

A Review of NMR Characterization of Pyrolysis Oils

3 *Naijia Hao^a, Haoxi Ben^b, Chang Geun Yoo^c, Sushil Adhikari^d and Arthur J. Ragauskas*^{a,c,e}*

⁴ ^a Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville,
⁵ Tennessee 37996, United States

⁶ Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School
⁷ of Energy and Environment, Southeast University, Nanjing 210096, P.R. China

⁸ ^c BioEnergy Science Center, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge,
⁹ Tennessee 37831, United States

10 ^d Department of Biosystems Engineering, Auburn University, Auburn, Alabama 36849, United
11 States

¹² ^e Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of
¹³ Tennessee Institute of Agriculture, Knoxville, Tennessee 37996, United States

14 ABSTRACT

15 Pyrolysis of renewable biomass has been developed as a method to produce green fuels and
16 chemicals in response to energy security concerns as well as to alleviate environmental issues

17 incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial
18 application, mainly because unprocessed oils cannot be readily blended with current petroleum-
19 based transportation fuels. To better understand these challenges, researchers have applied
20 diverse characterization techniques in the development of bio-oil studies. In particular, nuclear
21 magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of
22 bio-oil components. This review addresses the NMR strategies for pyrolysis oil characterization
23 and critically discusses the applications of ^1H , ^{13}C , ^{31}P , ^{19}F , and two-dimensional (2-D NMR)
24 analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil
25 studies.

26 1. INTRODUCTION

27 Developing viable green energy technologies is imperative because of environmental issues
28 related to fossil fuel usage.¹⁻³ Utilization of biomass has been introduced as a solution towards
29 the development of sustainable and green energy platforms.⁴ Lignocellulosic biomass is a
30 complex composite primarily comprising three principle components: cellulose (35-50%),
31 hemicellulose (20-35%), and lignin (10-25%).⁵ Besides these three main components, biomass
32 also has minor components including ash, protein, and other extractives, whose concentrations
33 widely vary depending on the feedstocks. Lignocellulosic biomass is an attractive feedstock for
34 biofuels because it is relatively inexpensive, abundant, avoids the “food or fuel” argument and is
35 a renewable source of carbon. Typical bio-resources for biofuels include energy crops, such as
36 switchgrass, miscanthus, poplar, and energy cane, or biomass residues from agriculture and
37 forestry operations.⁶ The U.S. Department of Energy and U.S. Department of Agriculture
38 established a national goal that lignocellulosic biomass will supply 5% of the nation’s power by

39 2020 and 20% of its transportation fuels and 25% of its chemicals by 2030. This goal is
40 approximately equivalent to 30% of the petroleum consumption in the year 2005.⁷

41 Biomass pyrolysis is a promising thermochemical conversion technology that involves
42 irreversible thermochemical decomposition of lignocellulose in the absence of oxygen.⁸ The
43 complex polymer constituents of lignocellulose (i.e., lignin, cellulose, and hemicellulose) are
44 depolymerized into smaller molecules upon thermal treatment. The pyrolysis products contain
45 char, gas, and a pyrolysis oil. In particular, the pyrolysis oil has the potential to be blended in the
46 transportation fuels even though it still has some challenges as a fuel, because of its
47 physiochemical properties (which will be discussed in the following section).⁹ In addition, a
48 number of valuable chemicals such as methanol, phenol, catechol, carboxylic acid, and furfural,
49 can be derived from pyrolysis oils.¹⁰ Thus, understanding pyrolysis oil components is an
50 essential part of pyrolysis research, which will provide a fundamental foundation from which
51 future chemical upgrading of bio-oils can be developed.¹¹

52 Various instrumental analytical techniques including gas chromatography (GC), liquid
53 chromatography (LC), high-resolution mass spectrometry (HRMS), Fourier transform infrared
54 spectroscopy (FT-IR), thermogravimetric analysis (TGA), and NMR were introduced for
55 characterization of bio-oils in the previous studies.¹²⁻¹⁶ One of the most comprehensive
56 spectroscopic experiments suited for the comprehensive elucidation of bio-oil components is
57 NMR spectroscopy. Various NMR experiments have been employed to better understand the
58 components and structures of thermally generated bio-oils. ¹H and ¹³C NMR have been widely
59 used to investigate the structural hydrogen-carbon framework of bio-oils.¹⁷ Moreover, selective
60 analysis of the functional groups in the pyrolysis oils through other NMR analysis techniques
61 allows a deep understanding the characteristics of pyrolysis oils. For instance, hydroxyl

62 functional groups of bio-oils can be measured by phosphitylation followed by ^{31}P NMR.¹⁸
63 Likewise, derivatization of bio-oils with 4-(tri-fluoromethyl)phenylhydrazine followed by ^{19}F
64 NMR provides a quantitative and comprehensive understanding of carbonyl groups, which lead
65 to corrosion and aging problems during upgrading.¹⁹ 2D-NMR experiments, such as ^1H - ^{13}C
66 HSQC, are used to infer likely functional groups and substructures present in the oil by detecting
67 one bond correlations between heteronuclear chemical shifts.²⁰ This review will point the
68 importance of bio-oil characterization out and introduce applications of diverse NMR analysis
69 methods including the ^1H , ^{13}C , ^{31}P , ^{19}F , and HSQC-NMR for the characterization. Moreover,
70 potential applications of NMR techniques on bio-oils research are proposed.

71

72 2. CHALLENGES OF BIO-OILS AND UPGRADING METHODS

73 Pyrolysis oil, also known as bio-oil, is a dark-brown, free-flowing liquid product from biomass
74 obtained using assorted pyrolysis processes. The oil is a very complex mixture containing
75 phenolic compounds, carbohydrates, furans, ketones, aldehydes, carboxylic acids, and water.^{8, 21}
76 Although pyrolysis oil has considerable potential as an alternative fuel, it still has some technical
77 barriers to be overcome. Characteristics of the bio-oil and challenges of its applications are
78 summarized in Table 1.^{8, 22-24} Polar oxygen-containing components (e.g., carboxylic acids,
79 hydroxyl groups) cause bio-oils to be immiscible with non-polar transportation fuels. Water from
80 feedstock participates in the pyrolysis reaction and affects the product yields and structures. The
81 water contents of fast pyrolysis oils vary between 15 and 30 wt.%, and the presence of water
82 lowers the oil's heating value and causes the delay problem in ignition engines.^{24, 25} Corrosion
83 problems of the bio-oils are primarily due to carboxylic acids and phenolic compounds, which
84 cause storage and transportation problems.²⁶ Ortega et al.²⁷ and others²⁸⁻³⁰ have investigated the

85 aging process of bio-oils and have analyzed how their chemical and physical properties change
86 during aging. Aging experiments resulted in the increase of viscosity, molecular weight, and
87 non-volatile contents of bio-oil samples, because the etherification, esterification, and olefin
88 condensation occurred during aging process.³⁰ For these reasons, upgrading is a necessary step to
89 convert bio-oils into refinery products (e.g., gasoline, diesel, jet fuel, olefins). Bridgwater³¹ and
90 others³²⁻³⁶ have discussed bio-oil upgrading methods. Typical upgrading methods and their
91 characteristics are presented in Table 2.^{31, 37-40} Aforementioned bio-oil upgrading methods are
92 potential solutions for overcoming the challenges of bio-oil applications; however, these methods
93 still need further developments. Structure characteristics of bio-oil products can reveal insight for
94 subsequent upgrading methods; therefore, understanding and selecting a proper analysis method
95 is as important as developing the upgrading methods.

96

97 3. NMR ANALYSIS OF BIO-OILS

98 Mullen et al.¹⁷ discussed the characteristics of analytical techniques applied to bio-oils,
99 including GC, high-performance liquid chromatography (HPLC), gel permeation
100 chromatography (GPC), FT-IR, and NMR. Among the characterization methods mentioned
101 above, NMR techniques have been widely used for the structural elucidation of bio-oils. Table 3
102 summarizes applications of NMR characterization of various bio-oil products reported over the
103 past decade. Diverse NMR methods provided structural information of the bio-oil products and
104 assisted understanding the effects of diverse pyrolysis processes and post-pyrolysis upgrading
105 methods.

106 The main advantages of the application of NMR to the analysis of bio-oils are 1) the whole
107 bio-oil can be dissolved in an appropriate solvent and information about the whole functional
108 groups can be obtained, which does not depend on the volatility of the components in the bio-

109 oils; and 2) the chemical-shift ranges for functional groups have been well studied, and
110 quantitative analysis of functional groups can be achieved by integration of peaks based on the
111 proposed chemical shift assignment ranges. For example, Joseph et al.⁴¹ proposed revised
112 chemical shift ranges for the assignment of ¹³C NMR and ¹H NMR data and discussed
113 uncertainties of the functional group assignments because of the OH contents in bio-oils,
114 incomplete relaxation, and nuclear Overhauser effects by analyzing 54 pyrolysis oil model
115 compounds. However, NMR analysis of bio-oils still has several limitations. It is challenging to
116 integrate online NMR analysis into pyrolysis production lines and hence remains primarily a
117 laboratory research tool. In addition, NMR analysis is well known to be an insensitive research
118 tool and for bio-oils it is often difficult to identify individual compounds and better suited to
119 analyze changes in functional group composition. Practically, researchers need to apply several
120 characterization techniques together to fully analyze bio-oils, to get thorough understanding of
121 bio-oil components. In the following sections, the chemical shift assignments and applications of
122 various NMR analysis methods will be thoroughly discussed.

123

124 4. ¹H NMR ANALYSIS OF BIO-OILS

125 Proton NMR is widely applied in bio-oil characterization. The ¹H nucleus is abundant, thus
126 proton NMR allows rapid detection with a high signal-to-noise (S/N) ratio. However,
127 unambiguous assignment of the NMR chemical shifts caused by severe spectral overlapping
128 makes this analysis challenging.⁴² Joseph et al.⁴¹ reported ¹H NMR signal overlapping from
129 different bio-oil model compounds in DMSO-*d*₆. The proton shifts in non-conjugated alkenes
130 (6.0-4.0 ppm) overlap those in aliphatic OH groups (6.5-4.0 ppm) and ether groups (5.5-3.0
131 ppm). The signals between 3.0 and 2.0 ppm can be assigned to both aliphatic protons and protons

132 on carbons attached to a carbonyl group. Table 4 compares typical ^1H NMR chemical shift
133 integration regions reported in the literature and proposes a revised integration region.^{17, 41, 43, 44}
134 Aldehydes and carboxylic acids are assigned in the downfield regions of 10.0-8.3 ppm. Aliphatic
135 protons are assigned to 3.0-0.5 ppm; however, primary, secondary, and tertiary protons cannot be
136 distinguished by ^1H NMR.⁴¹ The chemical shift range of 8.3-5.7 ppm is assigned to aromatics
137 and alkenes, and that of 5.7-3.0 ppm is assigned to protons on carbons α to an oxygen atom.
138 These chemical shift ranges are not distinguished further because of severe overlaps in the ^1H
139 NMR spectrum. Phenols and aliphatic hydroxyl groups are not specified in the revised chemical
140 shift integration regions because hydroxyl protons shift widely in different solvents and
141 concentrations because of strong hydrogen bonding in polar solvents. Figure 1 presents typical
142 assignments of a ^1H NMR spectrum for bio-oil from pinewood.

143 ^1H NMR has been used to elucidate the structures of bio-oils obtained under different pyrolysis
144 conditions and upgrading methods as well as those of chemicals extracted from bio-oils.
145 Tessarolo et al.⁴⁵ used ^1H NMR to analyze bio-oils from pine wood and sugarcane bagasse. The
146 bio-oils were obtained from non-catalytic and ZSM-5-catalyzed pyrolysis at different
147 temperatures (450 °C, 500 °C, and 550 °C). The ^1H NMR chemical shift integration ranges of all
148 bio-oil samples are presented in Table 5.⁴⁵ The bio-oil from sugarcane bagasse pyrolyzed with
149 ZSM-5 showed an increase of aromatic and conjugated alkene hydrogen contents (8.2-6.0 ppm)
150 and a decrease of hydrogen contents from oxygen-containing groups (12.5-8.2 ppm, 6.0-3.0
151 ppm) compared to non-catalytic sugarcane bagasse bio-oil. The same ZSM-5 catalyst effect was
152 observed on pine wood bio-oils, i.e., an increase of aromatic and conjugated alkene hydrogen
153 contents and a decrease of hydrogen contents from oxygen-containing groups. However, pine
154 wood bio-oil catalytically pyrolyzed at 500 °C contained more hydrogen from ethers (4.2-3.0

155 ppm) compared to the non-catalyzed pyrolysis oil. This unusual tendency was due to the spectral
156 overlap between the water region (3.7-3.3 ppm) and hydrogens related to ethers (4.2-3.0 ppm).
157 The spectral overlap of aliphatic hydrogens and hydrogens α to carbonyl groups in the region
158 from 3.0 to 2.0 ppm made the quantification of aliphatic hydrogens difficult.

159 Tanneru and Steele performed catalytic deoxygenation to convert pretreated pine wood bio-oil
160 into partially deoxygenated products in the presence of syngas.⁴⁶ The pretreatment was an
161 oxidation step to convert aldehydes in the crude bio-oil to carboxylic acids, which are more
162 conductive to catalytic hydrotreating. The partially deoxygenated product was then fully
163 deoxygenated to hydrocarbons. Figure 2 presents the ^1H NMR spectra of a) oxidized bio-oil, b)
164 partially deoxygenated bio-oil, c) fully deoxygenated bio-oil, and d) a commercial gasoline-jet
165 fuel-diesel mixture. A comparison of Figure 2a with Figure 2b reveals that protons in the region
166 5.2-3.2 ppm (esters, ethers, lignin-derived methoxy phenols) were almost eliminated by partial
167 deoxygenation. Partial deoxygenation also increased the aliphatic hydrocarbon content (1.8-0.8
168 ppm). A comparison of Figure 2b with Figure 2c indicates that the full deoxygenation reduced
169 the content of phenols, substituted phenols, and aromatic compounds (7.5-5.0 ppm). Figure 2c
170 and Figure 2d show that the fully deoxygenated product exhibited a spectrum similar to that of
171 the commercial gasoline-jet fuel-diesel mixture.

172 Mancini et al.⁴⁷ used quantitative ^1H NMR to detect the selective production of (1*R*,5*S*)-1-
173 hydroxy-3,6-dioxa-bicyclo[3.2.1]octan-2-one (LAC) in cellulose pyrolysis oils. LAC has the
174 potential to be applied in the organic synthesis of tetrahydrofuran structures found in natural
175 products.⁴⁸ Cellulose pyrolysis was performed using the catalysts aluminum-titanate (AlTi),
176 montmorillonite K10 (MK10), Sn-MCM-41, or recycled Sn-MCM-41. The ^1H NMR spectra of
177 the LAC enriched bio-oils and pure LAC are shown in Figure 3. The quantitative ^1H NMR

178 detection of LAC in bio-oils was achieved using a NMR standard-addition method.⁴⁹ The
179 quantitative ¹H NMR results showed that the LAC concentrations in bio-oils using Sn-MCM-41
180 and recycled Sn-MCM-41 were 27.6 wt.% and 26.8 wt.%, respectively. The ¹H NMR results
181 indicated that catalyst Sn-MCM-41 exhibited high efficiency to achieve LAC selective
182 production in cellulose pyrolysis process.

183

184 5. ¹³C NMR ANALYSIS OF BIO-OILS

185 ¹³C NMR spectroscopy provides carbon information of bio-oil components. In comparison to
186 an ¹H NMR spectrum, a ¹³C NMR spectrum benefits from a broader chemical shift range, which
187 means less spectral overlap.⁵⁰ The limitation of quantitative ¹³C NMR is its low sensitivity and
188 long experiment time due to the low natural abundance of ¹³C nuclei. Table 6 compares two
189 typical ¹³C NMR chemical shift integration ranges measured in DMSO-*d*₆, as proposed by
190 Ingram et al.⁴³ and Joseph et al.⁴¹ Joseph et al. reported that primary carbons overlapped with
191 secondary and tertiary carbons extensively in the region 34-24 ppm of ¹³C NMR from bio-oil
192 model compounds.⁴¹ Thus, the alkyl region (54-0 ppm) could not be subdivided into primary,
193 secondary, and tertiary carbons. Methoxy/hydroxyl groups and carbohydrates were assigned to
194 70-54 ppm and 103-70 ppm, respectively, which was slightly different from the assignments
195 proposed by Ingram et al.⁴³ In the study of model compounds, aromatic and alkene carbons
196 overlapped completely in the region 163-103 ppm. Moreover, carbonyl carbons were easily
197 distinguished in the region of 215-163 ppm in the studies of both Ingram et al. and Joseph et al.^{41,}
198⁴³

199 Tarves et al.⁵¹ investigated the effects of reactive gas atmospheres on the properties of
200 switchgrass bio-oils produced by microwave pyrolysis. Bio-oils produced under various gaseous

201 atmospheres (CO, CH₄, and H₂) and a model pyrolysis gas mixture (PyGas) were analyzed by
202 ¹³C NMR spectroscopy and compared with bio-oils obtained under an N₂ atmosphere. Table 7
203 compares the ¹³C NMR data of switchgrass bio-oils obtained by microwave pyrolysis under
204 different gas atmospheres.⁵¹ Compared to the bio-oils obtained under an N₂ atmosphere (control
205 group), the oils produced under CO and H₂ atmospheres contained 18.6% and 27.6% greater
206 concentrations of aliphatic compounds (55-0 ppm), respectively. The CO, H₂, and PyGas
207 atmospheres also produced higher percentages of aromatic compounds (165-95 ppm) and lower
208 percentages of ketones, aldehydes, acids, and esters (215-165 ppm). In addition, the oils obtained
209 under reactive gas atmospheres (CO, CH₄, H₂, and PyGas) contained approximately half of the
210 percentage of alcohols and carbohydrates (95-55 ppm) compared to the N₂ atmosphere control
211 group. The ¹³C NMR integration results indicated that the reactive gas atmospheres resulted in
212 lower contents of oxygen-containing compounds and higher contents of deoxygenated products
213 in bio-oils.

214 Mante et al.⁵² hydrothermally treated fluid catalytic cracking (FCC) catalysts and ZSM-5
215 additives and studied the effects of the treatments on bio-oils obtained from catalytic pyrolysis of
216 poplar wood by ¹³C NMR analysis. One commercial FCC catalyst and two commercial ZSM-5
217 additives were tested in the study. Table 8 presents the ¹³C NMR analysis results of bio-oils
218 produced with various catalysts.⁵² The ¹³C NMR integration results indicated that the bio-oil
219 obtained with silica sand via non-catalytic pyrolysis contained the highest amounts of
220 oxygenated compounds (220-180, 180-160, 105-60, and 57-55 ppm). In general, the use of FCC
221 catalysts and ZSM-5 additives decreased the concentrations of oxygenated compounds and
222 increased the aromatic contents (160-105 ppm) in bio-oil products. A comparison of the products
223 obtained using fresh FCC catalyst (FCC-1) with those obtained using FCC catalyst

224 hydrothermally treated at 732 °C (FCC-2) revealed that the contents of oxygen-containing
225 compounds in the regions of 220-160, 105-60, and 57-55 ppm decreased 47.2% with FCC-2.
226 This result indicated that the selectivity and activity of the FCC catalyst was promoted upon
227 steaming. Conversely, the FCC catalyst steamed at 788 °C (FCC-3) did not decrease the oxygen
228 content of the products compared to those obtained with the fresh FCC catalyst (FCC-1), which
229 suggested that the severe treatment temperature (788 °C) led to diminished effectiveness of the
230 catalysts for deoxygenation reactions (e.g., demethoxylation, decarboxylation, and
231 decarbonylation). In contrast to the ^{13}C NMR analysis results for the products obtained using the
232 FCC catalyst, those for the bio-oil showed that steaming of the ZSM-5 additives did not
233 substantially lower the oxygen content in bio-oils. For example, in the case of phosphorous-
234 impregnated ZSM-5 additive steam treated at 732 °C (PZSM5-2), the methoxy carbons from
235 lignin decomposition products (57-55 ppm) were decreased by 9.9% and the carbons in alcohols,
236 ethers, anhydrosugars, and levoglucosan (105-60 ppm) were decreased by 17.1%; however,
237 carbonyl groups (220-160 ppm) in the bio-oil increased by 43.7% compared to the product
238 obtained using fresh phosphorous-impregnated ZSM-5 additives (PZSM5-1).

239 Liu et al.⁵³ reported a method to upgrade bio-oils using zero-valent metals at ambient
240 temperature and pressure. The effects of zero-valent metals were investigated on both model
241 compounds and a bio-oil from rice husk. Table 9 presents a comparison of the ^{13}C NMR
242 integration results of the raw and upgraded bio-oils from rice husk. According to the ^{13}C NMR
243 integration results, carbonyl groups (215-170 ppm) in the upgraded bio-oil decreased by 68.4%
244 compared to their contents in the raw bio-oil. This significant change was accompanied by an
245 increase of the contents of alcohols and ethers (90-50 ppm) in the upgraded bio-oil. Selective

246 conversion of benzaldehyde, which was used as a model compound, into benzyl alcohol in the
247 presence of zero-valent zinc powders was consistent with the results for bio-oils from rice husk.

248 Alwehaibi et al.⁵⁴ characterized the phenolic compounds of the bio-oil obtained from spruce
249 wood and used the bio-oil and its subfractions to stabilize biodiesel against autoxidation. The ¹³C
250 NMR spectra of the crude bio-oil and its isolated extracts are shown in Figure 4.⁵⁴ As evident
251 from the ¹³C NMR spectra, multi-solvent extraction clearly separated the bio-oil into two major
252 families: carbohydrates (95-55 ppm) in the water-soluble extract and phenolic compounds (165-
253 95 ppm) in the phenolic extract. The sharp peak at approximately 56 ppm indicated that the
254 majority of the phenolic compounds have a methoxy substitution.

255 Recently, researchers combined NMR spectroscopy with modeling techniques to predict the
256 chemical properties of bio-oils. Strahan et al.⁵⁵ summarized the ¹³C NMR data for 73 different
257 samples, including 55 bio-oils, two commercial fuels, and 16 small-molecule standards. The bio-
258 oils were produced from various feedstocks, pyrolysis processes, and post-pyrolysis treatments.
259 Partial least squares (PLS) models were created to correlate the ¹³C NMR data with the samples'
260 other chemical properties including their phenol concentration, cresol concentration, total acid
261 number, elemental composition, and higher heating value. The chemical properties were
262 predicted from the models and compared with the experimental values. These models can
263 provide researchers a method for estimating pyrolysis oil's chemical properties using only ¹³C
264 NMR.

265

266 6. ³¹P NMR ANALYSIS OF BIO-OILS

267 ³¹P NMR method has attracted increasing interest in bio-oil characterizations in recent years. It
268 involves phosphorylation of hydroxyl groups with a ³¹P reagent followed by quantitative ³¹P

269 NMR analysis. This method provides quantitative information about various hydroxyl functional
270 groups in bio-oils and complements ^1H NMR and ^{13}C NMR analysis, especially in cases where
271 there are strong signals overlapping and dynamic range problems in the ^1H NMR spectra or long
272 relaxation time issues in the ^{13}C NMR experiments. Pu et al.⁵⁶ reviewed the applications of ^{31}P
273 NMR in lignin and lignin-derived products and stated that 2-chloro-4,4,5,5-tetramethyl-1,3,2-
274 dioxaphospholane (TMDP) is the most common phosphitylating reagent for lignin and its
275 derivatives. Wroblewski et al.⁵⁷ examined five trivalent ^{31}P reagents to derivatize organic model
276 compounds including phenols, aliphatic acids, aromatic acids, aliphatic alcohols, amines, and
277 thiols. TMDP has emerged as an optimum reagent because most hydroxyl groups containing
278 compounds derivatized with this reagent showed non-overlapped chemical shifts. Figure 5 shows
279 reactions between TMDP and various hydroxyl function groups in bio-oils and the ^{31}P NMR
280 assignments of the phosphitylated compounds.⁵⁸ The reactions between TMDP and hydroxyl
281 groups require an organic base, such as pyridine. Pyridine has the ability to capture the liberated
282 hydrogen chloride and drive the overall phosphitylation reaction to total conversion.⁵⁶ ^{31}P NMR
283 also requires an internal standard for quantitative assessment of hydroxyl groups in bio-oils.⁵⁹
284 *endo*-*N*-Hydroxyl-5-norbornene-2,3-dicarboximide (NHND) has been selected as a suitable
285 internal standard because it has a chemical shift (152.8-151.0 ppm) that is well-separated from
286 those of the bio-oil components.⁵⁹ Recently, Ben and Ferrell⁶⁰ examined the time-dependent
287 changes of several commonly used internal standards for the ^{31}P NMR analysis of bio-oil. Their
288 results showed that NHND is not stable after 12 h of storage or experiment, whereas
289 cyclohexanol and triphenylphosphine oxide (TPPO) can be used as internal standards for long
290 experiment or storage times. Moreover, the chemical shifts and integration regions for bio-oils

291 after derivatization with TMDP have been studied; typical chemical shift assignments are
292 presented in Table 10.⁵⁸

293 David et al.¹⁸ compared bio-oils from pine wood, sweetgum, softwood lignin, and cellulose
294 isolated from pine wood using ³¹P NMR spectroscopy. The hydroxyl contents identified by ³¹P
295 NMR are shown in Table 11.¹⁸ David et al.¹⁸ derivatized the bio-oils by TMDP and assessed the
296 quantitative analysis against cyclohexanol as an internal standard. Their quantitative ³¹P NMR
297 results showed that the total hydroxyl contents in the pine wood bio-oil (2.62 mmol/g) were
298 higher than the total hydroxyl contents in the sweetgum bio-oil (1.54 mmol/g). The bio-oil
299 obtained from cellulose contained the highest aliphatic hydroxyl contents (2.95 mmol/g) and the
300 lowest contents of phenolic hydroxyl groups and carboxylic acids. The bio-oil from softwood
301 lignin contained only 0.10 mmol/g aliphatic hydroxyl groups, whereas the contents of the
302 phenolic hydroxyls (2.53 mmol/g) and carboxylic acids (0.26 mmol/g) were the highest in the
303 bio-oil from softwood lignin.

304 Naik et al.⁶¹ upgraded the bio-oil obtained from Jatropha by catalytic cracking with vacuum
305 gas oil. They used quantitative ³¹P NMR spectroscopy to analyze the crude oil and the oils
306 catalytically cracked at 250 °C and 300 °C. Figure 6 shows the quantitative ³¹P NMR spectra of
307 the crude and upgraded bio-oils.⁶¹ The bio-oils were analyzed by ³¹P NMR spectroscopy after
308 derivatization with TMDP, and NHND was selected as an internal standard. In this study, the
309 aliphatic OH, C5-substituted β-5 phenolic OH, guaiacyl phenolic OH, and *p*-hydroxyphenyl OH
310 were assigned to the regions 150.02-145.07, 145.07-140.42, 140.42-138.20, and 138.20-136.96
311 ppm, respectively. A comparison of Figure 6a and Figure 6b indicates that the aliphatic OH
312 (150.02-145.07 ppm) and C5-substituted β-5 phenolic OH (145.07-140.42 ppm) were almost
313 eliminated after the deoxygenation. The deoxygenation upgrading process at 250 °C also reduced

314 the guaiacyl phenolic OH contents in the bio-oil. Figure 6c shows that deoxygenation at 300 °C
315 completely removed the hydroxyl contents in bio-oils obtained from the fast pyrolysis of
316 *Jatropha*.

317 Fu et al.⁶² reported a method to extract phenolic compounds as a mixture from lignin pyrolysis
318 oil using switchable hydrophilicity solvents (SHS). Table 12 presents the results from the
319 subfractions analyzed by ³¹P NMR after derivatization with TMDP.⁶² The ³¹P NMR integration
320 results showed that the guaiacyl phenolic signal (140.2-139.0 ppm) was dominant for the three
321 subfractions. The majority of hydroxyl groups were concentrated in the phenolic compounds
322 extract (fraction 3). For instance, the phenolic extract (fraction 3) contained 90.5% aliphatic OH
323 (150.0-145.5) and 57.4% catechol type OH (139.0-138.2 ppm) among the three subfractions. The
324 ³¹P NMR analysis after derivatization with TMDP validated that fractionation using SHS is a
325 useful method to extract phenolic compounds from bio-oils.

326 7. ¹⁹F NMR ANALYSIS OF BIO-OILS

327 ¹⁹F comprises 100% of naturally-occurring fluorine, and this isotope is highly responsive to
328 NMR measurement. Similar to the ³¹P NMR analysis, ¹⁹F NMR technology provides an efficient
329 method to detect a specific type of functional group. In contrast to ³¹P NMR, ¹⁹F NMR follows
330 treatment of bio-oils with 4-(tri-fluoromethyl)phenylhydrazine to analyze carbonyl functional
331 groups. Carbonyl groups have been reported to play an important role in corrosion and aging
332 problems of pyrolysis oil; however, because of the complexity of the bio-oil composition,
333 quantitative identifying carbonyl groups is difficult. Huang et al. first studied the application of
334 ¹⁹F NMR in detecting the carbonyl groups of pyrolysis oil derivatives.¹⁹ They treated the
335 pyrolysis samples with 4-(tri-fluoromethyl)phenylhydrazine as described in Scheme 1.¹⁹ For the
336 quantitation of carbonyl contents using ¹⁹F NMR method, 2-fluoroguaiaacyl benzoate ($\delta = -57.2$

337 ppm) is used as an internal standard, which allows the quantitative assessment of carbonyl
338 contents. In a ^{19}F NMR spectrum, the chemical shift range of -60.60 to -62.00 ppm is assigned to
339 the quinone 4-(trifluoromethyl)phenylhydrazine derivative, whereas the range of -58.50 to -60.60
340 ppm is assigned to the aldehyde and ketone 4-(trifluoromethyl)phenyl-hydrazine derivatives.

341 Huang et al.¹⁹ quantitatively analyzed different pyrolysis oils by ^{19}F NMR after derivatization
342 with 4-(tri-fluoromethyl)phenylhydrazine. The ^{19}F NMR results were then compared with the
343 results obtained by an oximation method.⁶³ The comparison results are presented in Table 13.¹⁹
344 The results showed that the carbonyl contents of bio-oils analyzed by ^{19}F NMR ranged from
345 1.38-4.54 mmol/g, which was in agreement with the values from the oximation method. The ^{19}F
346 NMR analysis results were slightly higher than the oximation analysis results. The difference
347 could be attributed to the incomplete reaction of the quinonic groups during the oximation
348 process. One of the advantages of the ^{19}F NMR analysis of carbonyl groups is the ability to
349 detect the quinoid content as well as the aldehyde/ketone content separately. Moreover, the ^{19}F
350 NMR method is more efficient than the traditional oximation method due to its short reaction
351 time (24 h vs. 48 h), simpler operational procedure, and smaller sample amount requirement.
352

353 8. HSQC NMR ANALYSIS OF BIO-OILS

354 Traditional one-dimensional (1-D) ^1H and ^{13}C NMR analysis can provide valuable structural
355 information for bio-oils. The 1-D NMR characterization techniques are quantitative essentially;
356 however, these techniques usually suffer from spectral overlapping problems or long relaxation
357 time issues when applied in the bio-oil analysis. 2-D NMR techniques have emerged as attractive
358 methods to compensate the limitations of 1-D NMR techniques. In a 2-D spectrum, the chances
359 of overlapping problems are reduced because the signals are spread out into two dimensions.⁶⁴

360 HSQC is a proton-detected 2-D heteronuclear correlation experiment.^{65, 66} In an HSQC
361 experiment, the detected proton is labeled with the frequency of the heteroatom attached to. ¹H-
362 ¹³C HSQC uses successive insensitive nuclei enhanced by polarization (INEPT) transfers that
363 exploit the strong one-bond J_{HC} on either side of the ¹³C evolution period.⁶⁴ The HSQC is more
364 sensitive than the traditional heteronuclear correlation (HECTOR) experiment, because the
365 HSQC starts and ends on the sensitive ¹H nucleus whereas the HECTOR detects the insensitive
366 nucleus.⁶⁷ Modern HSQC sequences also use z-axis gradient pulse for coherence selection,
367 which is a benefit for sensitivity-enhancement.⁶⁸ Ben and Ragauskas²⁰ applied ¹H-¹³C HSQC
368 NMR method to investigate carbon-hydrogen bonding in bio-oils and proposed assignments for
369 the oils from slow pyrolysis of lignin, cellulose, and pine wood. The HSQC NMR assignments of
370 the bio-oil from pine wood are presented in Figure 7.²⁰

371 Fortin et al.⁶⁹ used ¹H-¹³C HSQC NMR to analyze pyrolytic lignin extracted from a
372 switchgrass pyrolysis oil. The resulting HSQC spectra are presented in Figure 8. The HSQC
373 NMR spectra showed that aryl methoxy groups and guaiacyl units were still present in the
374 pyrolytic lignin after the thermal conversion. The peaks of xylose and arabinose units also
375 existed in the HSQC spectra of pyrolytic lignin.

376 Recently, Yu et al.⁷⁰ characterized pyrolytic sugars in bio-oil samples. Figure 9 showed the
377 HSQC spectra of bio-oil samples and assignments of pyrolytic sugars. The assignments of
378 pyrolytic sugars were proposed by characterizing of sugar standards, including sugar monomers
379 (i.e., glucose, galactose, mannose, xylose, and arabinose) and anhydrosugars (i.e., levoglucosan,
380 cellobiosan, and cellotriose), as shown in Figure 9a. In Figure 9b, the HSQC spectra indicated
381 that the intensity of sugar peaks in the raw bio-oil was considerably higher, compared to those in
382 the water-insoluble bio-oil fraction. The sugar contents in CH₂Cl₂-soluble and CH₂Cl₂-insoluble

383 fractions did not exhibit significant difference. From the HSQC spectra, the CH_2Cl_2 -soluble
384 fraction contained the higher intensity of aliphatic, methoxy, and guaiacyl groups compared to
385 CH_2Cl_2 -insoluble fraction.

386

387 9. CONCLUSION AND OUTLOOKS

388 The NMR technologies presented in this review provide a facile way to analyze pyrolysis oil.
389 Since most pyrolysis research focuses on reducing the oxygen contents in bio-oils through
390 optimizing the pyrolysis experiment parameters (e.g., temperature, gas atmosphere), adding
391 catalysts during pyrolysis, and post-pyrolysis treatments, ^1H , ^{13}C , ^{31}P , and ^{19}F NMR are powerful
392 tools for obtaining structure information about the whole fraction of bio-oils. Moreover, post
393 pyrolysis fractionation and chemical extraction have attracted increasing interest; in this area,
394 NMR analysis also provides structural information about the bio-oil subfractions and extracted
395 compounds. Hydroxyl and carbonyl groups, which are the primarily groups that limit the ability
396 of bio-oils to blend with commercial fuels, can be detected by ^{31}P and ^{19}F NMR methods after
397 derivatization. ^1H - ^{13}C HSQC NMR provides carbon-hydrogen information, which is useful for
398 elucidating possible reactive pathways during pyrolysis reactions. The 1-D NMR techniques are
399 quantitative in nature, however, the spectral overlap problems usually occur because of the
400 complex constitution of bio-oils. Researchers should carefully select appropriate NMR
401 experiment parameters to let nucleus fully relaxed. Quantitative HSQC analysis of the bio-oil
402 could be an interesting application in the future. Other 2-D NMR analysis could also bring
403 benefit for the bio-oil studies, such as heteronuclear single quantum coherence-total correlation
404 spectroscopy (HSQC-TOCSY).

405 Moreover, researchers are now focusing on several challenges of bio-oil characterization by
406 NMR methods. For example, limited information is available about hemicellulose pyrolysis
407 distribution because of its less well-defined structures and less mature isolation techniques.
408 Deducing more assignments for hemicellulose pyrolysis oil in ^{13}C and 2D NMR spectra will
409 provide further insight into hemicellulose pyrolysis behavior.⁷¹

410 ^1H diffusion-ordered NMR spectroscopy (DOSY) is also considered for measuring the
411 molecular weights of polymers and macromolecules and for investigating the interactions of
412 small molecules. The application of ^1H DOSY to bio-oil molecular weight measurement to
413 obtain shorter experiment times and achieve greater accuracy would be interesting.⁷²

414

415

416

417

418

419

420

421

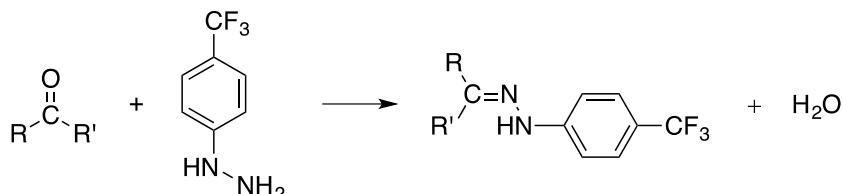
422

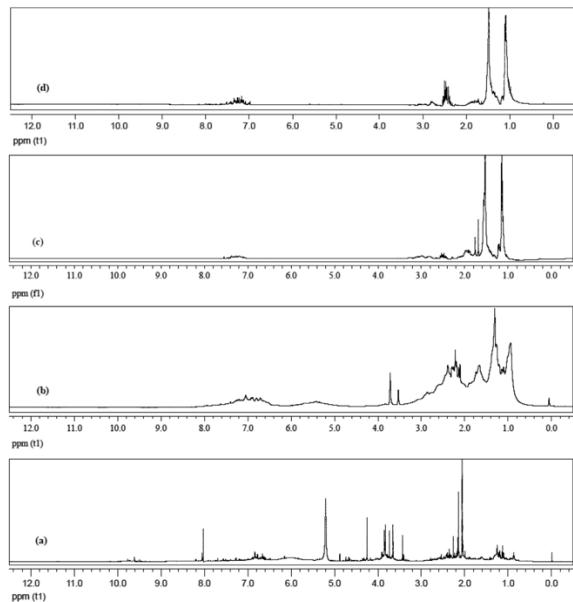
423

424

425

426

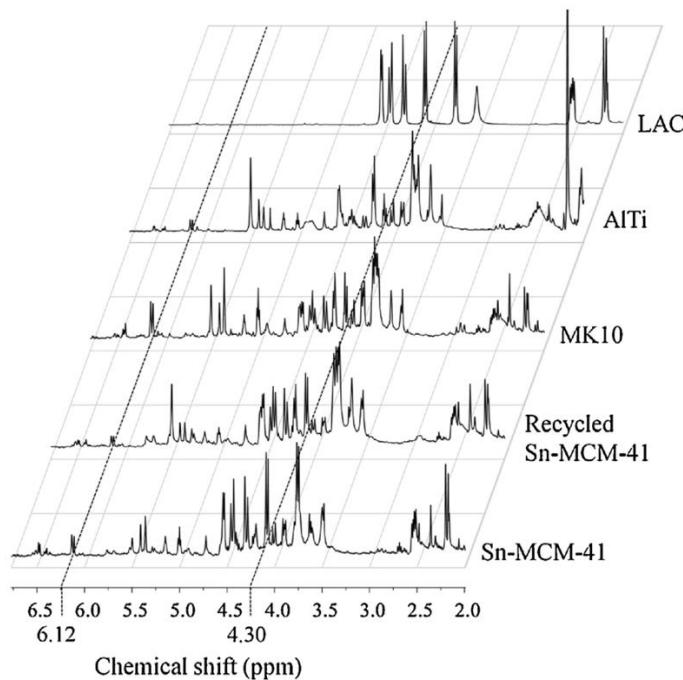

427


428

429

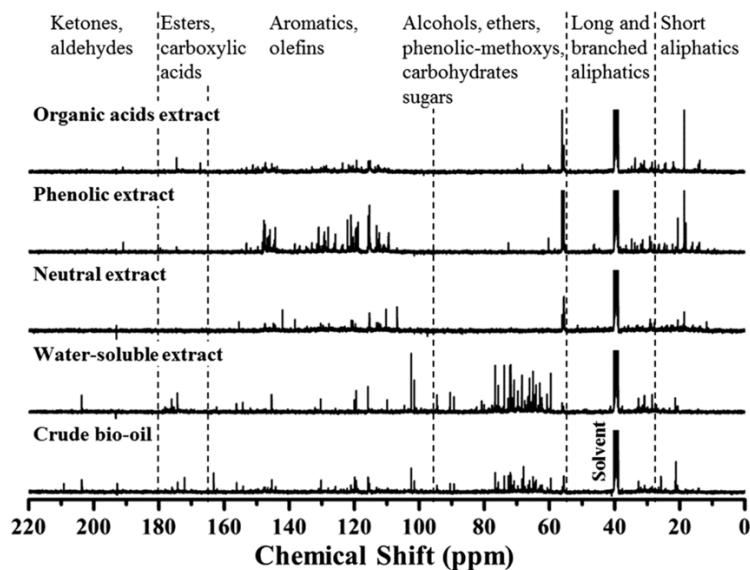
430 SCHEME

431 **Scheme 1.** Derivatization of Carbonyl Group ¹⁹

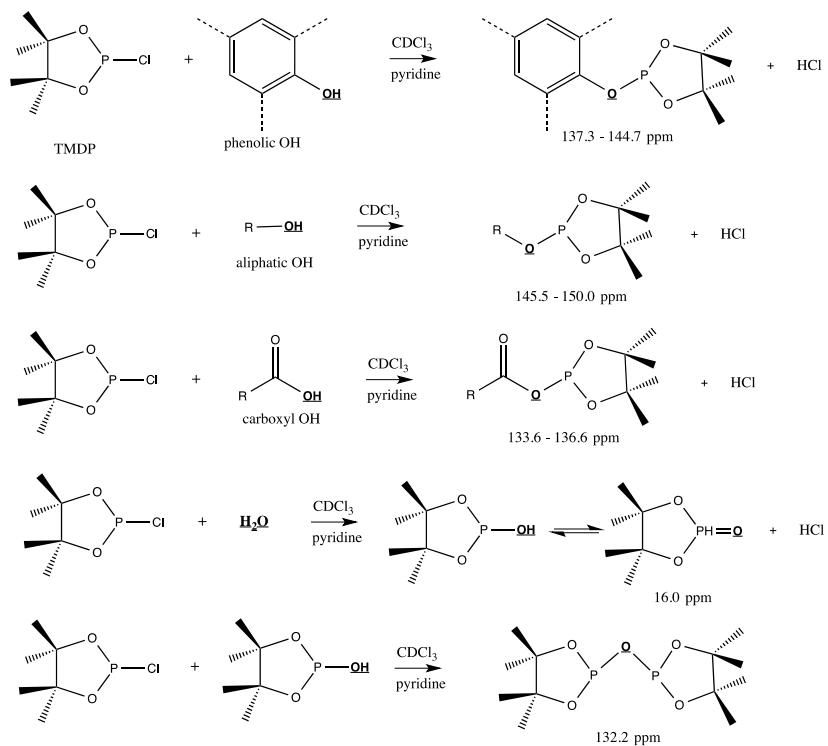

438

439 **Figure 2.** ^1H NMR spectra of a) oxidized bio-oil, b) partially deoxygenated bio-oil, c) fully
 440 deoxygenated bio-oil, and d) a commercial gasoline-jet fuel-diesel mixture.⁴⁶ (Reproduced with
 441 permission from Elsevier).

442


443

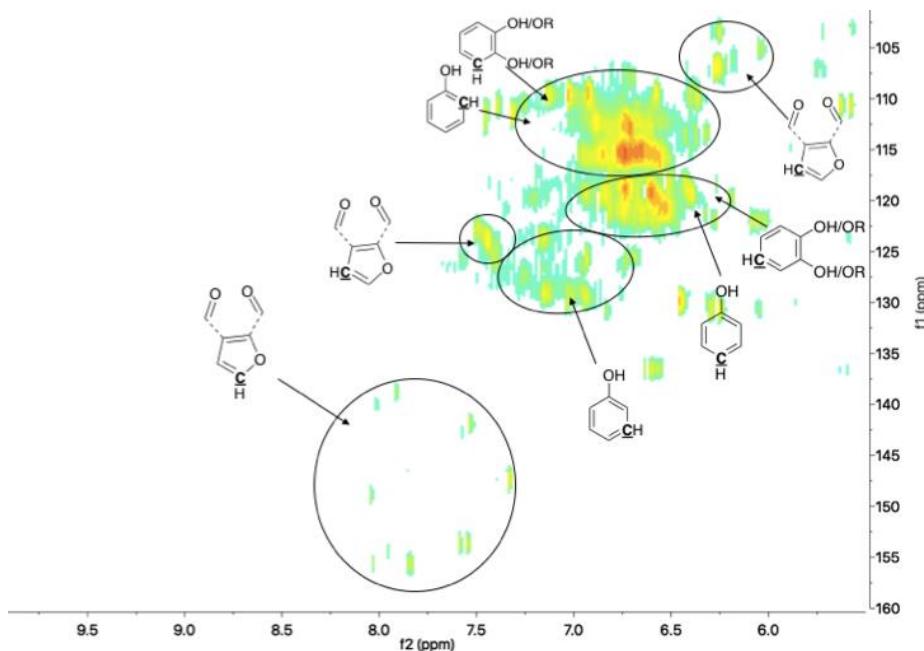
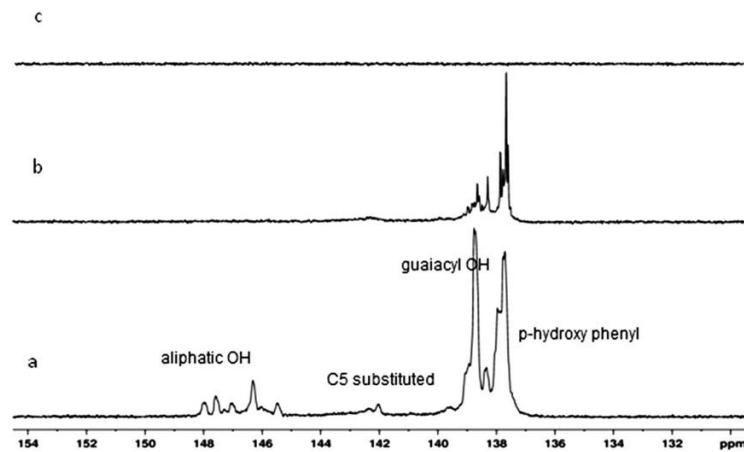
444

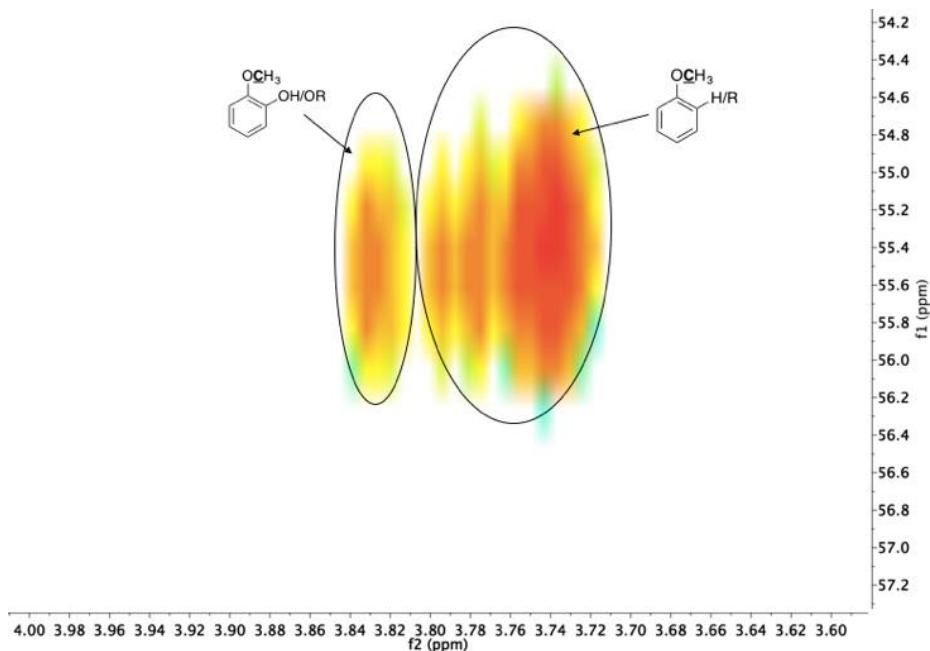

445

446 **Figure 3.** ^1H NMR spectra of pure LAC and bio-oils obtained in the presence of Sn-MCM-41,
 447 recycled Sn-MCM-41, MK10, and AlTi.⁴⁷ (Reproduced with permission from Elsevier).

448

449 **Figure 4.** ^{13}C NMR spectra of the crude bio-oil, water-soluble extract, neutral extract, phenolic
 450 extract, and organic acids extract.⁵⁴ (Reproduced Ref 54 with the permission from The Royal
 451 Society of Chemistry).

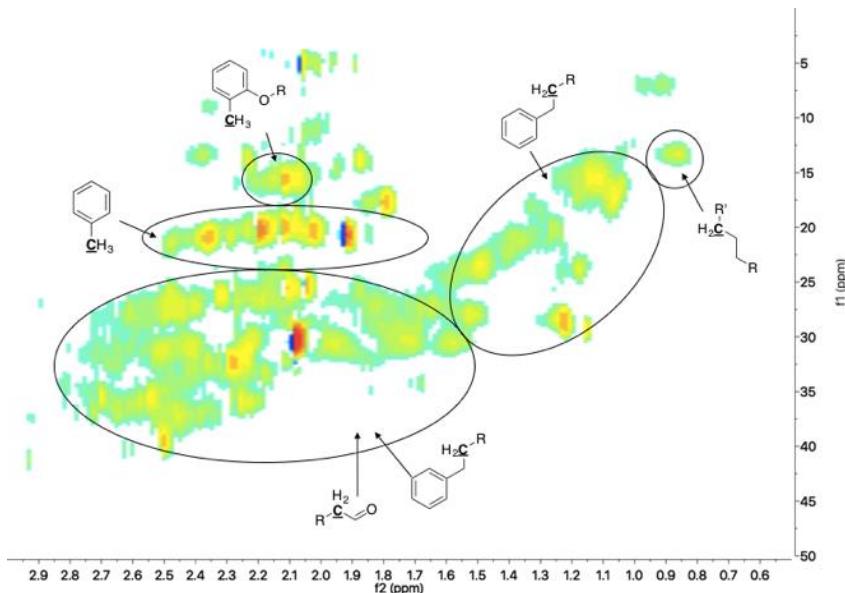


452


453 **Figure 5.** Reactions between TMDP and various hydroxyl functional groups and the ^{31}P NMR
 454 assignment of phosphitylated compounds.⁵⁸ (Reprinted with permission from (Ben, H.;
 455 Ragauskas, A. J., *Energy Fuels* **2011**, *25*, (5), 2322-2332). Copyright (2016) American Chemical
 456 Society.

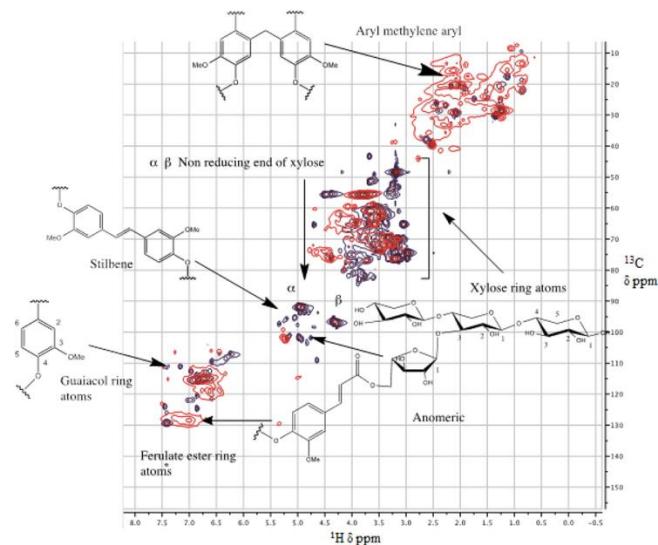
457

458

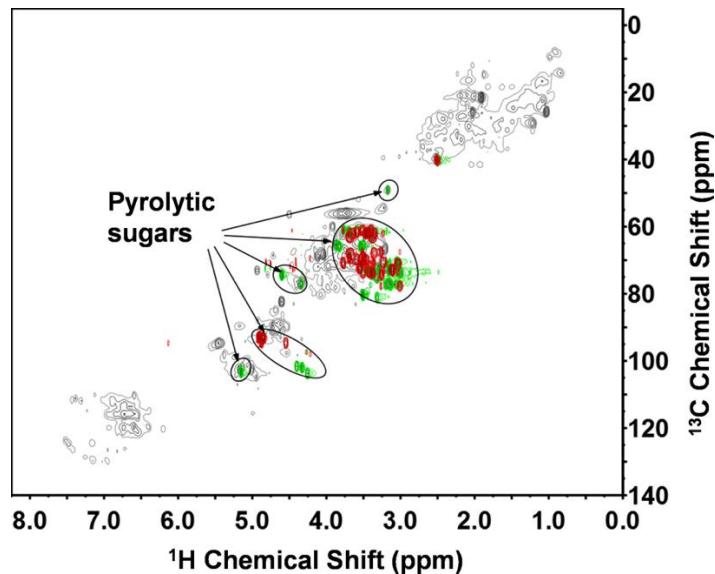
459



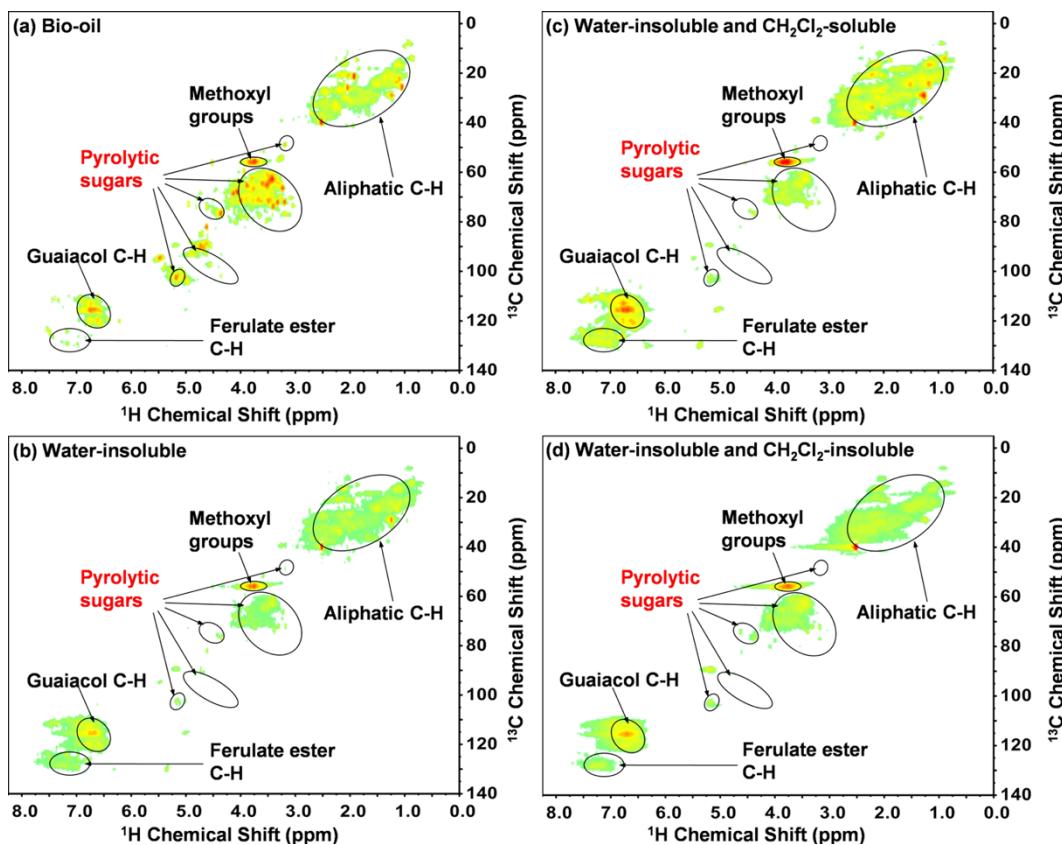
467


468 **Figure 7b.** Methoxy group assignments in an HSQC NMR spectrum for a bio-oil from pine
 469 wood.²⁰

470



471


472 **Figure 7c.** Aliphatic C-H bond assignments in an HSQC NMR spectrum for a bio-oil from pine
 473 wood.²⁰

476 **Figure 8.** Comparison of the pyrolytic lignin (blue contours) and native lignin (red contours)
477 extracted from switchgrass.⁶⁹ Reprinted with permission from (Fortin, M.; Mohadjer Beromi, M.;
478 Lai, A.; Tarves, P. C.; Mullen, C. A.; Boateng, A. A.; West, N. M., *Energy Fuels* **2015**, *29*, (12),
479 8017-8026). Copyright (2016) American Chemical Society.

482 **Figure 9a.** HSQC spectra of bio-oil, sugar monomer standards, and anhydrosugar standards.
483 Gray: bio-oil; Red: sugar monomer standrads (i.e., glucose, galactose, mannose, xylose, and
484 arabinose; Green: anhydrosugars (i.e., levoglucosan, cellobiosan, and cellotriosan).⁷⁰ (Reprinted
485 with the permission from Ref 68). Copyright (2016) American Chemical Society.

489 **Figure 9b.** HSQC spectra of bio-oil and its fractions. (a) raw bio-oil; (b) water-insoluble fraction;
 490 (c) water-insoluble and CH_2Cl_2 -soluble fraction; (d) water-insoluble and CH_2Cl_2 -insoluble
 491 fraction.⁷⁰ (Reprinted with the permission from Ref 68). Copyright (2016) American Chemical
 492 Society.

501 TABLES

502 **Table 1.** Characteristics of bio-oil and challenges for its applications.^{8, 22-24}

Property	Characteristics	Challenges
Oxygen content	Usually 35-40 wt.%, depending on the original biomass source and pyrolysis parameters	High oxygen ratio results in low heating value, immiscibility with hydrocarbon fuels and instability of pyrolysis oil
Water content	Affected by feedstock and pyrolysis atmosphere	Lowers the heating value and delays ignition
Corrosiveness	A pH of 2-3	Can affect carbon steel and aluminum materials; cannot be stored in some sealing materials
Viscosity	Similar to the viscosity of crude oils in the temperature range 35-45 °C	An appropriate preheating can facilitate pumping of bio-oil
Aging	Higher-molecular-weight compounds forming over time	Makes bio-oil difficult to store and transport

503

504

505

506

507

508

509

510

511

512 **Table 2.** Typical Bio-oil Upgrading Methods and Characteristics.^{31, 37-40}

Upgrading method	Characteristics
Catalytic cracking	Zeolites are commonly used as catalysts; cost effective; undesirable byproducts
Hydrotreating	Requires high pressures, moderate temperatures, a source of hydrogen and catalysts; high-quality products; high experimental instrument requirements
Steam reforming	Produces hydrogen-rich syngas; requires stable catalysts because of carbon deposition during the steam reforming process
Aqueous phase processing	Converts low-boiling fractions of bio-oils into hydrogen and alkanes
Esterification	Lowers concentrations of acids and carbonyl groups in the presence of an alcohol and an acid catalyst; usually accompanied by an oxidation pretreatment of bio-oils for converting aldehydes into carbonyl acids
Gasification for synfuels	Compared to the gasification of solid biomass, the process pressure requirement is much lower; reduces bio-refinery system costs by utilizing extensive commercial gasification plants

513

514

515

516

517

518

519

520

521

522

523 **Table 3.** NMR Techniques Applied in Bio-oil Analysis.

Feedstock	Pyrolysis method	Post pyrolysis upgrading method	Fraction analyzed by NMR	NMR technique
Apricot pulp ⁷³	Slow pyrolysis	-	Water-insoluble phase, toluene subfraction, methanol subfraction	¹ H NMR
Cottonseed cake ⁷⁴	Zeolite-catalyzed slow pyrolysis	-	Water-insoluble phase	¹ H NMR
Safflower seed ⁷⁵	Co-pyrolysis with lignite	-	Water-insoluble phase	¹ H NMR
Chicken manure ⁷⁶	Fast pyrolysis	-	Light oil fraction, heavy oil fraction	¹ H, ¹³ C NMR
Pine wood, pine bark, oak wood, oak bark ⁴³	Fast pyrolysis	-	Whole bio-oil, ethyl acetate subfraction	¹ H, ¹³ C NMR
Safflower ⁷⁷	Slow pyrolysis	-	Whole bio-oil	¹ H NMR
Rice husk ⁷⁸	Fast pyrolysis	Reactive distillation	Whole bio-oil	¹ H NMR
<i>Miscanthus</i> × <i>giganteus</i> ⁷⁹	Alumina-catalyzed slow pyrolysis	-	Water-insoluble phase	¹ H NMR
Linseed ⁸⁰	Slow pyrolysis	-	Water-insoluble phase	¹ H NMR
Corncob ⁸¹	Alumina-catalyzed slow pyrolysis	-	Water-insoluble phase	¹ H NMR

524

525

526

527

Switchgrass, corn stover, alfalfa stems, guayule (whole shrub), guayule bagasse, chicken litter ¹⁷	Fast pyrolysis	-	Electrostatic precipitator fraction	¹ H, ¹³ C, DEPT NMR
Wheat, wood sawdust ⁸²	Fast pyrolysis	-	Crude bio-oil, supercritical-CO ₂ - extracted fractions	¹ H NMR
Rice husk ⁸³	Fast pyrolysis	-	Whole bio-oil, salt induced subfractions	¹³ C NMR
Pine wood ⁸⁴	Fast pyrolysis	-	Whole bio-oil, pyrolytic lignin fraction	¹³ C NMR
Pine wood, sweetgum, loblolly pine lignin, loblolly pine lignin ¹⁸	Fast pyrolysis	-	Whole bio-oil	³¹ P NMR
Pine wood ⁸⁵	Fast pyrolysis	-	Electrostatic precipitator fraction, water- soluble fraction, water-insoluble fraction	¹³ C NMR
Wheat- hemlock ⁸⁶	Fast pyrolysis	-	Crude bio-oil, supercritical CO ₂ extracted fractions	¹ H NMR
Cotton seed ⁸⁷	Magnesium-oxide- catalyzed pyrolysis	-	Whole bio-oil	¹ H NMR

Hemp-seed ⁸⁸	Fast pyrolysis	Catalytic hydrotreatment	Methanol extracts, acetone extracts, acetonitrile extracts, ethyl acetate extracts, diethyl ether extracts of crude/upgraded bio-oil	¹ H, ¹³ C NMR
Softwood kraft lignin ⁸⁹	Catalyzed slow pyrolysis	-	Heavy fraction, light fraction	¹³ C, ³¹ P NMR
Softwood kraft lignin ⁵⁸	Slow pyrolysis	-	Heavy fraction, light fraction	¹³ C, ³¹ P NMR
Pine wood, softwood lignin, cellulose ²⁰	Slow pyrolysis	-	Whole bio-oil	HSQC-NMR
- ⁹⁰	Fast pyrolysis	Catalytic hydrotreatment	Distillate fractions	¹³ C NMR
Grape bagasse ⁹¹	Slow pyrolysis	-	Water insoluble fraction	¹ H NMR
Rapeseed cake, willow, cellulose, sludge, polyethylene glycol ⁹²	Fast pyrolysis	-	Whole bio-oil	¹ H NMR
Oak, rye grass, barley straw, eel grass, cow manure, pennycress presscake, camelina presscake, barley DDGS ⁹³	Fast pyrolysis	-	Electrostatic precipitator fraction	¹³ C, DEPT NMR
Softwood	Zeolite catalyzed	-	Heavy fraction,	¹³ C, ³¹ P,

kraft lignin ⁹⁴	slow pyrolysis		light fraction	HSQC-NMR
Corn stover, white oak, mixed hardwood, poplar, white oak ⁹⁵	Slow pyrolysis	-	Whole bio-oil	³¹ P NMR
Terebinth ⁹⁶	Slow pyrolysis	-	Water insoluble phase	¹ H NMR
Poplar wood, softwood lignin, cellulose ⁴⁴	Slow pyrolysis	-	Fresh bio-oil, aged bio-oil	¹ H, ¹³ C, ³¹ P NMR
Corn stover, corn cobs, bagasse, maize granulates, hay, wheat bran, wheat straw, softwood, oil palm fronds, empty fruit bunches, dynamotive ⁹ ₇	Fast pyrolysis	-	Whole bio-oil	¹ H NMR
Poplar wood ⁹⁸	Fast pyrolysis	-	Aged pyrolytic lignin	¹³ C NMR
Fir ⁹⁹	Catalytic fast pyrolysis	-	Whole bio-oil	¹ H NMR
Poplar wood ⁵²	Fresh fluid catalytic cracking catalysts and zeolite- catalyzed pyrolysis	-	Whole bio-oil	¹³ C NMR

Corn	Fast pyrolysis	-	Whole bio-oil	¹ H, ¹³ C NMR
------	----------------	---	---------------	-------------------------------------

stalks ¹⁰⁰				
Oil palm shell ¹⁰¹	Microwave pyrolysis	-	Whole bio-oil	¹ H NMR
Sesame, mustard, neem de-oiled cake ¹⁰²	Slow pyrolysis	-	Whole bio-oil	¹ H NMR
Softwood kraft lignin ¹⁰³	Slow pyrolysis, fast pyrolysis	-	Heavy fraction, light fraction	¹³ C, HSQC-NMR
Softwood kraft lignin ¹⁰⁴	Zeolite slow pyrolysis	-	Heavy fraction, light fraction	¹³ C, ³¹ P, HSQC-NMR
Eucalyptus wood ¹⁰⁵	Fast pyrolysis following hydrothermal pretreatment	-	Whole bio-oil	¹³ C NMR
Forest thinnings ¹⁰⁶	Zeolite catalyzed fast pyrolysis	-	Whole bio-oil	¹³ C NMR
Norwegian spruce ¹⁰⁷	Fast pyrolysis	Hydrothermal deoxygenation	Whole bio-oil	³¹ P NMR
Pine wood ¹⁰⁸	Fast pyrolysis	Acid-catalyzed reaction	Whole bio-oil	¹ H NMR
Pine wood ¹⁰⁹	Fast pyrolysis	-	Pyrolytic lignin	¹ H NMR
Ash wood, birch wood ³⁰	Fast pyrolysis	-	Accelerated aged whole bi-oil	¹³ C NMR
Forestry residue ¹¹⁰	Fast pyrolysis	Hydrodeoxygenation	Water-insoluble phase	¹ H NMR
Jute dust ¹¹¹	Slow pyrolysis	-	Water free bi-oil	¹ H NMR
<i>Pongamia glabra</i> deoiled cake ¹¹²	Slow pyrolysis	-	Organic phase	¹ H, ¹³ C NMR

Apricot kernel shell ¹¹³	Slow pyrolysis	-	Water-insoluble phase	¹ H NMR
Beech ¹¹⁴	Fast pyrolysis	-	Heavy fraction, light fraction, aerosol	¹ H NMR
Softwood kraft lignin ⁶²	Microwave pyrolysis	-	Phenols extracted from crude bio-oil, organic solvent subfractions	¹³ C, ³¹ P NMR
Softwood kraft lignin ¹¹⁵	Zeolite-catalyzed slow pyrolysis	-	Heavy fraction	¹³ C, ³¹ P, HSQC-NMR
Pine wood ¹⁹	Slow pyrolysis	-	Heavy fraction	¹⁹ F NMR
Pine wood residue, timothy grass residue, wheat straw residue ¹¹⁶	Slow pyrolysis	-	Whole bio-oil	¹ H, ¹³ C NMR
Almond shell ¹¹⁷	Co-pyrolysis with high-density polyethylene	-	Organic phase	¹ H NMR
Beech wood ¹¹⁸	Fast pyrolysis	-	Pyrolytic lignin	¹ H NMR
Spruce wood chips, waste paper, paper deinking residue ¹¹⁹	Microwave pyrolysis	Curing in oven, for adhesive properties analysis	Cured bio-oil scrapings	¹³ C CP/MAS NMR
Rice husk ¹²⁰	Fast pyrolysis	Catalytic hydrotreatment and esterification	Crude whole bio-oil, upgraded whole bio-oil	¹³ C NMR

531

532

Loblolly pine wood ⁴⁶	Fast pyrolysis	Catalytic deoxygenation of oxidized bio-oil with syngas	Oxidized bio-oil, partial deoxygenated bio-oil, fully deoxygenated bio-oil	¹ H NMR
<i>Arundo donax</i> L. ¹²¹	Slow pyrolysis	-	Organic phase	¹ H, ¹³ C NMR
<i>Fraxinus excelsior</i> L. ¹²²	Slow pyrolysis following heat pretreatment	-	Diethyl ether extracts	¹ H NMR
Jatropha curcas cake ⁶¹	Fast pyrolysis	Hydrodeoxygenation, catalytic cracking with vacuum gas oil	Crude heavy fraction, deoxygenated heavy fraction, fluid catalytic cracking liquid distillates	¹ H, ¹³ C, ³¹ P NMR
Loblolly pine wood ¹²³	Fast pyrolysis following torrefaction	-	Accelerated aged whole bio-oil	¹³ C NMR
<i>Saccharina japonica</i> ¹²⁴	Fast pyrolysis	-	Whole bio-oil	¹ H, ¹³ C NMR
Wheat straw, wheat husk ¹²⁵	Slow pyrolysis, catalyzed slow pyrolysis	-	Whole bio-oil	¹ H NMR
Wood pallet, corn stover, miscanthus and swine manure ¹²⁶	Slow pyrolysis	-	Water-insoluble fraction	¹ H, ¹³ C NMR
Switchgrass ⁶ ₉	Fast pyrolysis	-	Pyrolytic lignin	¹ H- ¹³ C HSQC, ¹ H- ¹³ C HMBC, ¹³ C DEPT

Switchgrass, equine manure ¹²⁷	Fast pyrolysis, tail- gas reactive pyrolysis	-	Distillation residues	¹ H, ¹³ C NMR
Wheat straw ¹²⁸	Fast pyrolysis	Catalytic hydrodeoxygen ation	Light phase	¹ H NMR
<i>Mesua ferrea</i> seed cover, <i>Pongamia glabra</i> seed cover ¹²⁹	Slow pyrolysis	-	Organic phase, <i>n</i> - hexane extracts, toluene extracts, ethyl acetate extracts, methanol extracts	¹ H NMR
Rice straw ¹³⁰	Slow pyrolysis	-	Organic fraction	¹ H NMR
Pine wood, sugarcane bagasse ⁴⁵	Fast pyrolysis, ZSM-5-catalyzed fast pyrolysis	-	Whole bio-oil	¹ H NMR
Switchgrass ⁵ ₁	Microwave pyrolysis	-	Liquid nitrogen trapped bio-oil	¹³ C NMR
Mahua seed ¹³¹	Slow pyrolysis	-	Water immiscible phase	¹ H NMR
Cotton residue ¹³²	Slow pyrolysis	-	Organic fraction	¹ H NMR
Red pine ¹³³	Fast pyrolysis	-	Supercritical-CO ₂ - extracted fractions	¹ H NMR
Spruce wood chips ⁵⁴	Microwave pyrolysis	-	Whole bio-oil, water-soluble extract, neutral extract, phenolic extract, organic acids extract	¹³ C NMR

534

535

536

537

538 **Table 4.** Comparison of the ^1H NMR Chemical Shift Integration Regions of Bio-oil^{17, 41, 43, 44}

539

Ref 43		Ref 17		Ref 41		Ref 44	
Assignments	Chemical shift ranges (ppm) ⁴³	Assignments	Chemical shift ranges (ppm) ¹⁷	Assignments	Chemical shift ranges (ppm) ⁴¹	Assignments	Revised chemical shift ranges (ppm) ⁴⁴
$-\text{CHO}$, $-\text{COOH}$, downfield ArH	10.0-8.0	Aldehydes	10.1-9.5	$-\text{COOH}$	12.5-11.0	$-\text{COOH}$, $-\text{CHO}$	10.0-8.3
ArH , $\text{HC}=\text{C}$ - (conjugated)	8.0-6.8	(Hetero-) aromatics	8.5-6.0	$-\text{CHO}$, ArOH	11.0-8.25	ArH , $\text{HC}=\text{C}$ -	8.3-5.7
$\text{HC}=\text{C}$ - (non-conjugated)	6.8-6.4	Methoxy, carbohydrates	6.0-4.4	Aromatics, conjugated – $\text{C}=\text{C}$ -	8.25-6.0	$-\text{CH}_n\text{O}$ -, CH_nO -	5.7-3.0
CHO , ArOH , $\text{HC}=\text{C}$ - (non-conjugated)	6.4-4.2	Alcohols, methylene-dibenzene	4.4-3.0	Aliphatic OH , $-\text{C}=\text{C}$ -, $\text{Ar}-\text{CH}_2\text{O}$ -	6.0-4.2	$-\text{CH}_3$, $-\text{CH}_n$ -	3.0-0.5
CH_3O , $-\text{CH}_2\text{O}$, CHO	4.2-3.0	Aliphatics α to heteroatom or unsaturation	3.0-1.5	Ether, methoxy	4.2-3.0	-	-
$\text{CH}_3\text{C}=\text{O}$, $\text{CH}_3\text{-Ar}$, $-\text{CH}_2\text{-Ar}$	3.0-2.2	Alkanes	1.5-0.5	$-\text{CH}_2\text{C}=\text{O}$, aliphatics	3.0-2.0	-	-
CH_2 , aliphatic OH	2.2-1.6	-	-	Aliphatics	2.0-0.0	-	-
$-\text{CH}_3$, CH_2	1.6-0.0	-	-	-	-	-	-

540

541

542

543

544 **Table 5.** Hydrogen percentage based on the ^1H NMR analysis of bio-oils from pine wood and
 545 sugarcane bagasse under different pyrolysis conditions.⁴⁵

Assignments	Chemical shift ranges (ppm)	Hydrogen percentages ^a							
		S-550 ^b	S-550-Z	P-450	P-450-Z	P-500	P-500-Z	P-550	P-550Z
<u>-COOH</u>	12.5-11.0	4.06	0.22	1.19	0.43	0.25	0.11	1.09	0.08
<u>-CHO</u> , ArOH	11.0-8.2	8.99	3.01	8.59	5.84	5.86	3.57	5.59	4.95
Aromatics and conjugated alkene H	8.2-6.0	16.28	24.53	17.74	19.90	18.18	20.05	14.26	25.33
Aliphatic OH, -CH=CH-, Ar-CH ₂ -O-R	6.0-4.2	9.13	6.55	6.50	3.62	7.86	7.56	15.05	3.44
R-CH ₂ -O-R, CH ₃ -O-R	4.2-3.0	14.25	9.88	15.73	15.28	13.74	14.85	24.95	12.42
-CH ₂ CH=O, aliphatic H	3.0-2.0	16.04	28.13	24.33	32.83	28.61	32.64	18.72	31.84
Aliphatic H	2.0-0.0	31.24	27.69	25.93	22.10	25.49	21.22	20.34	21.94
a: Water region (3.7-3.3 ppm) was excluded. b: For simplicity, S denotes sugarcane bagasse, 450/500/550 denotes pyrolysis temperatures, Z denotes ZSM-5 catalyzed pyrolysis (e.g., S-550 denotes sugarcane bagasse bio-oil pyrolyzed at 550 °C without a catalyst; P-550-Z denotes pine wood bio-oil pyrolyzed at 550 °C in the presence of ZSM-5)									

546

547

548

549

550

551 **Table 6.** Comparison of ^{13}C NMR Chemical Shift Integration Regions of Bio-oil.^{41, 43}

Ref 43		Ref 41		
Assignments	Chemical shift ranges (ppm) ⁴³	Assignments	Chemical shift ranges (ppm) ⁴¹	
Carbonyls	215-163	Carbonyls	215-163	
Aromatics	163-110	Aromatics, alkenes	163-103	
Carbohydrates	110-84	Carbohydrates	103-70	
Methoxy/hydroxyl	84-54	Methoxy/hydroxyl	70-54	
Alkyl	General	54-0	Alkyl	54-0
	Mostly secondary and tertiary carbons	34-24		
	Mostly primary and some secondary carbons	24-6		

552

553

554

555

556

557

558

559 **Table 7.** ^{13}C NMR Analysis of Liquid-Nitrogen-Trapped Fractions of Bio-oils from Switchgrass
 560 Produced under Various Gas Atmospheres.⁵¹

Assignments	Chemical shift ranges (ppm)	Carbon percentages				
		CO	CH_4	H_2	PyGas	N_2
Ketones/aldehydes	215-180	0.8	3.3	0.3	2.1	2.6
Acids/esters	180-165	4.9	6.6	4.9	4.2	6.1
Aromatics	165-95	41.7	45.0	37.6	47.3	36.4
Alcohols/carbohydrates	95-55	8.9	9.9	10.1	9.9	18.1
Aliphatics	55-0	43.8	35.2	47.1	36.4	36.9

561

562

563

564

565

566

567

568

569

570

571

572 **Table 8.** The ^{13}C NMR Integration Data of Bio-oils Obtained with Catalysts.⁵²

Assignments	Chemical shift ranges (ppm)	Carbon percentages								
		Sand	FCC-1 ^a	FCC-2	FCC-3	ZSM 5-1	ZSM 5-2	PZS M5-1	PZS M5-2	PZSM 5-3
Aldehydes, ketones	220-180	4.29	2.82	1.17	1.80	1.49	3.07	1.45	2.05	2.21
Carboxylic acids and derivatives	180-160	5.16	1.47	1.88	2.62	0.53	1.68	1.09	1.60	1.68
Carbons in aromatic hydrocarbons further from an oxygen atom	140-125	8.62	20.87	29.54	25.56	27.46	19.11	24.69	24.08	24.90
Total aromatics including olefins and phenolics	160-105	30.3 6	58.13	67.92	55.88	59.25	54.77	58.09	58.73	58.52
Levoglucosan, anhydrosugars, alcohols, ethers	105-60	24.8 6	5.35	1.60	9.06	10.14	11.02	10.21	8.46	8.51
Methoxy in lignin	57-55	7.66	4.68	2.91	4.95	5.10	5.63	5.24	4.72	4.50
Aliphatics	55-1	27.8 2	27.54	24.53	25.69	23.49	23.84	23.92	24.43	24.61

a: For simplicity, catalysts are denoted as fresh FCC catalyst (FCC-1), FCC catalyst steamed at 732 °C (FCC-2), FCC catalyst steamed at 788 °C (FCC-3), fresh ZSM-5 additive (ZSM5-1), ZSM-5 additive steamed at 732 °C (ZSM5-2), fresh phosphorous impregnated ZSM-5 additive (PZSM5-1), phosphorous-impregnated ZSM-5 additive steamed at 732 °C (PZSM5-2), phosphorous-impregnated ZSM-5 additive steamed at 788 °C (PZSM5-3)

574 **Table 9.** Comparison of the ^{13}C NMR integration data of the raw bio-oil and the bio-oil
575 upgraded by zero-valent zinc.⁵³

Assignments	Chemical shift range (ppm)	Carbon percentages	
		Raw bio-oil	Upgraded bio-oil
Carbonyls	215-170	9.8	3.1
Aromatic ethers, phenolics	150-120	12.7	12.2
Aromatics, alkenes	120-90	26.8	23.5
Alcohols, ethers	90-50	36.8	44.3
Aliphatics	50-0	13.9	16.9

576

577

578

579

580

581

582

583

584

585

586 **Table 10.** Chemical Shift Assignments for Bio-oils after Derivatization with TMDP Using
 587 NHND as an Internal Standard in a ^{31}P NMR Spectrum.⁵⁸

Assignments	Chemical shifts (ppm)	
<i>endo</i> - <i>N</i> -hydroxy-5-norbornene-2,3-dicarboximide (internal standard)	152.8-151.0	
Aliphatic OH	150.0-145.5	
C5-substituted condensed phenolic OH	β -5	144.7-142.8
	4-O-5	142.8-141.7
	5-5	141.7-140.2
Guaiacyl phenolic OH	140.2-139.0	
Catechol type OH	139.0-138.2	
<i>p</i> -Hydroxyphenyl OH	138.2-137.3	
Acid-OH	136.6-133.6	
Water peak	133.1-131.3	
	16.9-15.1	

588
 589
 590
 591

592

593

594

595

596

597 **Table 11.** Quantitative ^{31}P NMR Results of the Hydroxyl Contents in Bio-oils from Pine Wood,
 598 Sweetgum, Softwood Lignin, and Cellulose.¹⁸

Feedstock of bio-oil	Hydroxyl contents (mmol/g)			
	Aliphatic OH	C-5 substituted phenolic OH	Guaiacyl phenolic OH/ <i>p</i> -hydroxyphenyl OH	Carboxylic acids
Pine wood	0.73	0.29	1.36	0.24
Sweetgum	0.23	0.20	1.02	0.09
Softwood lignin	0.10	0.23	2.31	0.26
Cellulose isolated from pine wood	2.95	0.02	0.07	0.07

599

600

601

602

603

604

605

606

607

608 **Table 12.** Quantitative ^{31}P NMR Analysis of Lignin Bio-oil Subfractions after Derivatization
 609 with TMDP Using Cyclohexanol as an Internal Standard.⁶²

Assignments	Chemical shifts (ppm)	Hydroxyl contents (mmol/g)		
		Fraction 1 (amine insolubles)	Fraction 2 (low-polarity portion)	Fraction 3 (phenolic compounds extract)
Aliphatic OH	150.0-145.5	0.00	0.03	0.19
Cyclohexanol (internal standard)	145.4-145.0	-	-	-
C5-substituted condensed phenolic OH	β -5	144.7-142.8	0.03	0.26
	4-O-5	142.8-141.7	0.01	0.17
	5-5	141.7-140.2	0.09	0.11
Guaiacyl phenolic OH	140.2-139.0	0.11	1.29	3.01
Catechol type OH	139.0-138.2	0.04	0.62	0.89
<i>p</i> -Hydroxyphenyl OH	138.2-137.3	0.01	0.32	0.31
Acid-OH	136.6-133.6	0.01	0.12	0.03

610

611

612

613

614

615

616

617 **Table 13.** Comparison of ^{19}F NMR and Oximation Methods in the Determination of the
 618 Carbonyl Group Contents in Different Bio-oils.¹⁹

Bio-oil sample	^{19}F NMR method			Oximation method Carbonyl contents (mmol/g)	
	Carbonyl contents (mmol/g)				
	Aldehydes and ketones	Quinones	Total		
L	1.04	0.34	1.38	1.32	
L-Z	0.90	0.37	1.27	1.20	
P	4.21	0.53	4.74	4.68	
P-Z	3.29	0.88	4.17	4.05	
PR	3.27	0.53	3.80	3.71	
PR-Z	3.31	0.58	3.89	3.77	
P-1	3.27	0.47	3.74	3.70	
P-2	3.53	0.62	4.15	3.99	
P-3	3.96	0.68	4.54	4.50	
For simplicity, the bio-oils are denoted as lignin pyrolysis oil (L), lignin pyrolysis oil obtained with ZSM-5 (L-Z), pine wood pyrolysis oil (P), pine wood pyrolysis oil obtained with ZSM-5 (P-Z), pine wood residue pyrolysis oil (PR), pine wood pyrolysis oil obtained with ZSM-5 (PR-Z); two pine wood pyrolysis oils produced from a pilot plant are denoted as P-1 and P-2, and a hardwood pyrolysis oil produced from pilot plant is denoted as P-3.					

619

620

621

622

623

624

625 AUTHOR INFORMATION

626 **Corresponding Author**

627 *E-mail: aragausk@utk.edu

628

629 ACKNOWLEDGMENT

630 The authors would like to acknowledge the support through NSF A15-0097 titled “Effect of
631 Thermal Treatment on Biomass and Hydrocarbons Production using Catalytic Pyrolysis
632 Process”.

633 ABBREVIATIONS

634

635 AlTi = aluminum-titanate

636 DDGS = dries distillers grains with solubles

637 DMSO-*d*₆ = Dimethyl sulfoxide-*d*₆

638 DOSY = ¹H diffusion-ordered NMR spectroscopy

639 FCC = fluid catalytic cracking

640 FT-IR = fourier transform infrared spectroscopy

641 GC = gas chromatography

642 GPC = gel permeation chromatography

643 HMQC = heteronuclear multiple quantum coherence

644 HSQC = heteronuclear single quantum correlation

645 HSQC-TOCSY = heteronuclear single quantum coherence-total correlation spectroscopy

646 HPLC = high-performance liquid chromatography

647 HRMS = high-resolution mass spectrometry

648 INEPT = insensitive nuclei enhanced by polarization

649 LAC = (1*R*,5*S*)-1-hydroxy-3,6-dioxa-bicyclo[3.2.1]octan-2-one

650 LC = liquid chromatography

651 MK10 = montmorillonite K10

652 NHND = *endo*-*N*-Hydroxyl-5-norborene-2,3-dicarboximide

653 NMR = nuclear magnetic resonance

654 PLS = partial least squares

655 PyGas = model pyrolysis gas mixture

656 PZSM5 = phosphorous-impregnated zeolite socony mobil-5

657 SHS = switchable hydrophilicity solvents

658 S/N = signal-to-noise

659 TGA = thermo gravimetric analysis

660 TMDP = 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane

661 TPPO = triphenylphosphine oxide

662 ZSM-5 = zeolite socony mobil-5

663 2-D = two-dimensional

664 1-D = one-dimensional

665

666 REFERENCES

667 1. Hoffert, M. I.; Caldeira, K.; Benford, G.; Criswell, D. R.; Green, C.; Herzog, H.; Jain, A.

668 K.; Kheshgi, H. S.; Lackner, K. S.; Lewis, J. S., Advanced technology paths to global climate

669 stability: energy for a greenhouse planet. *Science* **2002**, 298, (5595), 981-987.

670 2. Pacala, S.; Socolow, R., Stabilization wedges: solving the climate problem for the next 50
671 years with current technologies. *Science* **2004**, 305, (5686), 968-972.

672 3. Quadrelli, E. A., 25 years of energy and green chemistry: saving, storing, distributing and
673 using energy responsibly. *Green Chem.* **2016**, 18, (2), 328-330.

674 4. Ghoniem, A. F., Needs, resources and climate change: clean and efficient conversion
675 technologies. *Prog. Energ. Combust. Sci.* **2011**, 37, (1), 15-51.

676 5. Ragauskas, A. J.; Williams, C. K.; Davison, B. H.; Britovsek, G.; Cairney, J.; Eckert, C.
677 A.; Frederick, W. J.; Hallett, J. P.; Leak, D. J.; Liotta, C. L., The path forward for biofuels and
678 biomaterials. *science* **2006**, 311, (5760), 484-489.

679 6. Huber, G. W.; Iborra, S.; Corma, A., Synthesis of Transportation Fuels from Biomass:
680 Chemistry, Catalysts, and Engineering. *Chem. Rev. (Washington, DC, U. S.)* **2006**, 106, (9),
681 4044-4098.

682 7. Perlack, R. D.; Wright, L. L.; Turhollow, A. F.; Graham, R. L.; Stokes, B. J.; Erbach, D.
683 C. *Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a*
684 *billion-ton annual supply*; U.S. department of Energy, U.S. Department of Agriculture: **2005**.

685 8. Mohan, D.; Pittman, C. U., Jr.; Steele, P. H., Pyrolysis of Wood/Biomass for Bio-oil: A
686 Critical Review. *Energy Fuels* **2006**, 20, (3), 848-889.

687 9. Sharma, A.; Pareek, V.; Zhang, D., Biomass pyrolysis—A review of modelling, process
688 parameters and catalytic studies. *Renew. Sustain. Energ. Rev.* **2015**, 50, 1081-1096.

689 10. Ringer, M.; Putsche, V.; Scahill, J. *Large-Scale Pyrolysis Oil Production: A Technology*
690 *Assessment and Economic Analysis*; National Renewable Energy Laboratory: **2006**.

691 11. Ben, H. Thermal conversion of biomass and biomass components to biofuels and bio-
692 chemicals. Ph.D. Dissertation, Georgia Institute of Technology, **2012**.

693 12. Fan, Y.; Cai, Y.; Li, X.; Yin, H.; Yu, N.; Zhang, R.; Zhao, W., Rape straw as a source of
694 bio-oil via vacuum pyrolysis: Optimization of bio-oil yield using orthogonal design method and
695 characterization of bio-oil. *Journal of Analytical and Applied Pyrolysis* **2014**, 106, 63-70.

696 13. Tessarolo, N. S.; dos Santos, L. R.; Silva, R. S.; Azevedo, D. A., Chemical
697 characterization of bio-oils using comprehensive two-dimensional gas chromatography with
698 time-of-flight mass spectrometry. *Journal of Chromatography A* **2013**, 1279, 68-75.

699 14. Demiral, İ.; Eryazıcı, A.; Şensöz, S., Bio-oil production from pyrolysis of corncob (*Zea*
700 *mays* L.). *Biomass and Bioenergy* **2012**, 36, 43-49.

701 15. Stas, M.; Kubicka, D.; Chudoba, J.; Pospisil, M., Overview of Analytical Methods Used
702 for Chemical Characterization of Pyrolysis Bio-oil. *Energy Fuels* **2014**, 28, (1), 385-402.

703 16. Kanaujia, P. K.; Sharma, Y. K.; Garg, M. O.; Tripathi, D.; Singh, R., Review of
704 analytical strategies in the production and upgrading of bio-oils derived from lignocellulosic
705 biomass. *J. Anal. Appl. Pyrolysis* **2014**, 105, 55-74.

706 17. Mullen, C. A.; Strahan, G. D.; Boateng, A. A., Characterization of Various Fast-Pyrolysis
707 Bio-Oils by NMR Spectroscopy. *Energy Fuels* **2009**, 23, (5), 2707-2718.

708 18. David, K.; Kosa, M.; Williams, A.; Mayor, R.; Realff, M.; Muzzy, J.; Ragauskas, A.,
709 ³¹P-NMR analysis of bio-oils obtained from the pyrolysis of biomass. *Biofuels* **2010**, 1, (6), 839-
710 845.

711 19. Huang, F.; Pan, S.; Pu, Y.; Ben, H.; Ragauskas, A. J., ^{19}F NMR spectroscopy for the
712 quantitative analysis of carbonyl groups in bio-oils. *RSC Adv.* **2014**, 4, (34), 17743-17747.

713 20. Ben, H.; Ragauskas, A. J., Heteronuclear Single-Quantum Correlation-Nuclear Magnetic
714 Resonance (HSQC-NMR) Fingerprint Analysis of Pyrolysis Oils. *Energy Fuels* **2011**, 25, (12),
715 5791-5801.

716 21. Mullen, C. A.; Boateng, A. A., Chemical Composition of Bio-oils Produced by Fast
717 Pyrolysis of Two Energy Crops. *Energy Fuels* **2008**, 22, (3), 2104-2109.

718 22. Bridgwater, A. V., Renewable fuels and chemicals by thermal processing of biomass.
719 *Chem. Eng. J. (Amsterdam, Neth.)* **2003**, 91, (2-3), 87-102.

720 23. Czernik, S.; Bridgwater, A. V., Overview of Applications of Biomass Fast Pyrolysis Oil.
721 *Energy Fuels* **2004**, 18, (2), 590-598.

722 24. Lu, Q.; Li, W.-Z.; Zhu, X.-F., Overview of fuel properties of biomass fast pyrolysis oils.
723 *Energy Convers. Manage.* **2009**, 50, (5), 1376-1383.

724 25. Oasmaa, A.; van de Beld, B.; Saari, P.; Elliott, D. C.; Solantausta, Y., Norms, Standards,
725 and Legislation for Fast Pyrolysis Bio-oils from Lignocellulosic Biomass. *Energy Fuels* **2015**,
726 29, (4), 2471-2484.

727 26. Talmadge, M. S.; Baldwin, R. M.; Biddy, M. J.; McCormick, R. L.; Beckham, G. T.;
728 Ferguson, G. A.; Czernik, S.; Magrini-Bair, K. A.; Foust, T. D.; Metelski, P. D.; Hetrick, C.;
729 Nimlos, M. R., A perspective on oxygenated species in the refinery integration of pyrolysis oil.
730 *Green Chem.* **2014**, 16, (2), 407-453.

731 27. Ortega, J. V.; Renahan, A. M.; Liberatore, M. W.; Herring, A. M., Physical and chemical
732 characteristics of aging pyrolysis oils produced from hardwood and softwood feedstocks. *J.*
733 *Anal. Appl. Pyrolysis* **2011**, 91, (1), 190-198.

734 28. Nolte, M. W.; Liberatore, M. W., Real-Time Viscosity Measurements during the
735 Accelerated Aging of Biomass Pyrolysis Oil. *Energy Fuels* **2011**, 25, (7), 3314-3317.

736 29. Naske, C. D.; Polk, P.; Wynne, P. Z.; Speed, J.; Holmes, W. E.; Walters, K. B.,
737 Postcondensation Filtration of Pine and Cottonwood Pyrolysis Oil and Impacts on Accelerated
738 Aging Reactions. *Energy Fuels* **2012**, 26, (2), 1284-1297.

739 30. Alsbou, E.; Helleur, B., Accelerated Aging of Bio-oil from Fast Pyrolysis of Hardwood.
740 *Energy Fuels* **2014**, 28, (5), 3224-3235.

741 31. Bridgwater, A. V., Review of fast pyrolysis of biomass and product upgrading. *Biomass*
742 *Bioenerg.* **2012**, 38, 68-94.

743 32. Mu, W.; Ben, H.; Ragauskas, A.; Deng, Y., Lignin Pyrolysis Components and
744 Upgrading-Technology Review. *BioEnergy Res.* **2013**, 6, (4), 1183-1204.

745 33. Mortensen, P. M.; Grunwaldt, J. D.; Jensen, P. A.; Knudsen, K. G.; Jensen, A. D., A
746 review of catalytic upgrading of bio-oil to engine fuels. *Appl. Catal. A* **2011**, 407, (1-2), 1-19.

747 34. Huber, G. W.; Corma, A., Synergies between bio- and oil refineries for the production of
748 fuels from biomass. *Angew. Chem. Int. Ed.* **2007**, 46, (38), 7184-7201.

749 35. Zhang, Q.; Chang, J.; Wang, T.; Xu, Y., Review of biomass pyrolysis oil properties and
750 upgrading research. *Energy Convers. Manage.* **2006**, 48, (1), 87-92.

751 36. Xiu, S.; Shahbazi, A., Bio-oil production and upgrading research: A review. *Renew.*
752 *Sustain. Energ. Rev.* **2012**, 16, (7), 4406-4414.

753 37. Chen, G.; Yao, J.; Liu, J.; Yan, B.; Shan, R., Biomass to hydrogen-rich syngas via
754 catalytic steam reforming of bio-oil. *Renew. Energ.* **2016**, 91, 315-322.

755 38. Tanneru, S. K.; Parapati, D. R.; Steele, P. H., Pretreatment of bio-oil followed by
756 upgrading via esterification to boiler fuel. *Energy (Oxford, U. K.)* **2014**, 73, 214-220.

757 39. Xu, J.; Jiang, J.; Dai, W.; Zhang, T.; Xu, Y., Bio-Oil Upgrading by Means of Ozone
758 Oxidation and Esterification to Remove Water and to Improve Fuel Characteristics. *Energy*
759 *Fuels* **2011**, 25, (4), 1798-1801.

760 40. Li, Q.; Hu, G., Supply chain design under uncertainty for advanced biofuel production
761 based on bio-oil gasification. *Energy (Oxford, U. K.)* **2014**, 74, 576-584.

762 41. Joseph, J.; Baker, C.; Mukkamala, S.; Beis, S. H.; Wheeler, M. C.; De Sisto, W. J.;
763 Jensen, B. L.; Frederick, B. G., Chemical Shifts and Lifetimes for Nuclear Magnetic Resonance
764 (NMR) Analysis of Biofuels. *Energy Fuels* **2010**, 24, (9), 5153-5162.

765 42. Lundquist, K. In *Proton (1H) NMR spectroscopy [of lignin in solution]*. Springer: **1992**;
766 pp 242-9.

767 43. Ingram, L.; Mohan, D.; Bricka, M.; Steele, P.; Strobel, D.; Crocker, D.; Mitchell, B.;
768 Mohammad, J.; Cantrell, K.; Pittman, C. U., Pyrolysis of Wood and Bark in an Auger Reactor:
769 Physical Properties and Chemical Analysis of the Produced Bio-oils. *Energy Fuels* **2008**, 22, (1),
770 614-625.

771 44. Ben, H.; Ragauskas, A. J., In Situ NMR Characterization of Pyrolysis Oil during
772 Accelerated Aging. *ChemSusChem* **2012**, 5, (9), 1687-1693.

773 45. Tessarolo, N. S.; Silva, R. V. S.; Vanini, G.; Casilli, A.; Ximenes, V. L.; Mendes, F. L.;
774 de Rezende Pinho, A.; Romao, W.; de Castro, E. V. R.; Kaiser, C. R.; Azevedo, D. A.,
775 Characterization of thermal and catalytic pyrolysis bio-oils by high-resolution techniques: ^1H
776 NMR, GC \times GC-TOFMS and FT-ICR MS. *J. Anal. Appl. Pyrolysis* **2016**, 117, 257-267.

777 46. Tanneru, S. K.; Steele, P. H., Production of liquid hydrocarbons from pretreated bio-oil
778 via catalytic deoxygenation with syngas. *Renew. Energ.* **2015**, 80, 251-258.

779 47. Mancini, I.; Dosi, F.; Defant, A.; Crea, F.; Miotello, A., Upgraded production of (1R,5S)-
780 1-hydroxy-3,6-dioxa-bicyclo[3.2.1]octan-2-one from cellulose catalytic pyrolysis and its
781 detection in bio-oils by spectroscopic methods. *J. Anal. Appl. Pyrolysis* **2014**, 110, 285-290.

782 48. Fabbri, D.; Torri, C.; Mancini, I., Pyrolysis of cellulose catalyzed by nanopowder metal
783 oxides: production and characterization of a chiral hydroxylactone and its role as building block.
784 *Green Chem.* **2007**, 9, (12), 1374-1379.

785 49. Bharti, S. K.; Roy, R., Quantitative ^1H NMR spectroscopy. *Trends Anal. Chem.* **2012**, 35,
786 5-26.

787 50. Charles E. Wyman (Editor), *Aqueous Pretreatment of Plant Biomass for Biological and*
788 *Chemical Conversion to Fuels and Chemicals*. Wiley: Chichester, West Sussex, United
789 Kingdom, **2013**.

790 51. Tarves, P. C.; Mullen, C. A.; Boateng, A. A., Effects of Various Reactive Gas
791 Atmospheres on the Properties of Bio-Oils Produced Using Microwave Pyrolysis. *ACS*
792 *Sustainable Chem. Eng.* **2016**, 4,(3),930-936.

793 52. Mante, O. D.; Agblevor, F. A.; Oyama, S. T.; McClung, R., The effect of hydrothermal
794 treatment of FCC catalysts and ZSM-5 additives in catalytic conversion of biomass. *Appl. Catal.*
795 *A* **2012**, 445-446, 312-320.

796 53. Liu, W.-J.; Zhang, X.-S.; Qv, Y.-C.; Jiang, H.; Yu, H.-Q., Bio-oil upgrading at ambient
797 pressure and temperature using zero valent metals. *Green Chem.* **2012**, 14, (8), 2226-2233.

798 54. Alwehaibi, A. S.; Macquarrie, D. J.; Stark, M. S., Effect of spruce-derived phenolics
799 extracted using microwave enhanced pyrolysis on the oxidative stability of biodiesel. *Green*
800 *Chem.* **2016**, 18, 2762-2774.

801 55. Strahan, G. D.; Mullen, C. A.; Boateng, A. A., Prediction of Properties and Elemental
802 Composition of Biomass Pyrolysis Oils by NMR and Partial Least Squares Analysis. *Energy*
803 *Fuels*, **2016**, 30, (1), 423-433.

804 56. Pu, Y.; Cao, S.; Ragauskas, A. J., Application of quantitative ^{31}P NMR in biomass lignin
805 and biofuel precursors characterization. *Energy Environ. Sci.* **2011**, 4, (9), 3154-3166.

806 57. Wroblewski, A. E.; Lensink, C.; Markuszewski, R.; Verkade, J. G., Phosphorus- 31 NMR
807 spectroscopic analysis of coal pyrolysis condensates and extracts for heteroatom functionalities
808 possessing labile hydrogen. *Energy Fuels* **1988**, 2, (6), 765-74.

809 58. Ben, H.; Ragauskas, A. J., NMR Characterization of Pyrolysis Oils from Kraft Lignin.
810 *Energy Fuels* **2011**, 25, (5), 2322-2332.

811 59. Balakshin, M.; Capanema, E., On the quantification of lignin hydroxyl groups With ^{31}P
812 and ^{13}C NMR spectroscopy. *J. Wood Chem. Technol.* **2015**, 35, (3), 220-237.

813 60. Ben, H.; Ferrell Iii, J. R., In-depth investigation on quantitative characterization of
814 pyrolysis oil by ^{31}P NMR. *RSC Adv.* **2016**, 6, (21), 17567-17573.

815 61. Naik, D. V.; Kumar, V.; Prasad, B.; Poddar, M. K.; Behera, B.; Bal, R.; Khatri, O. P.;
816 Adhikari, D. K.; Garg, M. O., Catalytic cracking of jatropha-derived fast pyrolysis oils with
817 VGO and their NMR characterization. *RSC Adv.* **2015**, 5, (1), 398-409.

818 62. Fu, D.; Farag, S.; Chaouki, J.; Jessop, P. G., Extraction of phenols from lignin
819 microwave-pyrolysis oil using a switchable hydrophilicity solvent. *Bioresour. Technol.* **2014**,
820 154, 101-108.

821 63. Lin, S. Y.; Dence, C. W., *Methods in Lignin Chemistry*. Springer-Verlag: Berlin, **1992**.

822 64. Jacobsen, N. E., *NMR spectroscopy explained: simplified theory, applications and*
823 *examples for organic chemistry and structural biology*. John Wiley & Sons: **2007**.

824 65. Palmer, A. G., III; Cavanagh, J.; Wright, P. E.; Rance, M., Sensitivity improvement in
825 proton-detected two-dimensional heteronuclear correlation NMR spectroscopy. *J. Magn. Reson.*
826 **1991**, 93, (1), 151-70.

827 66. Mori, S.; Abeygunawardana, C.; Johnson, M. O. N.; van Zijl, P. C. M., Improved
828 sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast
829 HSQC (FHSQC) detection scheme that avoids water saturation. *J. Magn. Reson., Ser. B* **1995**,
830 108, (1), 94-8.

831 67. Maudsley, A. A.; Ernst, R. R., Indirect detection of magnetic resonance by heteronuclear
832 two-dimensional spectroscopy. *Chem. Phys. Lett.* **1977**, 50, (3), 368-72.

833 68. Dayie, K. T.; Wagner, G., Relaxation-rate measurements for ^{15}N - ^1H groups with pulsed-
834 field gradients and preservation of coherence pathways. *J. Magn. Reson., Ser. A* **1994**, 111, (1),
835 121-6.

836 69. Fortin, M.; Mohadjer Beromi, M.; Lai, A.; Tarves, P. C.; Mullen, C. A.; Boateng, A. A.;
837 West, N. M., Structural Analysis of Pyrolytic Lignins Isolated from Switchgrass Fast-Pyrolysis
838 Oil. *Energy Fuels* **2015**, 29, (12), 8017-8026.

839 70. Yu, Y.; Chua, Y. W.; Wu, H., Characterization of Pyrolytic Sugars in Bio-Oil Produced
840 from Biomass Fast Pyrolysis. *Energy Fuels* **2016**, 30,(5),4145-4149.

841 71. Patwardhan, P. R. Understanding the product distribution from biomass fast pyrolysis .
842 Ph.D. Dissertation, Iowa State University, **2010**.

843 72. Li, W.; Chung, H.; Daeffler, C.; Johnson, J. A.; Grubbs, R. H., Application of ^1H DOSY
844 for Facile Measurement of Polymer Molecular Weights. *Macromolecules (Washington, DC, U.*
845 *S.)* **2012**, 45, (24), 9595-9603.

846 73. Oezbay, N.; Uzun, B. B.; Varol, E. A.; Puetuen, A. E., Comparative analysis of pyrolysis
847 oils and its subfractions under different atmospheric conditions. *Fuel Process. Technol.* **2006**, 87,
848 (11), 1013-1019.

849 74. Puetuen, E.; Uzun, B. B.; Puetuen, A. E., Production of bio-fuels from cottonseed cake
850 by catalytic pyrolysis under steam atmosphere. *Biomass Bioenerg.* **2006**, 30, (6), 592-598.

851 75. Onay, O.; Bayram, E.; Kockar, O. M., Copyrolysis of Seyitoemer-lignite and safflower
852 seed: Influence of the blending ratio and pyrolysis temperature on product yields and oil
853 characterization. *Energy Fuels* **2007**, 21, (5), 3049-3056.

854 76. Schnitzer, M. I.; Montreal, C. M.; Facey, G. A.; Fransham, P. B., The conversion of
855 chicken manure to biooil by fast pyrolysis I. Analyses of chicken manure, biooils and char by ^{13}C
856 and ^1H NMR and FTIR spectrophotometry. *J. Environ. Sci. Health Part B* **2007**, 42, (1), 71-77.

857 77. Sensoez, S.; Angin, D., Pyrolysis of safflower (*Charthamus tinctorius* L.) seed press cake
858 in a fixed-bed reactor: Part 2. Structural characterization of pyrolysis bio-oils. *Bioresour.*
859 *Technol.* **2008**, 99, (13), 5498-5504.

860 78. Xu, J.; Jiang, J.; Sun, Y.; Lu, Y., Bio-oil upgrading by means of ethyl ester production in
861 reactive distillation to remove water and to improve storage and fuel characteristics. *Biomass*
862 *Bioenerg.* **2008**, 32, (11), 1056-1061.

863 79. Yorgun, S.; Simsek, Y. E., Catalytic pyrolysis of *Miscanthus × giganteus* over activated
864 alumina. *Bioresour. Technol.* **2008**, 99, (17), 8095-8100.

865 80. Acikgoz, C.; Kockar, O. M., Characterization of slow pyrolysis oil obtained from linseed
866 (*Linum usitatissimum* L.). *J. Anal. Appl. Pyrolysis* **2009**, 85, (1-2), 151-154.

867 81. Ates, F.; Isikdag, M. A., Influence of temperature and alumina catalyst on pyrolysis of
868 corncob. *Fuel* **2009**, 88, (10), 1991-1997.

869 82. Rout, P. K.; Naik, M. K.; Naik, S. N.; Goud, V. V.; Das, L. M.; Dalai, A. K.,
870 Supercritical CO_2 Fractionation of Bio-oil Produced from Mixed Biomass of Wheat and Wood
871 Sawdust. *Energy Fuels* **2009**, 23, (12), 6181-6188.

872 83. Song, Q.-H.; Nie, J.-Q.; Ren, M.-G.; Guo, Q.-X., Effective Phase Separation of Biomass
873 Pyrolysis Oils by Adding Aqueous Salt Solutions. *Energy Fuels* **2009**, 23, (6), 3307-3312.

874 84. Sukhbaatar, B.; Steele, P. H.; Kim, M. G., Use of lignin separated from bio-oil in oriented
875 strand board binder phenol-formaldehyde resins. *BioResources* **2009**, 4, (2), 789-804.

876 85. De Sisto, W. J.; Hill, N., II; Beis, S. H.; Mukkamala, S.; Joseph, J.; Baker, C.; Ong, T.-
877 H.; Stemmler, E. A.; Wheeler, M. C.; Frederick, B. G.; van Heiningen, A., Fast Pyrolysis of Pine
878 Sawdust in a Fluidized-Bed Reactor. *Energy Fuels* **2010**, 24, (4), 2642-2651.

879 86. Naik, S.; Goud, V. V.; Rout, P. K.; Dalai, A. K., Supercritical CO₂ fractionation of bio-
880 oil produced from wheat-hemlock biomass. *Bioresour. Technol.* **2010**, 101, (19), 7605-7613.

881 87. Puetuen, E., Catalytic pyrolysis of biomass: Effects of pyrolysis temperature, sweeping
882 gas flow rate and MgO catalyst. *Energy (Oxford, U. K.)* **2010**, 35, (7), 2761-2766.

883 88. Karimi, E.; Briens, C.; Berruti, F.; Moloodi, S.; Tzanetakis, T.; Thomson, M. J.; Schlaf,
884 M., Red Mud as a Catalyst for the Upgrading of Hemp-Seed Pyrolysis Bio-oil. *Energy Fuels*
885 **2010**, 24, (12), 6586-6600.

886 89. Ben, H.; Ragauskas, A. J., Pyrolysis of Kraft Lignin with Additives. *Energy Fuels* **2011**,
887 25, (10), 4662-4668.

888 90. Christensen, E. D.; Chupka, G. M.; Luecke, J.; Smurthwaite, T.; Alleman, T. L.; Iisa, K.;
889 Franz, J. A.; Elliott, D. C.; McCormick, R. L., Analysis of Oxygenated Compounds in
890 Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions. *Energy Fuels* **2011**, 25, (11), 5462-
891 5471.

892 91. Demiral, I.; Ayan, E. A., Pyrolysis of grape bagasse: Effect of pyrolysis conditions on the
893 product yields and characterization of the liquid product. *Bioresour. Technol.* **2011**, 102, (4),
894 3946-3951.

895 92. Smets, K.; Adriaensens, P.; Vandewijngaarden, J.; Stals, M.; Cornelissen, T.; Schreurs,
896 S.; Carleer, R.; Yperman, J., Water content of pyrolysis oil: Comparison between Karl Fischer
897 titration, GC/MS-corrected azeotropic distillation and ^1H NMR spectroscopy. *J. Anal. Appl.*
898 *Pyrolysis* **2011**, 90, (2), 100-105.

899 93. Strahan, G. D.; Mullen, C. A.; Boateng, A. A., characterizing biomass fast pyrolysis oils
900 by ^{13}C NMR and chemometric analysis. *Energy Fuels* **2011**, 25, (11), 5452-5461.

901 94. Ben, H.; Ragauskas, A. J., One step thermal conversion of lignin to the gasoline range
902 liquid products by using zeolites as additives. *RSC Adv.* **2012**, 2, (33), 12892-12898.

903 95. David, K.; Ben, H.; Muzzy, J.; Feik, C.; Iisa, K.; Ragauskas, A., Chemical
904 characterization and water content determination of bio-oils obtained from various biomass
905 species using ^{31}P NMR spectroscopy. *Biofuels* **2012**, 3, (2), 123-128.

906 96. Kar, Y.; Sen, N.; Deveci, H., Usability of terebinth (*Pistacia terebinthus* L.) fruits as an
907 energy source for diesel-like fuels production. *Energy Convers. Manage.* **2012**, 64, 433-440.

908 97. Dalitz, F.; Steiwand, A.; Raffelt, K.; Nirschl, H.; Guthausen, G., ^1H NMR Techniques for
909 Characterization of Water Content and Viscosity of Fast Pyrolysis Oils. *Energy Fuels* **2012**, 26,
910 (8), 5274-5280.

911 98. Kim, T.-S.; Kim, J.-Y.; Kim, K.-H.; Lee, S.; Choi, D.; Choi, I.-G.; Choi, J. W., The effect
912 of storage duration on bio-oil properties. *J. Anal. Appl. Pyrolysis* **2012**, 95, 118-125.

913 99. Liu, W.-J.; Tian, K.; Jiang, H.; Zhang, X.-S.; Ding, H.-S.; Yu, H.-Q., Selectively
914 Improving the Bio-Oil Quality by Catalytic Fast Pyrolysis of Heavy-Metal-Polluted Biomass:
915 Take Copper (Cu) as an Example. *Environ. Sci. Technol.* **2012**, 46, (14), 7849-7856.

916 100. Pittman, C. U., Jr.; Mohan, D.; Eseyin, A.; Li, Q.; Ingram, L.; Hassan, E.-B. M.;
917 Mitchell, B.; Guo, H.; Steele, P. H., Characterization of Bio-oils Produced from Fast Pyrolysis of
918 Corn Stalks in an Auger Reactor. *Energy Fuels* **2012**, 26, (6), 3816-3825.

919 101. Salema, A. A.; Ani, F. N., Microwave-assisted pyrolysis of oil palm shell biomass using
920 an overhead stirrer. *J. Anal. Appl. Pyrolysis* **2012**, 96, 162-172.

921 102. Volli, V.; Singh, R. K., Production of bio-oil from de-oiled cakes by thermal pyrolysis.
922 *Fuel* **2012**, 96, 579-585.

923 103. Ben, H.; Ragauskas, A. J., Comparison for the compositions of fast and slow pyrolysis
924 oils by NMR characterization. *Bioresour. Technol.* **2013**, 147, 577-584.

925 104. Ben, H.; Ragauskas, A. J., Influence of Si/Al ratio of ZSM-5 zeolite on the properties of
926 lignin pyrolysis products. *ACS Sustainable Chem. Eng.* **2013**, 1, (3), 316-324.

927 105. Chang, S.; Zhao, Z.; Zheng, A.; Li, X.; Wang, X.; Huang, Z.; He, F.; Li, H., Effect of
928 hydrothermal pretreatment on properties of bio-oil produced from fast pyrolysis of eucalyptus
929 wood in a fluidized bed reactor. *Bioresour. Technol.* **2013**, 138, 321-8.

930 106. Paasikallio, V.; Agblevor, F.; Oasmaa, A.; Lehto, J.; Lehtonen, J., Catalytic pyrolysis of
931 forest thinnings with ZSM-5 catalysts: Effect of reaction temperature on bio-oil physical
932 properties and chemical composition. *Energy Fuels* **2013**, 27, (12), 7587-7601.

933 107. Richard, C. J.; Patel, B.; Chadwick, D.; Hellgardt, K., Hydrothermal deoxygenation of
934 pyrolysis oil from Norwegian spruce: *Picea abies*. *Biomass Bioenerg.* **2013**, *56*, 446-455.

935 108. Zhang, Z.; Sui, S.; Wang, F.; Wang, Q.; Pittman, C. U., Jr., Catalytic conversion of bio-
936 oil to oxygen-containing fuels by acid-catalyzed reaction with olefins and alcohols over silica
937 sulfuric acid. *Energies (Basel, Switz.)* **2013**, *6*, (9), 4531-4550, 20 pp.

938 109. Zhou, S.; Garcia-Perez, M.; Pecha, B.; McDonald, A. G.; Kersten, S. R. A.; Westerhof,
939 R. J. M., Secondary vapor phase reactions of lignin-derived oligomers obtained by fast pyrolysis
940 of pine wood. *Energy Fuels* **2013**, *27*, (3), 1428-1438.

941 110. Bi, Y.; Wang, G.; Shi, Q.; Xu, C.; Gao, J., Compositional Changes during
942 Hydrodeoxygenation of Biomass Pyrolysis Oil. *Energy Fuels* **2014**, *28*, (4), 2571-2580.

943 111. Choudhury, N. D.; Chutia, R. S.; Bhaskar, T.; Kataki, R., Pyrolysis of jute dust: effect of
944 reaction parameters and analysis of products. *J. Mater. Cycles Waste Manage.* **2014**, *16*, (3),
945 449-459.

946 112. Chutia, R. S.; Kataki, R.; Bhaskar, T., Characterization of liquid and solid product from
947 pyrolysis of Pongamia glabra deoiled cake. *Bioresour. Technol.* **2014**, *165*, 336-342.

948 113. Demiral, I.; Kul, S. C., Pyrolysis of apricot kernel shell in a fixed-bed reactor:
949 Characterization of bio-oil and char. *J. Anal. Appl. Pyrolysis* **2014**, *107*, 17-24.

950 114. Doassans-Carrere, N.; Ferrasse, J.-H.; Boutin, O.; Mauviel, G.; Lede, J., Comparative
951 Study of Biomass Fast Pyrolysis and Direct Liquefaction for Bio-Oils Production: Products
952 Yield and Characterizations. *Energy Fuels* **2014**, *28*, (8), 5103-5111.

953 115. Huang, F.; Ben, H.; Pan, S.; Pu, Y.; Ragauskas, A., The use of combination of zeolites to
954 pursue integrated refined pyrolysis oil from kraft lignin. *Sustain. Chem. Proc.* **2014**, 2, (7), 1-11.

955 116. Nanda, S.; Azargohar, R.; Kozinski, J. A.; Dalai, A. K., Characteristic Studies on the
956 Pyrolysis Products from Hydrolyzed Canadian Lignocellulosic Feedstocks. *BioEnergy Res.*
957 **2014**, 7, (1), 174-191.

958 117. Onal, E.; Uzun, B. B.; Putun, A. E., Bio-oil production via co-pyrolysis of almond shell
959 as biomass and high density polyethylene. *Energy Convers. Manage.* **2014**, 78, 704-710.

960 118. Zhou, S.; Garcia-Perez, M.; Pecha, B.; McDonald, A. G.; Westerhof, R. J. M., Effect of
961 particle size on the composition of lignin derived oligomers obtained by fast pyrolysis of beech
962 wood. *Fuel* **2014**, 125, 15-19.

963 119. Zhang, Z.; MacQuarrie, D. J.; Clark, J. H.; Matharu, A. S., Green Materials: Adhesive
964 Properties of Bio-oils Derived from Various Biorenewable Waste Streams: From Wood to Paper
965 to Paper Deinking Residue. *ACS Sustainable Chem. Eng.* **2015**, 3, (11), 2985-2993.

966 120. Zhang, X.; Chen, L.; Kong, W.; Wang, T.; Zhang, Q.; Long, J.; Xu, Y.; Ma, L.,
967 Upgrading of bio-oil to boiler fuel by catalytic hydrotreatment and esterification in an efficient
968 process. *Energy (Oxford, U. K.)* **2015**, 84, 83-90.

969 121. Saikia, R.; Chutia, R. S.; Kataki, R.; Pant, K. K., Perennial grass (*Arundo donax* L.) as a
970 feedstock for thermo-chemical conversion to energy and materials. *Bioresour. Technol.* **2015**,
971 188, 265-272.

972 122. Ozbay, G.; Pekgozlu, A. K.; Ozcifci, A., The effect of heat treatment on bio-oil properties
973 obtained from pyrolysis of wood sawdust. *Eur. J. Wood Wood Prod.* **2015**, 73, (4), 507-514.

974 123. Meng, J.; Moore, A.; Tilotta, D. C.; Kelley, S. S.; Adhikari, S.; Park, S., Thermal and
975 Storage Stability of Bio-Oil from Pyrolysis of Torrefied Wood. *Energy Fuels* **2015**, 29, (8),
976 5117-5126.

977 124. Ly, H. V.; Kim, S.-S.; Woo, H. C.; Choi, J. H.; Suh, D. J.; Kim, J., Fast pyrolysis of
978 macroalga *Saccharina japonica* in a bubbling fluidized-bed reactor for bio-oil production. *Energy*
979 (*Oxford, U. K.*) **2015**, 93, 1436-1446.

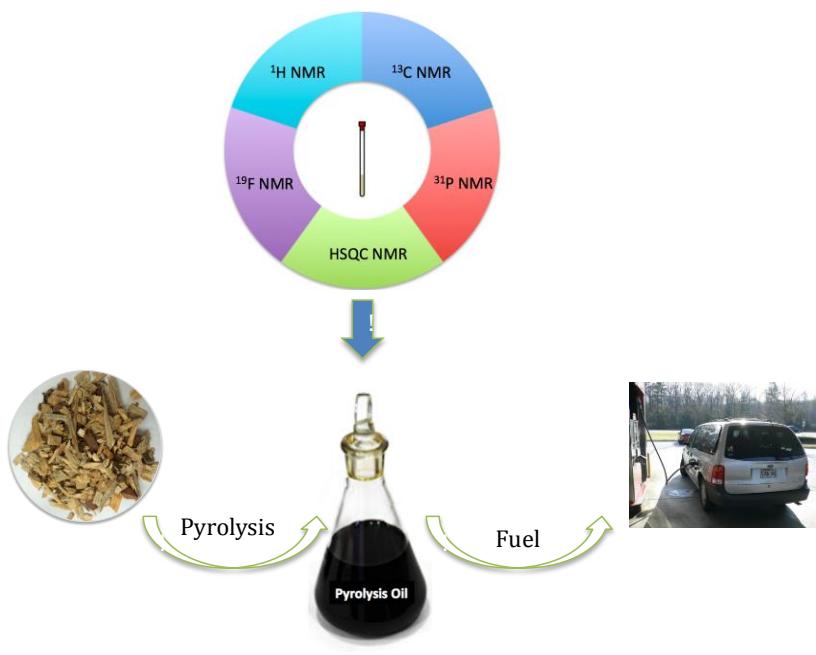
980 125. Krishna, B. B.; Singh, R.; Bhaskar, T., Effect of catalyst contact on the pyrolysis of
981 wheat straw and wheat husk. *Fuel* **2015**, 160, 64-70.

982 126. Hosseinezhad, S.; Fini, E. H.; Sharma, B. K.; Basti, M.; Kunwar, B., Physiochemical
983 characterization of synthetic bio-oils produced from bio-mass: a sustainable source for
984 construction bio-adhesives. *RSC Adv.* **2015**, 5, (92), 75519-75527.

985 127. Elkasabi, Y.; Mullen, C. A.; Jackson, M. A.; Boateng, A. A., Characterization of fast-
986 pyrolysis bio-oil distillation residues and their potential applications. *J. Anal. Appl. Pyrolysis*
987 **2015**, 114, 179-186.

988 128. Boscagli, C.; Raffelt, K.; Zevaco, T. A.; Olbrich, W.; Otto, T. N.; Sauer, J.; Grunwaldt,
989 J.-D., Mild hydrotreatment of the light fraction of fast-pyrolysis oil produced from straw over
990 nickel-based catalysts. *Biomass Bioenerg.* **2015**, 83, 525-538.

991 129. Bordoloi, N.; Narzari, R.; Chutia, R. S.; Bhaskar, T.; Kataki, R., Pyrolysis of *Mesua*
992 *ferrea* and *Pongamia glabra* seed cover: Characterization of bio-oil and its sub-fractions.
993 *Bioresour. Technol.* **2015**, 178, 83-89.


994 130. Balagurumurthy, B.; Srivastava, V.; Kumar, J.; Biswas, B.; Singh, R.; Gupta, P.; Kumar,
995 K. L. N. S.; Singh, R.; Bhaskar, T., Value addition to rice straw through pyrolysis in hydrogen
996 and nitrogen environments. *Bioresour. Technol.* **2015**, 188, 273-279.

997 131. Pradhan, D.; Singh, R. K.; Bendu, H.; Mund, R., Pyrolysis of Mahua seed (Madhuca
998 indica) - Production of biofuel and its characterization. *Energy Convers. Manage.* **2016**, 108,
999 529-538.

1000 132. Krishna, B. B.; Biswas, B.; Kumar, J.; Singh, R.; Bhaskar, T., Role of Reaction
1001 Temperature on Pyrolysis of Cotton Residue. *Waste Biomass Valoriz.* **2016**, 7, (1), 71-78.

1002 133. Cheng, T.; Han, Y.; Zhang, Y.; Xu, C., Molecular composition of oxygenated compounds
1003 in fast pyrolysis bio-oil and its supercritical fluid extracts. *Fuel* **2016**, 172, 49-57.

1004 Table of Contents Graphic

1005