 

1,281,856 elements 

Min=55.2 MPa 
Max=287.3 MPa 

Min=47.7 MPa 
Max=328.1 MPa 



Von	
  Mises	
  Stress	
  (mid	
  z	
  surface)	
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250 
 
MPa 
 
0 

Voxelated mesh 

Conformal mesh 

4,096 elements 13,824 elements 32,768 elements 110,592 elements 

17,730 elements 42,922 elements 81,838 elements 215,714 elements 

884,736 elements 

1,281,856 elements 



Mesh	
  convergence	
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Enhanced	
  capabili.es	
  in	
  CUBIT	
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Voxelated mesh è conformal mesh Monte Carlo grain growthè conformal mesh 

Robustness:52 grains using 1.2 million hex elements 



FE	
  mesh	
  from	
  two-­‐phase	
  Monte	
  Carlo	
  simula.on	
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Crea.ng	
  physically-­‐based	
  mul.-­‐scale	
  3D	
  microstructure	
  
A new technique to produce physically-based multi-scale 3D microstructures using 
results from grain growth phase field simulations were developed. 

Phase field grain growth model 

Finite element mesh Atomistic microstructure 

Uniaxial tension (LAMMPS) 
Rate= 109 s-1 

Uniaxial tension (CP-FEM) 
Rate= 10-3 s-1 

Microstructure 

Mechanical 
properties at 

different length 
scales 

Davg. =10nm 



Phase	
  field	
  to	
  atomis.cs	
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Phase Field Voronoi  Downscaled Phase Field  Poisson Voronoi  Phase Field 

Work in progress: Jacob Gruber (Drexel University) 

Effects of initial microstructure on mechanics of nanocrystalline materials 



CP-FEM 

? 

BCC Fe 

MD 

BCC Fe BCC Fe 
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  YOU	
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Email: hnlim@sandia.gov 


