

Inhibitory Effect of Furanic and Phenolic Compounds on Exoelectrogenesis in a Microbial Electrolysis Cell Bioanode

Xiaofei Zeng, Abhijeet P Borole, and Spyros G. Pavlostathis

Environ. Sci. Technol., **Just Accepted Manuscript** • DOI: 10.1021/acs.est.6b01505 • Publication Date (Web): 09 Sep 2016

Downloaded from <http://pubs.acs.org> on September 11, 2016

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

ACS Publications

Environmental Science & Technology is published by the American Chemical Society.

1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society.

However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1 **Inhibitory Effect of Furanic and Phenolic Compounds on**
2 **Exoelectrogenesis in a Microbial Electrolysis Cell Bioanode**

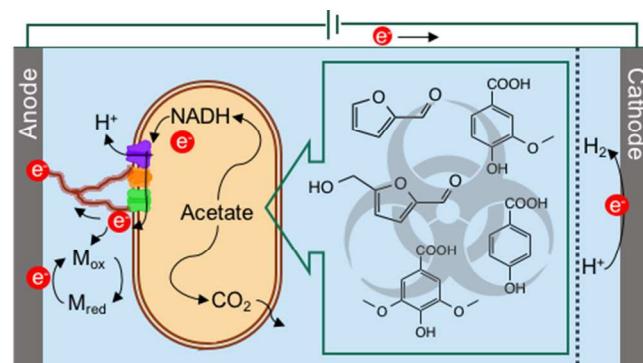
3 Xiaofei Zeng¹, Abhijeet P. Borole^{2,3}, and Spyros G. Pavlostathis^{1,*}

4 ¹ School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta,
5 Georgia 30332-0512, United States

6 ² Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United
7 States

8 ³ Bredesen Center for Interdisciplinary Research and Education, The University of Tennessee,
9 Knoxville, Tennessee 37996, United States

10 * Phone: 404-894-9367; fax: +404-894-8266; e-mail: spyros.pavlostathis@ce.gatech.edu


11 Notice of Copyright

12 *This manuscript has been co-authored by UT-Battelle, LLC under Contract No. DE-AC05-
13 00OR22725 with the U.S. Department of Energy. The United States Government retains and the
14 publisher, by accepting the article for publication, acknowledges that the United States
15 Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or
16 reproduce the published form of this manuscript, or allow others to do so, for United States
17 Government purposes. The Department of Energy will provide public access to these results of
18 federally sponsored research in accordance with the DOE Public Access Plan
19 (<http://energy.gov/downloads/doe-public-access-plan>).*

20 **ABSTRACT:** The objective of this study was to systematically investigate the inhibitory effect
21 of furfural (FF), 5-hydroxymethylfurfural (HMF), syringic acid (SA), vanillic acid (VA), and 4-
22 hydroxybenzoic acid (HBA), which are problematic lignocellulose-derived byproducts, on
23 exoelectrogenesis in the bioanode of a microbial electrolysis cell. The five compound mixture at
24 an initial total concentration range from 0.8 to 8.0 g/L resulted in an up to 91% current decrease
25 as a result of exoelectrogenesis inhibition; fermentative, non-exoelectrogenic biotransformation
26 pathways of the five compounds were not affected. Furthermore, the parent compounds at a high
27 concentration, as opposed to their biotransformation products, were responsible for the observed
28 inhibition. All five parent compounds contributed to the observed inhibition of the mixture. The
29 IC_{50} (i.e., concentration resulting in 50% current decrease) of individually tested parent
30 compounds was 2.7 g/L for FF, 3.0 g/L for HMF, 1.9 g/L for SA, 2.1 g/L for VA and 2.0 g/L for
31 HBA. However, the parent compounds, when tested below their respective non-inhibitory
32 concentration, jointly resulted in significant inhibition as a mixture. Catechol and phenol, which
33 were persistent biotransformation products, inhibited exoelectrogenesis only at high
34 concentrations, but to a lesser extent than the parent compounds. Exoelectrogenesis recovery
35 from inhibition by all compounds was observed at different rates, with the exception of catechol,
36 which resulted in irreversible inhibition.

37 TOC ART

38

39 INTRODUCTION

40 Furanic and phenolic compounds are common byproducts formed during fuel and chemical
41 production from lignocellulosic biomass. In lignocellulosic hydrolysates and pyrolysates,
42 furfural and 5-hydroxymethylfurfural are the primary furan derivatives present at a total
43 concentration up to 5 g/L, while phenolic compounds, including alcohols, aldehydes and acids,
44 are present at a total concentration up to 3 g/L.¹ Furanic and phenolic compounds in biomass
45 pretreatment streams present a significant challenge in biofuel production for a number of
46 reasons. They inhibit growth and activities of hydrogen (H₂)- and ethanol-producing
47 microorganisms, lowering yields of H₂ and ethanol in dark fermentation of lignocellulosic
48 hydrolysates.^{2,3} These compounds also make biomass pyrolysates corrosive and unstable,
49 increasing the difficulty of downstream processing.⁴ Because some furanic and phenolic
50 compounds have cytotoxic and mutagenic effects,⁵ the disposal of waste streams bearing such
51 compounds is of environmental concern.

52 Microbial electrolysis cell (MEC) is considered as an alternative technology for waste
53 handling and H₂ production, which can be integrated to the overall process of biofuel production
54 from biomass.^{6,7} In a MEC, furanic and phenolic compounds are utilized as substrates by the
55 bioanode microorganisms. During microbial metabolism, electrons are extracted from these
56 compounds and then transferred to the anode electrode. With a small voltage supply, the
57 electrons are transferred via an electric circuit to the cathode where reduction of protons takes
58 place (usually abiotically) with the production of H₂. The fact that the MEC technology can
59 achieve simultaneous waste treatment and H₂ production makes it more advantageous than
60 existing methods used to deal with furanic and phenolic compounds, such as solvent extraction
61 to remove these compounds from the biomass pretreatment streams, and use of genetically

62 engineered, tolerant microorganisms in dark fermentation.² MECs have achieved promising
63 conversion of furanic and phenolic compounds (> 98%), H₂ production rate (up to 4.3 L/L-d) and
64 yield (up to 76%) from a mixture of furanic and phenolic compounds up to 1.2 g/L, as well as
65 switchgrass-derived bio-oil aqueous phase components.^{6,7}

66 While furanic and phenolic compounds are well-known inhibitors of dark fermentation
67 for H₂ and ethanol production, their potential inhibitory effect on the bioanode microbial activity
68 has been scarcely reported. A study showed that syringaldehyde, *trans*-4-hydroxy-3-methoxy
69 and 4-hydroxy cinnamic acids at a concentration above 20 mM, as well as benzyl alcohol and
70 acetophenone at 0.2 mM, severely inhibited electricity generation from glucose using a microbial
71 fuel cell (MFC).¹⁰ Our previous study showed that a mixture of furfural (FF), 5-
72 hydroxymethylfurfural (HMF), syringic acid (SA), vanillic acid (VA), and 4-hydroxybenzoic
73 acid (HBA) at a total concentration of 1.2 g/L in a batch MEC bioanode produced significantly
74 lower current and H₂ than at lower concentrations of 0.2 – 0.8 g/L, suggesting inhibition by a
75 high concentration of the mixture of furanic and phenolic compounds.⁶ However, neither of these
76 previous studies provided an in-depth analysis of the observed inhibition.

77 In a bioanode, where soluble external terminal electron acceptors (e.g., nitrate and sulfate)
78 are absent, the conversion of high molecular weight, complex compounds occurs via
79 fermentation followed by exoelectrogenesis.¹¹ Fermentative bacteria first convert the complex
80 compounds to simpler molecules, among which acetate is a key electron donor used in
81 subsequent exoelectrogenesis.¹¹ There are two sub-steps in exoelectrogenesis: intracellular
82 metabolism of electron donor and extracellular electron transfer to the anode electrode.^{12,13}
83 Inhibition of either sub-step can lead to failure of current production. In parallel with
84 exoelectrogenesis, methanogenesis can also occur using acetate and/or H₂/CO₂ resulting from the

85 fermentation of complex compounds, which, however, results in a decrease of cathodic H₂
86 production. Our previous study showed that although the current decreased by 64%, as a result of
87 inhibition by the furanic and phenolic mixture at 1.2 g/L, the transformation rate of the
88 individual furanic and phenolic compounds increased by more than two-fold with an increase of
89 the total mixture concentration from 0.8 to 1.2 g/L.⁶ Acetate accumulated at high levels with the
90 decreased current, while was not detected with normal current production when the anode was
91 fed with the compounds mixture at a total concentration of less than 1.2 g/L.⁶ These results
92 demonstrate that inhibition by the furanic and phenolic compounds in the MEC bioanode
93 primarily impacted the acetate-consuming process (i.e., exoelectrogenesis) as opposed to the
94 acetate-producing process (i.e., fermentation). Thus, the present study focused on the inhibitory
95 effect of furanic and phenolic compounds on exoelectrogenesis.

96 The following questions were raised in our previous studies: (1) Are the parent
97 compounds or their transformation products responsible for the observed inhibition of
98 exoelectrogenesis? (2) Which compound(s) in the mixture is/are the inhibitor(s)? (3) Do these
99 compounds interact synergistically leading to more severe inhibition? To address these questions,
100 the present study was conducted with the objective of assessing the potential inhibitory effect of
101 two furanic (FF and HMF) and three phenolic compounds (SA, VA and HBA), as well as their
102 biotransformation products, on exoelectrogenesis in a MEC bioanode. The selected compounds
103 are typically found in waste streams generated during the pretreatment of lignocellulosic
104 biomass,¹⁴ and were used in our previous study where inhibition of exoelectrogenesis was first
105 observed.⁶

106 **MATERIALS AND METHODS**

107 **Chemicals.** FF, HMF, SA, VA and HBA were parent compounds used in this study. Catechol
108 and phenol, which were persistent transformation products, were also tested for their inhibitory
109 effect on exoelectrogenesis. The above-mentioned seven chemicals were purchased from Sigma-
110 Aldrich (St. Louis, MO) and Alfa Aesar (Ward Hill, MA). A mixture of the five parent
111 compounds in a stock solution at a total concentration of 10 g/L (15.6 g COD/L; COD, chemical
112 oxygen demand) was prepared with each compound at equal electron equivalents (3.12 g COD/L)
113 dissolved in the anolyte solution and stored at 4 °C.

114 **MEC.** A dual-chamber (250 mL each) H-type MEC was used in the present study. The
115 anode electrode was a bundle of five stripes of carbon felt (1 cm × 1 cm × 5 cm, each). The
116 cathode electrode was a platinum-coated carbon cloth with a projected surface area of 30 cm².
117 The MEC anode was inoculated with electrode-attached biofilm from a MFC anode fed with the
118 above-described mixture of the five compounds for 6 months. The MEC was then fed with the
119 five compounds mixture at a total concentration of 0.2 - 1.2 g/L in batch and then continuous-
120 flow modes for over 2 years. The anolyte was microbial growth medium and the catholyte was
121 100 mM phosphate buffer, both at pH 7.0, with composition as previously described.⁶ A
122 potentiostat (Interface 1000, Gamry Instruments, Warminster, PA) was used to set a voltage of
123 0.6 V at the anode relative to the cathode. The total anode biomass concentration measured as
124 protein was 352 ± 10 and 471 ± 101 mg/L, before and after the experiments reported here,
125 respectively; approximately 90% of the biomass was biofilm-associated, whereas 10% was in
126 suspension. The established biofilm microbial community mainly consisted of *Geobacter*,
127 *Anaerovorax*, *Acetobacterium*, *Eubacterium* and unclassified *Clostridia* spp., including
128 exoelectrogens, putative furanic and phenolic degraders, and other acetogenic fermentative
129 bacteria, as previously reported.^{6,15}

130 **Batch Runs with Parent Compounds Mixture.** In order to determine whether the
131 parent compounds or their transformation products are inhibitory to exoelectrogenesis, two
132 experiments were conducted. First, six consecutive 24-h batch runs were performed with an
133 increasing initial total concentration of the parent compounds mixture (0.8, 1.2, 2.4, 3.6, 6.0 and
134 8.0 g/L). Exogenous acetate was not added. The selection of the initial concentration range was
135 based on a previous observation that 0.8 g/L was non-inhibitory and 1.2 g/L was inhibitory to
136 exoelectrogenesis.⁶ The 0.8 g/L run was a non-inhibitory control. In between each batch run, the
137 anode chamber was drained and fresh anolyte added. In these batch runs, the anode microbial
138 community experienced an increasing initial concentration of the parent compounds mixture, and
139 the response of exoelectrogenesis in terms of current and cathodic H₂ production was monitored.
140 The second experiment was conducted in a single batch run with the parent compounds mixture
141 added repetitively every 24 h at a non-inhibitory concentration (0.8 g/L). Unlike the first
142 experiment, the second experiment created a condition where the dose of the parent compounds
143 was kept low, but the concentration of transformation products gradually increased. Based on our
144 previous study,⁶ in which complete transformation of the parent compounds mixture at 0.8 g/L
145 occurred within 24 h, the concentration of the mixture was not expected to increase with daily
146 feedings of 0.8 g/L. In addition, the anolyte was not replaced throughout this experiment, thus
147 resulting in the accumulation of transformation products. A control experiment was conducted
148 with repetitive additions of sodium acetate (NaAc) at increasing concentrations (0.1 – 10 g/L) in
149 the bioanode without any furanic or phenolic compounds.

150 **Batch Runs with Individual Parent Compounds.** In order to determine which
151 compounds contributed to the observed inhibition of exoelectrogenesis, individual parent
152 compounds (FF, HMF, SA, VA and HBA) were tested in separate batch runs. For each

153 compound, a batch run was initiated with fresh anolyte and 1 g/L NaAc as the exogenous
154 exoelectrogenic substrate. Exogenous NaAc was added in excess to avoid differences in current
155 production due to the difference in the biotransformation extent of each of the furanic and
156 phenolic compounds tested. After 1 h of incubation with NaAc, but without any furanic or
157 phenolic compound added (non-inhibited, control condition), one of the five compounds was
158 added to the anode chamber at increasing levels of 0.8, 1.2, 2.4 and 3.6 g/L at 1, 3, 5 and 7 h,
159 respectively (unless otherwise stated). The goal of sequential additions of each compound at
160 increasing levels resulted in more than 50% inhibition based on current production. Based on the
161 results of the compounds mixture, higher than 50% inhibition was observed with the mixture at
162 3.6 g/L. Thus, same concentrations as the mixture in the range of 0.8 - 3.6 g/L were selected for
163 the individual compounds. The exoelectrogenic response was monitored by the current, recorded
164 every 5 min, and cathodic H₂ production measured before each subsequent compound addition.
165 A control run with 1 g/L NaAc, in the absence of any inhibitor, was conducted prior to each
166 batch run for all the compounds tested.

167 **Batch Runs with Catechol and Phenol.** Catechol and phenol, which were persistent
168 transformation products of the five compounds mixture, were further determined to be
169 transformation products of VA and HBA, respectively. The potential inhibitory effect of catechol
170 and phenol was evaluated in batch runs following the same procedure as above-described for the
171 individual parent compounds. The levels of catechol or phenol added to the bioanode were pre-
172 selected as 0.8, 1.2 and 2.4 g/L, based on the fact that VA or HBA at 3.6 g/L (the highest total
173 level added) can produce 2.4 g/L of catechol or 2.5 g/L of phenol at most (1:1 molar ratio). In the
174 batch run conducted with catechol, where a low extent of inhibition was observed after a total
175 addition of 2.4 g/L, another 1.2 g/L was added to result in a significant inhibition.

176 **Analytical Methods.** The parent compounds and transformation products were
177 quantified using a high performance liquid chromatography (HPLC) unit equipped with a HPX-
178 87H column as previously described.⁶ pH was measured following procedures outlined in
179 Standard Methods.¹⁶ Gas production was measured by acid brine solution displacement in glass
180 burets, equilibrated to 1 atm. Gas composition (H₂, CO₂ and CH₄) was quantified using a gas
181 chromatography unit equipped with two columns and two thermal conductivity detectors.⁶ The
182 anode biomass was quantified by protein measurement using the Pierce™ BCA assay kit after
183 extraction as previously described.¹⁵ Cyclic voltammetry was conducted under the maximum
184 inhibition and non-inhibited conditions (i.e., control) for each individual compound, at a scan
185 rate of 5 mV/s from - 0.5 to + 0.3 V, with the anode as the working electrode, cathode as the
186 counter electrode, and a Ag/AgCl electrode as the reference electrode inserted in the anode
187 chamber.

188 **Calculations.** The extent of inhibition was calculated based on the ratio of the decreased
189 current under inhibition (I_{inh}) to that under non-inhibited, control conditions ($I_{non-inh}$) (eq 1).
190 The inhibitory concentration at 50% inhibition (IC₅₀) is defined as the inhibitor concentration at
191 which the current decreases by 50% compared to the current under non-inhibited conditions.

$$Inhibition (\%) = \left(1 - \frac{I_{inh}}{I_{non-inh}} \right) \times 100 \quad (eq\ 1)$$

192 Potential synergistic inhibition was evaluated by comparing the observed effect of the
193 compounds mixture to the additive effect of its components. The additive effect was calculated
194 from the experimental data of individual compounds using three methods:¹⁷ effect summation,
195 concentration addition, and independent action as described in detail in Text S1.

196 **RESULTS AND DISCUSSION**

197 **Inhibitory Effect of the Furanic and Phenolic Mixture.** In the six batch runs conducted with
198 0.8, 1.2, 2.4, 3.6, 6.0 and 8.0 g/L of the furanic and phenolic mixture (FF, HMF, SA, VA and
199 HBA), the maximum current in each batch run decreased with increasing initial total
200 concentration of the mixture (Figure 1A). The first batch run at 0.8 g/L served as a non-inhibited
201 control based on the findings of our previous study in which the furanic and phenolic mixture at
202 0.8 g/L did not have any negative impact on exoelectrogenesis.⁶ Higher initial concentrations of
203 1.2 - 8.0 g/L resulted in a current decrease, with a more than 50% decrease at 3.6 g/L (4th batch
204 run) and 91% decrease at 8.0 g/L (last batch run; Figure 1A). Similar to the current, the H₂
205 production rate decreased from 0.18 L/L-d to non-detected in the last batch run conducted with
206 8.0 g/L. For the batch runs with high initial mixture concentrations (3.6 – 8.0 g/L), 1.0 N NaOH
207 was added upon each substrate addition to adjust the pH to 7.0, thus compensating for the acidity
208 of the phenolic compounds added. The anolyte pH slightly decreased from 7.0 and remained at
209 6.7 or above during all batch runs. Such pH values are above the generally accepted inhibiting
210 pH value (6.0) for *Geobacter* spp.¹⁸ In addition, the control experiment conducted with 0.1 – 10
211 g/L NaAc showed that the current increased with increasing NaAc concentration, even with a
212 decreasing pH from 7.0 to 6.0 (Figure S1). Thus, the decreased current in the batch runs
213 conducted with the furanic and phenolic mixture is attributed to the inhibitory effect of these
214 compounds and not to potential transfer limitations of electrons and protons. Compared to our
215 previous study conducted one year before the present study with the same MEC,⁶ in which
216 exoelectrogenesis was inhibited by more than 66% by the same furanic and phenolic mixture at
217 1.2 g/L, the present study showed a higher tolerance of the bioanode to these compounds (11 and
218 69% inhibition at 1.2 and 3.6 g/L, respectively). The increased tolerance is partially attributed to
219 a 3-fold increase of biofilm-associated biomass during the 1-year MEC operation. Dominant

220 microbial species in the biofilm were almost identical to those previously reported,^{6,15} but a
221 higher relative abundance of the fermentative species over exoelectrogens was observed after the
222 1-year MEC operation. Thus, a more robust and tolerant biofilm can be developed through
223 prolonged exposure of the microbial community to the five furanic and phenolic compounds.

224 Consistent with our previous study,⁶ the transformation rate of the parent compounds did
225 not decrease when exoelectrogenesis was inhibited (Figure 1B). In fact, the transformation rate
226 of the parent compounds in the 3.6 - 8.0 g/L runs was more than 1.5-fold higher than in the 0.8
227 g/L run (3.4-3.9 vs. 2.0 g/L-d), although the current decreased by more than 69%. The detected
228 transformation products were catechol, phenol and acetate, whose concentration increased as the
229 parent compounds were transformed during each batch run (Figure 1C). Catechol and phenol
230 were transformation products of VA and HBA, respectively. The highest observed concentration
231 of catechol (0.32 g/L) and phenol (0.34 g/L) represents 82% of VA and 86% of HBA
232 transformed, respectively, based on 1:1 molar ratio between the parent compounds and their
233 transformation products. The acetate accumulation rate was higher in the 3.6 - 8.0 g/L runs than
234 in the 0.8 g/L run (0.25 - 0.29 vs. 0.1 g/L-d), which indicates that the acetate consumption by the
235 exoelectrogens was slower than its production by the fermenters in the 3.6 – 8.0 g/L runs. The
236 increased transformation rate of the parent compounds and acetate accumulation in contrast to
237 the decreased current, confirm that non-exoelectrogenic activities (e.g., fermentation) were not
238 impacted in the bioanode, but instead, exoelectrogenesis was mainly inhibited. Although not
239 observed in the relatively short duration experiments conducted in the present study, severe
240 inhibition of exoelectrogenesis in MEC systems operated over long periods may result in the
241 accumulation of high levels of fermentation products and lead to feedback inhibition of
242 fermentation.

243 The fermentative process in the MEC bioanode used in this study involves different
244 reactions and microbial species from those found in H₂ and ethanol dark fermentation studies,
245 which are usually based on sugar degradation. In the present study, fermentation in the MEC
246 anode refers to the transformation of furanic and phenolic compounds to mainly acetate, carried
247 out by furanic and phenolic degraders (such as *Acetobacterium* and *Eubacterium* spp.), as
248 mentioned above.^{6,15} H₂ and ethanol dark fermentation refers to the conversion of sugars to H₂
249 and ethanol by certain *Clostridium* spp. and yeasts. The furanic and phenolic fermenting bacteria,
250 which can grow on these compounds, are presumably less susceptible to inhibition than
251 microbial species involved in H₂ and ethanol fermentations, as well as exoelectrogenesis.

252 Gas in the bioanode headspace consisted of CO₂ and CH₄; H₂ was not detected in the
253 anode. CO₂ produced by both fermentation and exoelectrogenesis varied from 10 to 20 mL per
254 run, without a clear correlation to the exoelectrogenic response in these batch runs. However, a
255 lower CH₄ production was observed while exoelectrogenesis was inhibited in the 3.6 - 8.0 g/L
256 runs, compared to the other batch runs conducted with lower initial mixture concentrations (2 - 3
257 mL vs. 9 - 12 mL). Thus, the observed decrease in current production was not caused by
258 competition for electron equivalents with methanogens. It has been reported that methanogenesis
259 in mixed cultures was inhibited significantly by FF and HMF at 5-10 g/L, as well as phenolic
260 compounds at 1.2 g/L, and that more severe inhibition was observed with mixtures.^{3,19} In
261 addition, methanogenesis could also be impacted by low pH. A desired pH range for
262 methanogenesis is 6.5 – 7.6.²⁰ In the above-discussed batch runs, the lowest anolyte pH value
263 observed in each run was 6.7 - 6.9. However, a small proton concentration gradient may exist at
264 the anolyte-biofilm interface and within the depth of the biofilm, resulting in a slightly lower pH
265 value inside the biofilm.

266 **Inhibition by Parent Compounds vs. Transformation Products.** In the second
267 experiment, when the furanic and phenolic mixture was added daily to the anode at an initial,
268 non-inhibitory concentration of 0.8 g/L, the current remained at 3.5 mA throughout five mixture
269 additions (Figure 2A), while the cathodic H₂ production rate was stable at 0.18 ± 0.02 L/L-d. The
270 pH decreased from 7.0 to 6.5 over the course of the experiment, although it was adjusted to 7.0
271 by 1.0 N NaOH upon each addition of the 0.8 g/L mixture. The resulting steady current and H₂
272 production rate are in contrast to those observed in the first experiment conducted with
273 increasing initial total concentration of the five compounds mixture. The parent compounds were
274 totally transformed within 1 d before the addition of the next mixture (Figure 2B). Thus, the total
275 concentration of the parent compounds mixture remained below 0.8 g/L at all times in the second
276 experiment. The five additions of the parent compounds mixture led to an accumulation of
277 transformation products reaching a concentration comparable to that resulting from the addition
278 of 3.6 - 8.0 g/L parent compounds mixture (Figure 1C and 2C). Five daily additions of 0.8 g/L
279 are equivalent to a cumulative addition of 4.0 g/L. Thus, the results of the second experiment can
280 be compared to those of the 3.6 g/L batch run in the first experiment. The fact that the
281 transformation products were at comparable concentrations in both experiments, and that the
282 current decreased only in the first experiment (but not in the second), indicates that the
283 transformation products were not the cause of the observed inhibition. Instead, the initial
284 concentration of the parent compounds, which was the main difference between the two
285 experiments, had a clear impact on the current. As discussed above, in the first experiment the
286 current decreased with an increasing dose of the parent compounds mixture from 0.8 to 3.6 g/L
287 and higher; the second experiment avoided one-time, high doses of the parent compounds by
288 distributing a total 4.0 g/L dose in five days (0.8 g/L per day), and the current was not impacted.

289 Therefore, it is concluded that the observed inhibition of exoelectrogenesis was due to the parent
290 compounds, rather than to their transformation products.

291 **Inhibitory Effect of Individual Parent Compounds.** To further investigate which of the
292 parent compounds was responsible for the observed inhibition, each compound (FF, HMF, SA,
293 VA and HBA) was added at increasing levels to the bioanode which was also amended with 1
294 g/L NaAc. During the control runs with 1 g/L NaAc, which were performed before testing every
295 compound, the current was steady for 9 h in each run, ranging from 2.0 to 2.5 mA (Figure S2
296 shows a representative control run). The concentration of NaAc, which was the exogenous
297 exoelectrogenic substrate, did not show a significant decrease in 9 h ($P = 0.57$), because a
298 relatively high concentration of NaAc was used to avoid current drop due to exoelectrogenic
299 substrate limitation. This observation also demonstrates that the acetate consumption rate would
300 not have been a sufficiently sensitive parameter to describe the inhibitory effect on
301 exoelectrogenesis. Instead, current was used as the primary parameter to evaluate the rate of
302 exoelectrogenesis.

303 While increasing levels of the individual furanic and phenolic compounds were added to
304 the bioanode, active biotransformation of the compounds resulted in concentrations lower than
305 the pre-specified amounts (Figure S3). Meanwhile, higher than 50% current decrease was
306 observed for all compounds with a total addition up to 3.6 g/L (in 9 h), except for HMF (Figure
307 S3). It is noteworthy that the attained highest concentration of HMF at 7 h upon a total addition
308 of 3.6 g/L was significantly lower than that of FF as a result of fast transformation (Figure S3),
309 which resulted in lower inhibition. In order to achieve a comparable concentration of HMF to
310 that of FF, an extra 1.8 g/L HMF was added at 9 h to make the highest attained concentration of
311 HMF equal to 3.0 g/L. The current decreased upon this last HMF addition (Figure S3).

312 The extent of inhibition at increasing concentrations of the five parent compounds is
313 shown in Figure 3A and B. The reported concentration of each compound is that measured
314 immediately after each addition. At concentrations of 0.8 g/L and below, no inhibition was
315 observed with any of the tested compounds. Thus, 0.8 g/L was a non-inhibitory concentration for
316 all five compounds. At concentrations from 0.8 to 1.8 g/L, low inhibition (< 20%) was observed
317 for these five parent compounds. However, when the individual compounds were present at 2.1 -
318 3.0 g/L, the current decreased by more than 50%. The suppressed exoelectrogenic activity was
319 further confirmed by cyclic voltammetry (Figure S4). The current under inhibited conditions was
320 lower than under non-inhibited conditions at all applied potential values (-0.5 to +0.3 V vs.
321 Ag/AgCl). The fact that the current under inhibited conditions did not increase with increasing
322 anode potential to a level comparable to that under non-inhibited conditions rules out the
323 possibility that the observed decrease in current production at inhibition was caused by a limited
324 anode potential. In addition, oxidation peaks observed under non-inhibited conditions
325 disappeared under inhibited conditions. Similar to the current, the H₂ production rate showed a
326 generally decreasing trend in response to the increasing furanic and phenolic compounds
327 concentrations attained immediately after addition (Figure S5). However, the H₂ production rate
328 was not as reliable and sensitive as the current. The reported H₂ production rates are mean values
329 at each time interval (1 or 2 h). In addition, H₂ back diffusion to the anode may have occurred as
330 previously reported and discussed.⁶

331 The IC₅₀ values of FF, HMF, SA, VA and HBA and the extent of inhibition observed at
332 the highest concentration of each parent compound attained in the batch runs are shown in Table
333 1. The reported IC₅₀ values are system-specific, particularly dependent on bioanode biomass
334 concentration, and thus may not be generally applicable to all MEC systems. Nevertheless, it is

335 noteworthy that FF and HMF had higher IC_{50} values (2.7 and 3.0 g/L) than SA, VA and HBA
336 (1.9, 2.1 and 2.0 g/L), indicating a higher tolerance of the exoelectrogens to the furanic
337 compounds. In addition, a higher extent of inhibition was observed with the phenolic compounds
338 (65 – 80%) than with the furanic compounds (51 – 53%). Thus, overall, the phenolic compounds
339 were more inhibitory to the exoelectrogenesis than the furanic compounds. A plot of IC_{50} versus
340 $\log K_{ow}$ values of the five compounds (Figure S6) shows that the furanic compounds, which have
341 considerably lower $\log K_{ow}$ values, have significantly higher IC_{50} values than the phenolic
342 compounds, which have higher $\log K_{ow}$ values. Such a distinct difference between the furanic
343 and phenolic compounds suggests that hydrophobicity differences may correspond to different
344 modes of inhibition, as further discussed below.

345 The pH at the end of the batch runs conducted with individual phenolic compounds (6.3 -
346 6.5) was lower than that with the furanic compounds (6.7), which is attributed to the sequential
347 additions of the acidic phenolic compounds. To assess potential contribution of the low pH to the
348 observed inhibition, SA, VA and HBA were tested again with anolyte at an increased phosphate
349 buffer strength from 50 mM to 100 mM. The pH remained above 6.7 in the runs conducted with
350 a 100 mM buffer. The current under non-inhibited conditions ($I_{non-inh}$) in the 100 mM buffer runs
351 was approximately 1.5-fold higher than that in the 50 mM runs, which is attributed to the higher
352 ionic and buffer strength (Figure S7).^{18,21} However, the current decrease ($I_{non-inh} - I_{inh}$) was
353 comparable under these two conditions at the same SA, VA and HBA concentrations (Figure S7).
354 Thus, the phenolic compounds can result in significant inhibition even at a nearly neutral pH.

355 The results obtained with the individual compounds indicate that all five parent
356 compounds (FF, HMF, SA, VA and HBA) contributed to the inhibition observed with the
357 compounds mixture. Whether these compounds interact synergistically or not was further

358 assessed by comparing the observed extent of inhibition of the mixture to the additive effect
359 calculated from the extent of inhibition of the five components. As shown in Figure S8, the
360 observed mixture inhibition was higher than the additive effect predicted by the effect
361 summation method. Such an increased combined inhibition has been widely reported for furfural,
362 aromatic compounds, and acetic acid in dark fermentation.²²⁻²⁴ It is noteworthy that at a mixture
363 concentration below 3.6 g/L, the five compounds were below their non-inhibitory concentration
364 (i.e., 0.8 g/L as discussed above), but jointly resulted in significant inhibition up to 69% (Figure
365 S8). This result indicates that these compounds, even at low, non-inhibitory concentrations, are
366 of concern for a mixture containing a large number of individual compounds. While the effect
367 summation method can provide important information, it is unreliable for synergy quantification
368 with non-linear dose-response curves.²⁵ Instead, the concentration addition and independent
369 action methods were used for synergy assessment. These two methods assume similar and
370 dissimilar modes of action, respectively.²⁶ The calculated additive inhibition based on the
371 concentration addition method matched the observed inhibition of the mixture at a concentration
372 range of 0.8 - 2.4 g/L (Figure S8), indicating additivity in this concentration range, beyond which
373 calculations were not possible due to the lack of experimental data of individual compounds at
374 higher concentrations. The independent action method, on the other hand, predicted an additive
375 inhibitory effect higher than the observed inhibition of the mixture (Figure S8). Therefore, based
376 on both the concentration addition and independent action methods, there was no synergistic
377 interaction between the five compounds.

378 At a concentration of up to 1.8 g/L, none of the compounds resulted in higher than 20%
379 inhibition of exoelectrogenesis (Figure 3), whereas 1 g/L is typically reported to be highly
380 inhibitory to dark fermentation for H₂ and ethanol production.²⁷ Thus, compared to H₂ and

381 ethanol fermenters, the exoelectrogens in the present study were more tolerant to furanic and
382 phenolic compounds. However, the following two factors should be taken into account. First, in
383 contrast to dark fermentative cultures, which are mostly suspended, the exoelectrogens in the
384 present study resided mostly in the biofilm of the anode electrode, as discussed above. Biofilm
385 formation can create concentration gradients of toxic substances due to mass transfer limitations.
386 Also, sensitive species in the biofilm can be protected from toxic substances by more resistant
387 species which can even detoxify such compounds.^{28,29} Second, the bioanode used in this study
388 had been exposed to the five parent compounds for over 2 years before the inhibition
389 experiments were conducted. As mentioned above, prolonged exposure to the furanic and
390 phenolic compounds led to increased tolerance to these compounds of the bioanode microbial
391 community, including the exoelectrogens.

392 **Inhibitory Effect of Catechol and Phenol.** Catechol and phenol were persistent
393 transformation products in MEC runs conducted with the five compounds mixture. However, as
394 discussed above, the transformation products were not responsible for the observed inhibition by
395 the parent compounds mixture, in which case catechol and phenol were present at a
396 concentration 50% lower than that of each parent compound. It is possible that catechol and
397 phenol are intrinsically inhibitory, but their inhibition was not detected at the low concentrations
398 attained in these tests (below 0.35 g/L). When catechol and phenol were added individually to
399 the bioanode, they caused a current decrease of 56 and 36% at 3.2 and 2.3 g/L, respectively
400 (Figure 3C). Cyclic voltammetry under inhibition also showed decreased current and
401 disappearance of oxidation peaks as compared to that conducted under non-inhibited (i.e.,
402 control) conditions (Figure S4). Therefore, catechol and phenol, tested as representatives of the
403 transformation products, can be inhibitory if present at a high concentration. However, the extent

404 of inhibition by catechol and phenol was lower than that of the three phenolic parent compounds
405 at comparable concentrations (Figure 3B, C). While VA and HBA at 2.4 and 2.2 g/L resulted in
406 80 and 70% inhibition, respectively (Figure 3B), the maximum concentrations of catechol and
407 phenol that could be produced from the above-mentioned VA and HBA concentrations (1.6 and
408 1.5 g/L, respectively) resulted in less than 20% inhibition (Figure 3C). This observation is
409 another evidence supporting the conclusion that the parent compounds were responsible for the
410 observed inhibition by the mixture. Nevertheless, given the possibility of an increased, combined
411 inhibitory effect of compounds at their respective non-inhibitory concentrations, as discussed
412 above, a combination of transformation products (known and unknown) even at relatively low
413 concentrations could exacerbate the inhibitory effect of the parent compounds. Catechol and
414 phenol are widely found in lignocellulose-derived waste streams.^{3,19} Thus, their potential
415 inhibitory effect on exoelectrogenesis should be considered when lignocellulosic residuals are
416 used in bioelectrochemical systems.

417 **Reversibility of Inhibition.** The current, which was decreased significantly in the batch
418 runs conducted with the parent compounds mixture at 3.6 g/L, fully recovered in 6 h after the
419 anode was drained and fresh anolyte added along with the parent compounds mixture at 0.8 g/L.
420 However, after the extended and more severe inhibition during the subsequent batch runs at 6
421 and 8 g/L, the current did not recover in 6 d. In our previous study, inhibition of
422 exoelectrogenesis by the parent compounds mixture at 1.2 g/L was reversed.⁶ Thus, the
423 reversibility of the inhibition may be related to the compound's concentration and the duration of
424 inhibition.

425 With the only exception of inhibition by catechol, higher than 80% current recovery was
426 observed for all compounds with a recovery period varying from 2 to 12 h, after the anode was

427 washed three times and replenished with fresh anolyte and 1 g/L NaAc (Figure S9). No residual
428 inhibitors were detected after the anode was washed. Exoelectrogenesis inhibited by SA, VA and
429 phenol recovered quickly in about 2 h, but it took about 12 h to recover from inhibition by FF,
430 HMF and HBA (Figure S9). Exoelectrogenesis after inhibition by catechol, however, did not
431 recover in 12 h or an extended duration of 7 d (data not shown). The anode was then amended
432 with an electroactive inoculum, and the current increased gradually in the following days. Thus,
433 unlike the other compounds, catechol caused an irreversible inhibition of exoelectrogenesis,
434 which did not recover in 7 d. The difference in reversibility of inhibition and rate of recovery
435 may be related to different modes of inhibition of these compounds.

436 Little is known about the modes of inhibition of furanic and phenolic inhibitors to
437 exoelectrogenesis, but the inhibitory effects of these compounds on dark fermentation have been
438 reported and may shed light on the observed exoelectrogenesis inhibition. FF and HMF are
439 known to inhibit glycolytic enzymes essential to central metabolism of H₂ and ethanol
440 fermenters.⁵ They also lead to significant NADH consumption used in reductive transformations,
441 thus decreasing intracellular levels of NADH.³⁰ FF has been reported to damage yeast DNA.⁵ In
442 contrast to FF and HMF, which primarily target intracellular sites, phenolic compounds
443 compromise cell membrane integrity and functionality by partitioning into cell membranes,
444 changing membrane permeability and viscosity.^{3,19}

445 Based on exoelectrogenesis principles, several of the above-mentioned modes of
446 inhibition may have affected different aspects of exoelectrogenesis, which warrants further
447 investigation at the cellular/molecular level. As mentioned above, the first step in
448 exoelectrogenesis is intracellular metabolism of the electron donor (i.e., acetate in the present
449 study), during which electrons are transferred to NADH. The second step is extracellular electron

450 transfer. The NADH formed in the first step passes through cytochromes in the cell membrane
451 and eventually transfers the electrons to outer membrane proteins, which are able to deliver the
452 electrons to the anode electrode via direct contact, conductive pili or soluble mediators in the
453 anolyte.^{12,13} Because FF and HMF can cause increased intracellular NADH consumption,³⁰ they
454 could negatively impact the NADH yield in the first step of exoelectrogenesis, resulting in less
455 NADH available for current production. As the second step of exoelectrogenesis relies greatly on
456 membrane-bound proteins to perform electron transfer to the anode electrode,^{12,13}
457 exoelectrogenesis can be highly susceptible to phenolic inhibition, which targets cell membranes.

458 It was suggested that aromatic compounds with a $\log K_{ow}$ value in the range 1-5 can
459 partition into the inner layer of biological membranes and cause membrane swelling, leading to
460 loss of physiological functions.³¹ Compounds with a $\log K_{ow} < 1$ or > 5 can typically cause
461 different types of inhibition other than cell membrane disruption.³¹ Thus, SA, VA, HBA and
462 phenol, with $\log K_{ow}$ values of 1.04, 1.43, 1.58 and 1.46,³² falling within $\log K_{ow}$ range of 1 - 5,
463 have great potential to accumulate in cell membranes and risk disrupting membrane functions. In
464 contrast, catechol has a $\log K_{ow}$ of 0.88,³² (i.e., lower than 1), indicating that cell membrane may
465 not be the primary target of catechol. In fact, catechol has been reported to damage cell DNA and
466 inactivate proteins.³³ The possibility that catechol has a different mode of inhibition than the
467 other phenolic compounds is consistent with the above-discussed difference in the reversibility
468 of inhibition. Thus, with $\log K_{ow}$ values lower than 1, catechol, FF and HMF might act similarly,
469 inhibiting intracellular sites, whereas other phenolic compounds with higher $\log K_{ow}$ values (1.04
470 - 1.58) may disrupt cell membranes. Although the mechanism(s) of exoelectrogenesis inhibition
471 warrant(s) further exploration at the cellular/molecular level, such activity was beyond the scope
472 of the present study.

473 Integration of bioelectrochemical systems to the overall process of biofuel production for
474 water management and byproduct conversion has received increasing attention. Understanding
475 potential inhibitory effects of furanic and phenolic compounds on exoelectrogenesis is relevant
476 to improve the performance of bioelectrochemical systems. The present study shows that
477 exoelectrogens had a relatively high tolerance to individual furanic and phenolic compounds.
478 However, a combination of these five compounds at non-inhibitory concentrations in a mixture
479 resulted in significant inhibition, which was primarily caused by the parent compounds, as
480 opposed to their transformation products. Furanic and phenolic compounds caused a different
481 extent of inhibition, and different modes of inhibition may be at play, which can be related to the
482 physico-chemical properties of these compounds. In complex lignocellulose-derived streams,
483 presence of suitable exoelectrogenic substrate (e.g., acetate) and other readily biodegradable
484 components (e.g., sugars), at high levels relative to inhibitory substances, may help ease
485 inhibition. However, waste streams with complex chemical composition may exacerbate
486 inhibitory effects. To overcome such problems, enhanced tolerance of the bioanode microbial
487 community can be achieved by bioanode microbial pre-enrichment in the presence of potential
488 inhibitors. Recognizing that the biotransformation products are much less inhibitory than the
489 parent compounds, continuous-flow MEC bioanode operation can be a means to reduce the
490 inhibitory effect of such compounds.

491 **SUPPORTING INFORMATION**

492 Text S1 and Figures S1 - S9 (PDF). The Supporting Information is available free of charge on
493 the ACS Publications website at <http://pubs.acs.org>.

494 **ACKNOWLEDGEMENTS**

495 We acknowledge funding for this work from the U.S. Department of Energy, BioEnergy
496 Technologies Office under the Carbon, Hydrogen and Separations Efficiency (CHASE) in Bio-
497 Oil Conversion Pathways program, DE-FOA-0000812. The manuscript has been coauthored by
498 UT-Battelle, LLC, under Contract DEAC05-00OR22725 with the U.S. Department of Energy.

499 REFERENCES

500 1. Mills, T. Y.; Sandoval, N. R.; Gill, R. T., Cellulosic hydrolysate toxicity and tolerance
501 mechanisms in *Escherichia coli*. *Biotechnol. Biofuels* **2009**, *2* (1), 1-11.

502 2. Piotrowski, J. S.; Zhang, Y.; Sato, T.; Ong, I.; Keating, D.; Bates, D.; Landick, R., Death
503 by a thousand cuts: the challenges and diverse landscape of lignocellulosic hydrolysate inhibitors.
504 *Front. Microbiol.* **2014**, *5*, 1-8.

505 3. Monlau, F.; Sambusiti, C.; Barakat, A.; Quéméneur, M.; Trably, E.; Steyer, J. P.; Carrère,
506 H., Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit
507 anaerobic mixed cultures? A comprehensive review. *Biotechnol. Adv.* **2014**, *32* (5), 934-951.

508 4. Jones, S.; Holladay, J.; Valkenburg, C.; Stevens, D. *Production of Gasoline and Diesel*
509 *from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case*; PNNL-
510 18284; Pacific Northwest National Laboratory: Richland, WA, 2009.

511 5. Almeida, J. R. M.; Bertilsson, M.; Gorwa-Grauslund, M. F.; Gorsich, S.; Liden, G.,
512 Metabolic effects of furaldehydes and impacts on biotechnological processes. *Appl. Microbiol.*
513 *Biotechnol.* **2009**, *82*, 625-638.

514 6. Zeng, X.; Borole, A. P.; Pavlostathis, S. G., Biotransformation of furanic and phenolic
515 compounds with hydrogen gas production in a microbial electrolysis cell. *Environ. Sci. Technol.*
516 **2015**, *49* (22), 13667–13675.

517 7. Lewis, A. J.; Ren, S.; Ye, X.; Kim, P.; Labbe, N.; Borole, A. P., Hydrogen production
518 from switchgrass via an integrated pyrolysis–microbial electrolysis process. *Bioresour. Technol.*
519 **2015**, *195*, 231-241.

520 8. Borole, A.; Mielenz, J.; Vishnivetskaya, T.; Hamilton, C., Controlling accumulation of
521 fermentation inhibitors in biorefinery recycle water using microbial fuel cells. *Biotechnol.*
522 *Biofuels* **2009**, *2* (1), 7.

523 9. Borole, A. P.; Hamilton, C. Y.; Schell, D. J., Conversion of residual organics in corn
524 stover-derived biorefinery stream to bioenergy via a microbial fuel cell. *Environ. Sci. Technol.*
525 **2013**, *47* (1), 642-648.

526 10. Catal, T.; Fan, Y.; Li, K.; Bermek, H.; Liu, H., Effects of furan derivatives and phenolic
527 compounds on electricity generation in microbial fuel cells. *J. Power Sources* **2008**, *180* (1),
528 162-166.

529 11. Kiely, P. D.; Regan, J. M.; Logan, B. E., The electric picnic: synergistic requirements for
530 exoelectrogenic microbial communities. *Curr. Opin. Biotechnol.* **2011**, *22* (3), 378-385.

531 12. Torres, C. I.; Marcus, A. K.; Lee, H.-S.; Parameswaran, P.; Krajmalnik-Brown, R.;
532 Rittmann, B. E., A kinetic perspective on extracellular electron transfer by anode-respiring
533 bacteria. *FEMS Microbiol. Rev.* **2010**, *34* (1), 3-17.

534 13. TerAvest, M. A.; Ajo-Franklin, C. M., Transforming exoelectrogens for biotechnology
535 using synthetic biology. *Biotechnol. Bioeng.* **2016**, *113* (4), 687-697.

536 14. Klinke, H. B.; Thomsen, A. B.; Ahring, B. K., Inhibition of ethanol-producing yeast and
537 bacteria by degradation products produced during pre-treatment of biomass. *Appl. Microbiol.*
538 *Biotechnol.* **2004**, *66* (1), 10-26.

539 15. Zeng, X.; Borole, A. P.; Pavlostathis, S. G., Performance Evaluation of a Continuous-
540 flow Bioanode Microbial Electrolysis Cell Fed with Furanic and Phenolic Compounds. *RSC*
541 *Advances* **2016**, *6*, 65563-65571.

542 16. Rice, E. W.; Eaton, A. D.; Baird, R. B., *Standard Methods for the Examination of Water*
543 *and Wastewater* 22nd ed.; APHA, AWWA, WEF: Washington, DC, 2012.

544 17. Silva, E.; Rajapakse, N.; Kortenkamp, A., Something from “nothing” – eight weak
545 estrogenic chemicals combined at concentrations below NOECs produce significant mixture
546 effects. *Environ. Sci. Technol.* **2002**, *36* (8), 1751-1756.

547 18. Torres, C. I.; Kato Marcus, A.; Rittmann, B. E., Proton transport inside the biofilm limits
548 electrical current generation by anode-respiring bacteria. *Biotechnol. Bioeng.* **2008**, *100* (5), 872-
549 881.

550 19. Palmqvist, E.; Hahn-Hägerdal, B., Fermentation of lignocellulosic hydrolysates. II:
551 inhibitors and mechanisms of inhibition. *Bioresour. Technol.* **2000**, *74* (1), 25-33.

552 20. Rittmann, B. E.; McCarty, P. L., *Environmental Biotechnology: Principles and*
553 *Applications*. McGraw-Hill: New York, NY, 2001.

554 21. Harrington, T. D.; Babauta, J. T.; Davenport, E. K.; Renslow, R. S.; Beyenal, H., Excess
555 surface area in bioelectrochemical systems causes ion transport limitations. *Biotechnol. Bioeng.*
556 **2015**, *112* (5), 858-866.

557 22. Mussatto, S. I.; Roberto, I. C., Alternatives for detoxification of diluted-acid
558 lignocellulosic hydrolyzates for use in fermentative processes: a review. *Bioresour. Technol.*
559 **2004**, *93* (1), 1-10.

560 23. Zaldivar, J.; Martinez, A.; Ingram, L. O., Effect of selected aldehydes on the growth and
561 fermentation of ethanologenic *Escherichia coli*. *Biotechnol. Bioeng.* **1999**, *65* (1), 24-33.

562 24. Zaldivar, J.; Ingram, L. O., Effect of organic acids on the growth and fermentation of
563 ethanologenic *Escherichia coli* LY01. *Biotechnol. Bioeng.* **1999**, *66* (4), 203-210.

564 25. Kortenkamp, A.; Altenburger, R., Approaches to assessing combination effects of
565 oestrogenic environmental pollutants. *Sci. Total Environ.* **1999**, *233* (1-3), 131-140.

566 26. Cedergreen, N., Quantifying synergy: A systematic review of mixture toxicity studies
567 within environmental toxicology. *PLoS One* **2014**, *9* (5), e96580.

568 27. Quéméneur, M.; Hamelin, J.; Barakat, A.; Steyer, J.-P.; Carrère, H.; Trably, E., Inhibition
569 of fermentative hydrogen production by lignocellulose-derived compounds in mixed cultures. *Int.*
570 *J. Hydrogen Energy* **2012**, *37* (4), 3150-3159.

571 28. Moons, P.; Michiels, C. W.; Aertsen, A., Bacterial interactions in biofilms. *Crit. Rev.*
572 *Microbiol.* **2009**, *35* (3), 157-168.

573 29. Akinoshio, H.; Rydzak, T.; Borole, A.; Ragauskas, A.; Close, D., Toxicological
574 challenges to microbial bioethanol production and strategies for improved tolerance.
575 *Ecotoxicology* **2015**, *24* (10), 2156-2174.

576 30. Ask, M.; Bettiga, M.; Mapelli, V.; Olsson, L., The influence of HMF and furfural on
577 redox-balance and energy-state of xylose-utilizing *Saccharomyces cerevisiae*. *Biotechnol.*
578 *Biofuels* **2013**, *6* (1), 1-13.

579 31. Heipieper, H. J.; Weber, F. J.; Sikkema, J.; Keweloh, H.; de Bont, J. A. M., Mechanisms
580 of resistance of whole cells to toxic organic solvents. *Trends Biotechnol.* **1994**, *12* (10), 409-415.

581 32. Hansch, C.; Leo, A.; Hoekman, D. H., *Exploring QSAR: Hydrophobic, electronic, and*
582 *steric constants*. American Chemical Society: Washington DC, 1995; Vol. 2.

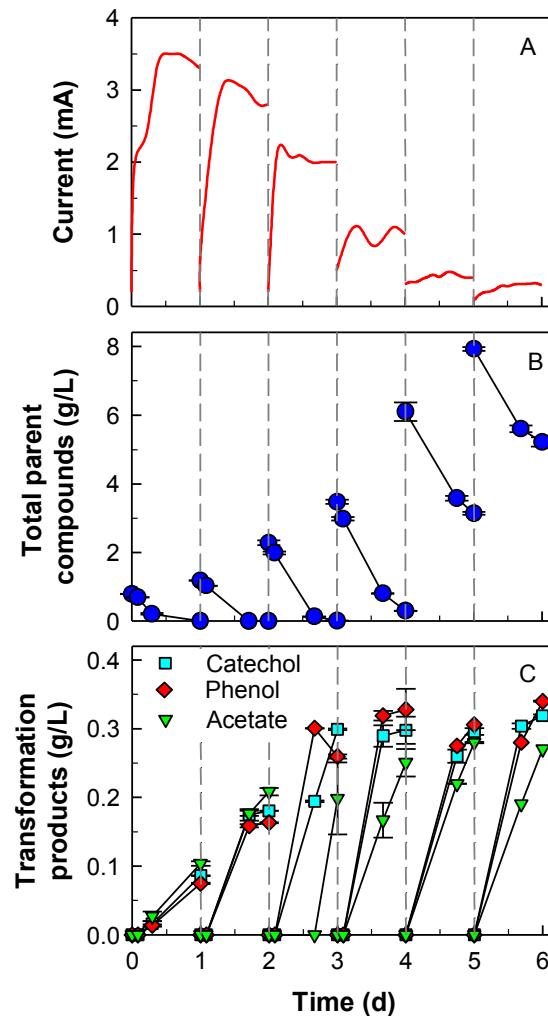
583 33. Schweigert, N.; Zehnder, A. J. B.; Eggen, R. I. L., Chemical properties of catechols and
584 their molecular modes of toxic action in cells, from microorganisms to mammals. *Environ.*
585 *Microbiol.* **2001**, 3 (2), 81-91.

586 **Table 1.** Inhibitory concentration (IC_{50}) and extent of inhibition observed at the highest
 587 concentration of each parent compound attained in batch runs^{a,b}.

Compound	IC_{50}		Highest concentration		Inhibition ^c (%)
	g/L	mM	g/L	mM	
Furfural (FF)	2.7	28	2.8	29	53
5-Hydroxymethylfurfural (HMF)	3.0	24	3.0	24	51
Syringic acid (SA)	1.9	9.6	2.1	11	65
Vanillic acid (VA)	2.1	12	2.4	14	80
4-Hydroxybenzoic acid (HBA)	2.0	14	2.2	16	70

588 ^a Runs conducted with sequential additions of individual compounds at increasing concentrations.

589 ^b All data are mean values with a coefficient of variation lower than 5% ($n = 2$).


590 ^c Inhibition at the highest concentration attained (column 4 and 5).

LIST OF FIGURES

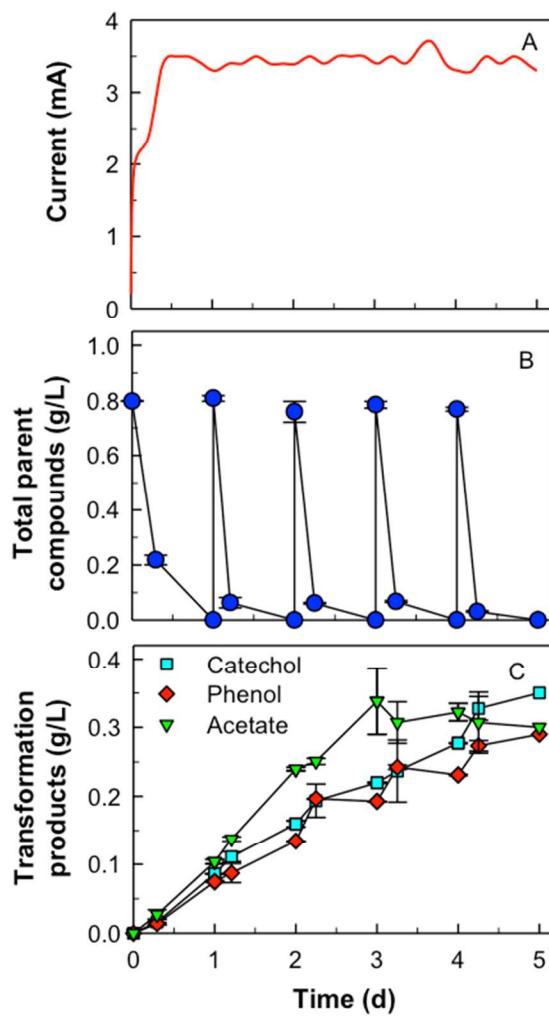

Figure 1. Current (A), total concentration of the parent compounds (B), and transformation products (C) in consecutive batch runs conducted with increasing initial total concentrations of the parent compounds mixture from 0.8 to 8 g/L. Error bars represent standard deviations ($n = 2$).

Figure 2. Current (A), total concentration of the parent compounds (B), and transformation products (C) in a single batch run conducted with repetitive additions of 0.8 g/L parent compounds mixture. Error bars represent standard deviations ($n = 2$).

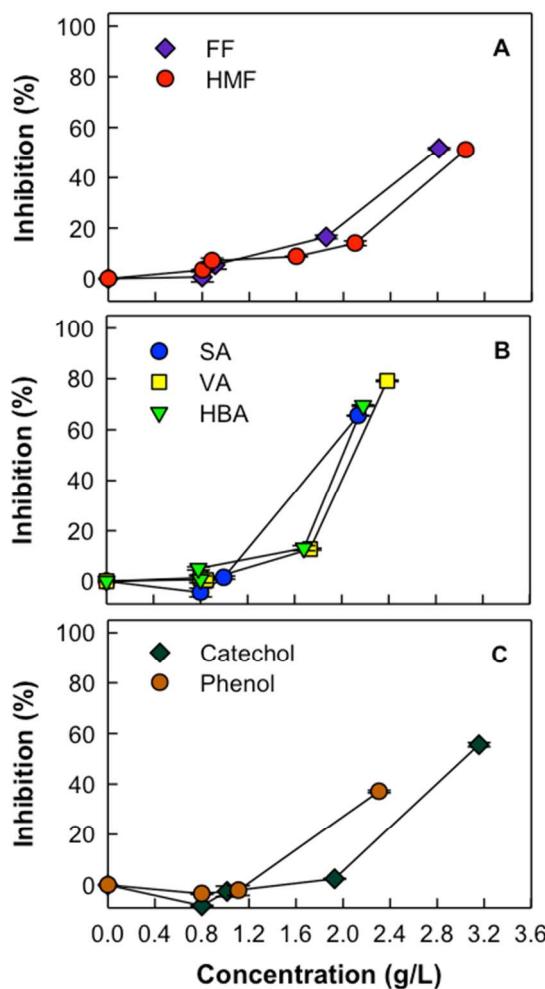

Figure 3. Inhibitory effect of individual furanic (A) and phenolic compounds (B), as well as transformation products (C) on exoelectrogenesis based on current decrease in batch runs conducted with sequential additions of individual compounds at increasing levels. Error bars represent standard deviations ($n = 6$). Abbreviations: furfural (FF), 5-hydroxymethyl furfural (HMF), syringic acid (SA), vanillic acid (VA), and 4-hydroxybenzoic acid (HBA).

Figure 1. Current (A), total concentration of the parent compounds (B), and transformation products (C) in consecutive batch runs conducted with increasing initial total concentrations of the parent compounds mixture from 0.8 to 8 g/L. Error bars represent standard deviations ($n = 2$).

Figure 2. Current (A), total concentration of the parent compounds (B), and transformation products (C) in a single batch run conducted with repetitive additions of 0.8 g/L parent compounds mixture. Error bars represent standard deviations ($n = 2$).

Figure 3. Inhibitory effect of individual furanic (A) and phenolic compounds (B), as well as transformation products (C) on exoelectrogenesis based on current decrease in batch runs conducted with sequential additions of individual compounds at increasing levels. Error bars represent standard deviations ($n = 6$). Abbreviations: furfural (FF), 5-hydroxymethyl furfural (HMF), syringic acid (SA), vanillic acid (VA), and 4-hydroxybenzoic acid (HBA).