

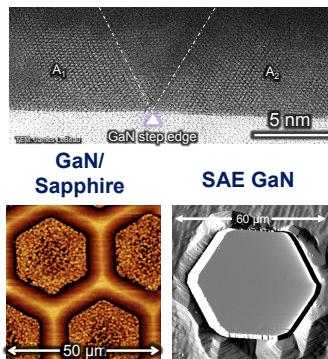
Reliable High-Performance Gate Oxides for ~~wide~~ Band Gap Devices

SAND2015-7534C

Exceptional
service
in the
national
interest

Jon Ihlefeld,¹ Elizabeth A. Paisley, Michael Brumbach,¹ Christopher T. Shelton,² Robert Kaplar,¹ Michael King,¹ Andrew Armstrong,¹ Jon-Paul Maria,² and Stanley Atcitty¹
¹ Sandia National Laboratories, ² North Carolina State University
Contact Information: jihlefe@sandia.gov or satcitt@sandia.gov

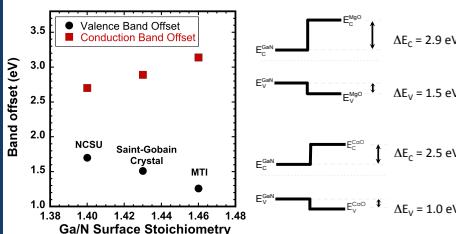
Motivation


- Wide band gap semiconductor devices can improve the performance of energy conversion systems.
- Voltage control, normally-off devices based on GaN have seen limited deployment
- Lack of deployment stems from issues related to switching stability/repeatability/reliability and conduction.
- All of these issues are related to defects in the insulating component of the device (gate oxide/ passivation layer)

FY15 Activities

- Identify means to reduce threading defect density in GaN
- Quantify band offsets at MgO/GaN interface
- Quantify interface trap density at MgO/GaN and CaO/GaN interfaces

Eliminating GaN Interface Defects


- GaN surface steps lead to defects in insulating layer – potential source of breakdown and traps
- Selected area epitaxy (SAE) of GaN and controlling growth via supersaturation allows for growth of atomically flat material over large areas

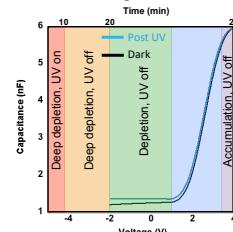
SAE eliminates step edges

Band Structure: MgO/GaN

- Band structure measured using X-ray photoelectron spectroscopy in molecular-beam grown MgO/GaN
- Several sources of GaN were investigated to identify design principles needed for different GaN device manufacturers

Band offsets > 1 eV

- Suitable for both *n*- and *p*-type devices


Dielectric GaN	VBO (eV)	CBO (eV)	CBO
La ₂ O ₃	0.63	1.5	SNL
Gd ₂ O ₃	0.41	1.6	SNL
MgO	1.5	2.9	SNL
CaO	1.0	2.5	NCSU
Ga ₂ O ₃	1.4	0.1	[1]
SiO ₂	2.4	3.0	[2]
Al ₂ O ₃	1.8	1.3	[3]
HfO ₂	0.5	1.5	[2]

¹Wei, W., *Nanoscale Res. Lett.*, 7, 2012. ²Suri, R. *Dissertation*, NCSU, 2010. ³Yang, J., *J. Appl. Phys.*, 112, 2012.

Electronic Properties: CaO & MgO/GaN

- MgO/CaO (30 nm)/GaN ($N_d = 2 \times 10^{18} \text{ cm}^{-3}$) devices prepared and C-V and I-V characteristics measured
- UV-assisted C-V technique utilized
 - Provides one of the most conservative and complete measures for D_{it}

MgO/GaN

Average D_{it} across band gap:

$$D_{it} = \frac{C_{ox}}{qA} \left(\frac{\Delta V}{E_g} \right)$$

MgO $D_{it} = 4 \times 10^{11} \text{ eV}^{-1} \text{ cm}^2$

CaO $D_{it} = 3 \times 10^{11} \text{ eV}^{-1} \text{ cm}^2$

CaO/GaN

Dielectric GaN	D_{it} ($\text{eV}^{-1} \text{ cm}^2$)	Reference
La ₂ O ₃	8×10^{11}	SNL
MgO	4×10^{11}	SNL
CaO	3×10^{11}	SNL
Ga ₂ O ₃	4.2×10^{11}	[4]
Si ₃ N ₄	5×10^{12}	[5]
Al ₂ O ₃	3×10^{12}	[6]
Al ₂ O ₃	5×10^{11}	[7]
SiO ₂	2×10^{11}	[8]

¹Chen, Y., *Semicond. Sci. Technol.*, 25, 2010. ²Atcitty, S., *J. Appl. Phys.*, 106, 2009. ³Sawada, T., *Appl. Phys. Lett.*, 86, 2005. ⁴Ostermaier, C., *Phys. Status Solidi C*, 5, 2008. ⁵Measured using Terman method

⁶Atcitty, S., *Appl. Phys. Lett.*, 86, 2005. ⁷Mitsuda, U., *J. Appl. Phys.*, 106, 2009. ⁸Sawada, T., *Appl. Surf. Sci.*, 159-160, 2000.

FY15 Publications and Impact

- D_{it} values are among the lowest reported for a gate insulator on GaN
- Positive threshold voltages observed
 - Implications for safe (enhancement mode, normally off) operation
- Low leakage current in both depletion and accumulation
 - High performance operation with efficient switching

FY15 Publications and Impact

- E.A. Paisley, M. Brumbach, A. Allerman, A. Armstrong, R. Kaplar, A. Baca, S. Atcitty, and J.F. Ihlefeld, "Spectroscopic investigations of band offsets of MgO/AlGaN heterostructures with varying AlN content," *Applied Physics Letters*, Accepted
- Developing a new understanding of semiconductor surface chemistry and impact on device properties (band offsets)
- Developed growth techniques for smooth GaN with low surface and threading defect concentrations
- Have shown that MgO and CaO on GaN have among the lowest reported interface defect state densities**
 - Will minimize issues resulting in performance limitations in GaN enhancement-mode devices.**

FY16 Goals and Milestones:

- Complete D_{it} study for MgO and CaO on GaN
- Prepare and measure performance of lattice matched MgO-CaO alloys on GaN
- Investigate MgO-CaO on defect-free GaN to find a maximum performance limit
- Investigate industrial partnership for device preparation

We gratefully acknowledge Dr. Imre Gyuk and the DOE Office of Electricity Energy Storage Program for funding this work

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SANDIA NUMBER 2015-000004P

