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ABSTRACT
We investigate the microscopic mechanisms of the overlap of interfacial
structures in confined fluids and attempt to answer the question whether the
confined structures can be predicted from the original density profiles of
individual solid-fluid interfaces. For that purpose we perform (globally) isobaric-
isothermal (locally, grand canonical) molecular dynamics simulations to extract
not only the axial distribution functions of the water-sites for the uncoupled

graphene-water interfaces, but also those corresponding to the confined aqueous
environments over the interplate range 8<h(A)<28 typically at ambient

conditions. We have tested two (i.e., an arithmetic and a geometric) superposition
approximations for the singlet density of confined water between flat graphene
plates, as well as for a combination of flat and corrugated graphene plates. The
outcome of this study suggests that the answer to the title’s question is a “yes”,
provided that the interplate distance % is large enough to avoid fluid geometric

packing frustration.
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I.  INTRODUCTION
Water confinement between solid surfaces has been the focus of intense research
aimed at unraveling the microscopic behavior of water at solid-water interfaces including

5-10

theoretical developments '™, experimental techniques , and molecular simulation

-2 The outcome of these studies have indicated inter alia that solid-fluid

approaches
interfaces typically induce significant changes in the microstructure (e.g., stratification),

26-30
,a

dynamics (e.g., slow down), and response functions (e.g., enhancement) of water
behavior ascribed to the clear interaction asymmetry between the fluid-fluid and surface-
surface interactions, resulting from the presence of the solid surface and translating into
inhomogeneous density (and consequent fluid property) distributions. These
inhomogeneous distributions usually exhibit oscillatory decay to their corresponding bulk
values, with a periodicity commensurate with the fluid molecular diameter, and usually

19, 31-37

within a few molecular diameters from the interface , unless they encounter and

overlap with other inhomogeneous regions, i.e., with the consequent formation of
confined environments ***.

Obviously, the experimentally observed and molecular-based simulated water
density profiles (i.e., singlet axial distributions) depend not only on the type of solid

48-54 .
, i.e., on the surface

substrate *'* but also on the topography of the solid surface
wettability resulting from the hydrophilic-hydrophobic nature of the fluid-substrate
interactions. Recent advances in the experimental determination of the structure factor of
fluids under confinement > have put in the spotlight the need for an improved
understanding of the behavior of anisotropic pair distribution functions and their link with
the corresponding singlet distributions concerning purely interfacial as well as confined
aqueous environments. Moreover, the value of the interfacial data from x-ray reflectivity

59-60
can be

(XRR), ** neutron reflectivity (NR), and surface force apparatus (SFA)
greatly magnified if they can be translated into density profiles for the eventual confined
environment counterpart, as predictions for the overlapping of interfacial structures or as
tests of accuracy of the approximations underlying the interpretation of raw data from
confined fluid XRR experiments >>*°.

In this context the question we would like to address here regards the microscopic

understanding of such an overlapping process and whether the resulting inhomogeneous
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density profile of the confined polar fluid can be described in terms of the original
inhomogeneous density profiles near the solid-fluid interfaces under the same fluid
chemical potential at the prevailing fixed state conditions of temperature and pressure
(see Figure 1). For that purpose, in section II, we introduce some essential statistical
mechanics background and discuss the ideas behind the test of several approximations to
represent the actual inhomogeneous density distribution of water under graphene plate
confinement. In section III we briefly describe the atomistic models and the molecular-
based simulation method underlying the determination of the microstructural information
in terms of water-site axial density profiles and normalized singlet distribution functions.
Then in section IV we discuss the resulting simulated density profiles in the context of
the two superposition approaches, and close the paper in with a summary of the most
relevant findings in section V where highlight the realism and limitations of the
superposition approximations to describe the actual axial density profiles of the water

sites in graphene confined aqueous systems.

II. FUNDAMENTALS
The knowledge of the density profile p(z) of a fluid as a function of distance z

from a solid surface provides essential information to build the thermodynamics of the

solid-fluid interfacial system, in particular, the so-called surface adsorption excess, i.e.,

_[ p(z)— pb

05h h (1)
= | lp@=-p,)dz+ | _[pth-2)-p,]dz

where p, = p(h— large,T,u) denotes the bulk density, p(z)= p(h—z) represents the

“left-confined” and “right-confined” fluid density profiles, and “large” means a few

fluid’s molecular diameters. Moreover, note the limiting condition of Eqn. (1), i.e.,

lim I'=T,,+T,,, . (2)

h—large

If the left and right interfaces are identical, the total adsorption excess is simply the
double of that for the free-standing interfaces. In this case Eqn. (2) highlights the fact that

the solid-fluid interfacial structures of the left- and right-plates become identical as soon
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as the fluid local density p(0.5h)= p, and stays the same for larger inter-plate distance

h, i.e., the interfacial structures become uncoupled. This condition poses a logical
follow-up question of whether it is possible to estimate the inhomogeneous density
profiles of confined fluids from individual density profiles of free-standing solid-fluid

interfaces even for considerably shorter distance between the interfaces, i.e.,

?
p“(’"f(z)=f[pleﬁ(z)’pright(h_Z)] (3)

where f[ . ] represents a potential functional connection between the interfacial density

profiles of the free-standing plates and the confined counterparts resulting from the
overlapping of two approaching solid-fluid interfacial structures as illustrated in Figure 1.

Physically motivated approximations underlying the general relation in Eqn. (3)
can be derived by considering the basic factors influencing the density distribution of
fluids in external potentials. Given the nature of the systems under consideration, the
confined water environment can be described in terms of the grand canonical ensemble,

i.e., according to the grand potential Q=U—-TS—uN where U, S, and U are the

internal energy, entropy and chemical potential characterizing the system comprising N
fluid particles at the temperature 7 °'. Moreover, considering that the solid surfaces
()= Dy, (2)+ P

behave as an external potential @ (h—2z), where ®_(---) represents

ext right

the o —plate /fluid interaction potential in the z— direction and h is the interplate

distance, the resulting inhomogeneous density distribution becomes defined by the

functional differentiation of the grand partition function , i.e.,

8Q/¢(z) =-p(z) (4)

with ¢(z)=u—®,_(z), where the chemical potential u of the fluid confined in external

ext

potential @, (z) is uniform across the system and equal to that of the bulk fluid at the

ext

. .. 63 -
same thermodynamic conditions, ” i.e.,

w=kTIn[p,A’|-kTc)” =kT In[ p(2)A’ |+ @, (2) - kT (2) (5)
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Here A=+/’B/2mn is the thermal de Broglie wavelength, S=1/kT , and ¢"(z)

represents the one-particle direct correlation function. For unconfined (bulk) system the

direct correlation function is constant and proportional to the excess chemical potential,

—kTc” = u*, and in confined systems it is determined purely by fluid-fluid interactions,

which can be considered as resulting in an effective position-dependent potential

w(z)=-kTc" (z). Accordingly, Eqn. (5) can be re-written for the confined fluid densit
y

profile as follows,

p(2)=p,exp B~ B @, (2)+0(2)} = p, exp[~Pw(z)] (6)

PMF
where w(z) is the total potential of mean force acting on the fluid molecules. For the

purpose of this article we will assume that the external potential ®__(z) is unknown (as

ext

in experimental systems) and we want to predict p(z) of the confined fluid only from the

knowledge of the individual interfacial profiles and from the known thermodynamic
properties of the bulk fluid. The only assumption we have on the external potential is that
the contributions from the two opposing surfaces are additive, as suggested earlier.
Possibly the simplest approximation allowing us to estimate the confined fluid
profiles is to assume that the total potential of mean force is additive in the same way as

the external potentials, i.e., w(z)=w,,(z)+w,,, (h—2). Defining the axial distribution

right
function as g(z)=p(z)/p,(2), the additivity of w(z) leads to the geometric superposition

approximation, i.e.,

Guony () = exP[ =B { W, (2) + W, (A= 2)} | = 810 () X 8100 (= 2) (7)

For small external potential perturbations leading to small potentials of mean force, the
exponential in Eqn. (7) can be written as a series expansion and, after retaining the first-

order term, the axial distribution function of the confined fluid can be written as follows,

8eonf (2)=1- ﬁwzeﬁ (Z) - ﬁwn‘ghr (h - Z) = gleft(Z) + 8rigns (h-2)-1 ®)
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This approximation can be expected to perform reasonably well only for very small
perturbations, such as in the case of relatively distant confining surfaces. It is easy to see
that combining large density fluctuations that are present near the solid-fluid contact
according to Eqn. (8) may lead to unphysical predictions of negative fluid densities.

The arithmetic superposition in Eqn. (8) bears some similarity with the
approximation underlying the electronic density profiles in the general density functional

formalism for electron gases *+°

, in particular its first order approximation according to a
statistical perturbation approach, i.e., Eqn. (3) of Gombas * and Eqn. (2) of Gaydaenko
and Nikulin ¢’. Moreover, the description of the PMF profile involving the geometric
superposition in Eqn. (7) is a particular variant of Kirkwood’s original superposition
approximation °® and becomes equivalent to the first order approximation introduced by
Verwey and Overbeek ® to describe the electric potential of an electrolyte between two
parallel flat plates as the overlapping of two non-interacting electric double layers (see
Eqns. 32-33 of Verwey and Overbeek). These are encouraging signs on the plausible
realism of the representations embedded in the approximation given by Eqns. (7)-(8).
While the preceding relations are simple and practical, it should be born in mind
that they are limited by the assumption of additivity of the total potential of mean force.
According to the examples given in the following section the proposed relations are
reasonable for the investigated cases, yet we should cautious when applying them to the
cases of extreme confinement accommodating only a single layer, in which crystal-like
structuring may occur and the assumption of the overlap of two fluid-solid interfaces may

not be fully justified.

1.  MODELS AND SIMULATION METHODOLOGY

The approximate relations introduced in the previous section were tested by
means of isobaric-isothermal molecular dynamics simulations. The simulated system
comprised 2048 water molecules described by the SPC/E water model "° and the
thermodynamic condition T=298K and P=latm were maintained using our own
implementation of a Nosé-Poincare symplectic integration algorithm "' with a 2.0fs

time-step size. The tetragonal simulation box with dimensions L =2L =2L,, and

subject to 3D periodic boundary conditions, contained two immersed identical (in

ACS Paragon Prus Environment



©oOoONOOPAWN =

The Journal of Physical Chemistry Page 8 of 30

registry) graphene plates, with dimensions L _=18.744 by L = 20.28 4 , approximately

equidistant from the center of the box while kept fixed in space and separated by an

interplate distance 8 < h(A) <28 during the simulation. All simulations comprised 20 ns

of phase space trajectory after a 0.5ns re-equilibration from previous runs involving

similar state conditions, interplate separations, or plate configurations. add here the equilibration statement
Each graphene plate comprised 136 atomistic carbon sites described as Lennard-

Jones spheres (&../k=28K and o, =3.404 ***)in the xy—plane, and corresponding

to a 10% in-plane biaxial strained condition of the original graphene plates characterized

by an adjacent carbon-carbon distance of 1.42A, where these dimensions are always

addd here the water- gra&hene potent|al info..
smaller than the (L,,L,)—dimensions of the fluctuating simulation box. Consequently,

these aqueous environments were able to behave effectively as grand canonical systems,
i.e., by exchanging water molecules with the surroundings to equilibrate the system so
that the chemical potential of water is the same everywhere. In fact this simulation
scheme allowed us to analyze simultaneously the purely interfacial (i.e., outer left and
right) and the confined (i.e., the overlapping between the approaching inner left and right
interfacial) microstructures as we changed the interplate distance /.
here need water-graphene interactions and other simulation details

IV.  DISCUSSION OF RESULTS

In order to evaluate the accuracy of the superposition approximations, Eqns. (7)
and (8), for the axial water distribution functions under confinement, we compared the
actual distribution functions for the water under theﬂatf;’at graphene plate confinement
against the corresponding predicted profiles according to the geometric superposition as
illustrated in Figures 3-5 (and Figures S1-S3 in the Supporting Information document) for
the interplate distance range 8 < i(4) <28 . This comparison provides a strong support of
the validity of Eqn. (7) as an accurate representation of the density profiles of confined

water between flat graphene plates for #>104 . For interplate distances h<104 ,

Figures 3-4, the geometric superposition becomes less accurate resulting from the
packing frustration ° because the confined space between graphene plates cannot

accommodate an integer number of adsorbed water layers, typically at interplate
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distances similar to the fluid’s molecular size, as the left- and right-adsorbed water layers
overlap.

Note that the accuracy of the geometric superposition approximation is clearly
preserved with changes of temperature and pressure as clearly illustrated in Figures S4-
S5, in the Supporting Information document, where we compare the actual distributions
for the oxygen and hydrogen water sites against the predicted geometric profiles for
T'=298K and P=100bar as well as T=318K and P=1bar for the representative
interplate distance #=20A4. Moreover, as illustrated in Figure S6 of the Supporting
Information document, we summarize the 7 — P effects on the predicted site-density
profiles, the evolution of the confined water structure is the one expected, i.e., a small but
noticeable increase of the water adsorption under an isothermal compression, and a clear
decrease of the water adsorption under an isobaric temperature increase ***.

In contrast to the predicted behavior of the geometric superposition, Figures 3-5
complemented by Figures S1-S3, the arithmetic superposition representation provides
unphysical axial distribution profiles for distances # <104 , i.e., negative, positive, and

finite correlations within the solid-fluid excluded core distances (volumes) as illustrated

in Figures 6-7. Yet, for #>104 the arithmetic superposition representation becomes as
accurate as the corresponding geometric one (compare Figures 5 and 8), despite the
significant difference between the two approximations as discussed in section II.

Given the outcome from the analysis of overlapping interfacial structures for
identical (in registry) “ff” graphene surfaces (Figure 2a), it appears enlightening to test
the above superposition schemes, i.e., Eqns. (5) and (7), for either pairs of corrugated
(Figure 2d-e) or dissimilar surfaces such as the combination of flat and corrugated
graphene plates (Figure 2b-c). For this task we have performed additional molecular

simulations of the previous systems, now comprising an unstrained flat graphene surface

paired to a corrugated plate with dimensions L =17.444 by L =18.444, with the

. . . . 25 .
corrugation function described previously , i.e.,

oz,(x,,y)=a, cos[Zir(xi —x,)/(xu —xl)]cos[Zﬂ(yi —y,)/(yu —yl)] 9)
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positive [negative]
where 6z,(x;,y,)>0 [8z,(x;,y;) <0] describes the “ p” [“n”] perturbation of the location

of the z—coordinate of the i—carbon atom located at Z”.ght(xi, y,) in the original flat

graphene surface * /. This corrugation is characterized by the amplitude a = 1.04,
while (xu—x,) L. and (y” )=Ly describe the upper most (u ) and lowest (/)

location of a carbon site in the xy — plane (see Figure 2).

According to this corrugation pattern we built four special slit-pore

configurations, i.e.,

leﬂ

(xl ,y, ) Zleft ;4]?)77 f' t (10)
conliguration
7" (X9 = Zyggn +02,(x,53,)

where “fp” stands for flat-positive 0z,(:-+), as illustrated in Figure 2b,

leﬂ (x,,y,)= Zief ' _
“fn” configuration (11)

h
Zing t('xi’yi) = Zright — 6Zi(xi’yi)

where “fn” represents the flat-negative dz,(---), as illustrated in Figure 2c,

left

(xz’yz) Zleft 6Z (x,’y,)

rlght

“np” configuration (12)
(x,’)’,) anhf +6Z (xz’yl)

where “np” stands for negative and positive dz(--+), as illustrated in Figure 2d,

left

(xz’yz) Zleft_i—6Z (x,’y,)

rlght

“pp” configuration (13)
(X;5Y:) = Zygge +02:(x,,Y;)

where “pp” represents the positive and positive dz,(---), as illustrated in Figure 2e.

Moreover, in Eqns (10)-(13) z [Z,0] denotes the axial location of the originally left

left
[right] flat graphene surface in the tetragonal simulation box. Note that, strictly speaking,
in order to obtain the profiles of the axial distribution functions for the “fn” [“fp”]

according to the Eqns. (6) and (8) we must overlap the outer interfacial structures of the
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“fp” [*fn”] slit pore configuration, ie., g (2)=g,(z) [ §(2)=g,(z) ] and
gr(2)=g,,(h—2)[gx(2) =g, (h—2)], because the inner side of the right plate surface in

the “fp” [“fn”] slit pore configuration is the mirror image of its outer side. Interestingly,

as illustrated in Figure S7 for h = 204, we find that 8,(2) = g,(2) so that we can assume

with confidence that,

8.(2)=g,(2)=g,(2)

(14)
gr(2)= gﬁq(h_z): gﬁ;(h_z)

Moreover, according to the results in Figures S8-S9, where we plot the comparison

between the outer axial density distributions for the left and right plate interfaces

29 13

involving the “fp”, “pp” and “np” configurations at h=20A, as well as the unstrained
flat and corrugated free-standing plates (i.e., “/f” and “pp” with h=04), we also have
that,

gfn (Z) = gfp (Z) = pﬁee-stunding (Z)

(15)
gfn (h - Z) = g_fp (h - Z) = p_free—standing (h - Z)

According to the observed behavior, highlighted by Eqns. (14)-(15), it is not surprising to
find that the geometric and arithmetic superposition representations are able to describe
accurately the inhomogeneous density profiles of water confined between dissimilar
graphene surfaces, such as the “fp” plate configuration as illustrated in Figurel 9-10 for
h=20A.

As demonstrated recently by Driskill ef al. * the graphene-water interactions, and
consequently, the resulting interfacial structure depends on the nature of the supporting
substrate whose effect has been interpreted in terms of wetting transparency or

5- . . .
777 From an experimental perspective, there are no “free-standing”

translucency
scenarios, but supported graphene plates as typically encountered in any SFA setup.
Therefore, we should expect that the resulting inhomogeneous inner density distribution
might also depend on the thickness and nature of the solid plate and/or supporting
substrate, i.e., as a result of the outer-to-inner plate/support-mediated fluid correlations '*.

For such a case the observations embodied in Eqns. (14)-(15) will obviously not apply.
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V. FINAL REMARKS

In this report we have discussed the microstructural evolution underlying the
overlapping process between two approaching uncoupled (flat and/or corrugated)
graphene-water interfaces and addressed whether the resulting inhomogeneous density
profile of the confined water can be described in terms of the original inhomogeneous
density profiles near each of the graphene-water interfaces under the same prevailing
fixed state conditions of temperature and pressure.

Toward that goal we extracted the axial distribution functions of the water-sites
not only for the uncoupled graphene-water interfaces, but also for the corresponding

confined environments over the interplate range 8 < h(A)< 28 at ambient conditions, and

used those profiles to test the arithmetic and the geometric superposition approximations
for the prediction of the axial density distribution of confined water between flat,
corrugated, as well as for a combination of flat and corrugated graphene plates.

The analysis of the simulation results in conjunctions with the superposition
predictions suggest that both, arithmetic and geometric, representations perform

remarkably well for interplate distances larger than that representing the onset of fluid
packing frustration, i.e., h < 104, at which the innermost adsorbed water layer at the

right- and left-graphene plates starts overlapping.
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FIGURE CAPTIONS

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Schematic representation of the formation of a confined fluid as a result of

approaching solid-fluid interfacial regions, where p,(2)= P} .. anaing(2) and

Pr(D = P e sianding (B = 2) -

Schematic representation of the three types of slit pores: (a) in registry flat
plate-flat plate configuration, (b) flat plate plus a “p”-corrugated plate (aka
“fp”) configuration, (c) flat plate plus a “n”-corrugated plate (aka “fn’’), (d) an

669

“n”-corrugated plate plus a “p”-corrugated plate (aka “np”’) configuration, and
(e) two “in registry” “p”-corrugated plates (aka “pp”) configuration, with
preserving confined volume at a fixed interplate distance /.

Comparison of water-site axial distribution functions between the geometric
superposition (i.e., left-right overlap) outcome and the actual behavior for
confined water in a strained “ff” graphene plate configuration at an interplate
distance # =84 at ambient conditions.

Comparison of water-site axial distribution functions between the geometric
superposition (i.e., left-right overlap) outcome and the actual behavior for
confined water in a strained “ff” graphene plate configuration at an interplate
distance #=10A4 at ambient conditions.

Comparison of water-site axial distribution functions between the geometric
superposition (i.e., left-right overlap) outcome and the actual behavior for
confined water in a strained “ff” graphene plate configuration at an interplate
distance 4 =204 at ambient conditions.

Comparison of water-site axial distribution functions between the arithmetic
and the geometric superposition outcomes for confined water in a strained “ff”
graphene plate configuration at an interplate distance #=84 at ambient
conditions.

Comparison of water-site axial distribution functions between the arithmetic

and the geometric superposition outcomes for confined water in an “ff”
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Figure 8:

Figure 9:

Figure 10:
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graphene plate configuration at an interplate distance #=104 at ambient
conditions.

Comparison of water-site axial distribution functions between the arithmetic
superposition outcome and the actual behavior for confined water in a strained
“ff* graphene plate configuration at an interplate distance 7 =204 at ambient
conditions.

Comparison of water-site axial distribution functions between the geometric
superposition outcome and the actual behavior for confined water in an “fp”
graphene plate configuration at an interplate distance #=204 at ambient
conditions.

Comparison of water-site axial distribution functions between the geometric
and arithmetic superposition outcomes for confined water in an “fp” graphene

plate configuration at an interplate distance 4 =204 at ambient conditions.
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Figure 1
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Figure 3
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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Figure 9
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Figure 10
3 | | |
2.5 | O — site ]
S 2F _
=
S 15L _
2
o It |
8
5 051 _
2
E ol
Rz ) arithmetic overlap
o I
chs — — geometric overlap
P .
S H —site
0 1.5 i
R7
o 1| |
1T
=
0.5 | i
h=20A
0 ! | ! ]
0 5 10 15 20

axial distance (A)

ACS Paragon ﬁgs Environment



