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Objectives

 Leverage advances in  PRA, simulation, and machine learning 
can be used to build comprehensive understanding of 
accidents, before they happen.

 Explore how to use that understanding to improve used 
during severe accident management 
 Near term: Identify which plant parameters are most helpful in a 

Sodium Fast Reactor (SFR) design

 Long term: Evidence-based, automation-assisted guidance; Build 
detailed, context-specific severe accident management guidelines 
(SAMGs)
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Challenge: Managing severe accidents is 
difficult
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• Plant Design: Current sensors were not designed for accident 
monitoring

• Poor Guidance: Lack of procedures and training to guide 
information gathering and diagnosis 

• Complexity/Dynamics: Rapid scenario evolution, short 
response window

Information 
limitations:

• Understanding: Developing a “big picture” from partial 
information

• Filtering: Deciding which information is relevant to the 
scenario

• Prioritizing: Deciding which information is worth expending 
limited resources to obtain

Cognitive 
challenges:

Fukushima response was especially challenging due to severe 
information limitations plus inherent human limitations



Problem Space: Human Response

Diagnosis Response Planning

Source: Chang and Mosleh 2007
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Enable queries for specific parameters, faults, under uncertainty

Methodology Overview
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Encode results in a generic knowledge base

Simulate reactor physics for each scenario

Goal: Predict range of plant 
parameters for known system faults

Tool: SAS4A, MELCOR, 

Generate spectrum of accident scenarios 

Goal: Identify potential accident scenarios 

Tool: DDET/ADAPT simulation scheduler

Goal: Build a map between known 
parameters and known faults 

Tool: Bayesian Networks

Goal: Enable users to diagnose specific 
faults, identify key indicators, ask “what-if”

Tool: Probabilistic queries, differential 
diagnosis, value of information

Best add’l
parameter 

checks

Prob. of faults



Tools

 SAS4A (Reactor simulator)
 Argonne’s severe accident code for sodium & lead reactors

 Proceeds slightly beyond core damage but does not model 
radionuclides and/or containment response

 ADAPT (Discrete Dynamic Event Tree scheduler)
 Sandia/Ohio State DDET scheduler

 Simulates multiple accident sequences by branching based on physics 
calculations.

 GeNIe (Bayesian Networks)
 University of Pittsburgh BN tool w/diagnostic features.

 Bayesian Networks (BNs) are used to support diagnosis activities in a 
range of industries
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The generic knowledge base (BN) contains nodes and 
[prior] probabilities

• Components of the system, 
• How physical conditions manifest through symptoms, 

test results, parameter changes, etc.

Users make observations about known symptoms or 

test results for a specific situation/person

Observations are propagated (forward and backward) 
through the network to provide posterior probability of every node 
(diseases, symptoms, tests).

Posterior probability can be used for reasoning 
(e.g., ranking diseases, selecting tests, calculating value of 
information for tests)

How BNs support diagnosis
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Assisted diagnosis (real-time, iterative)

8

Prior (Generic day)

Posterior (Condition-specific)

A single key observation dramatically changes belief about 
ECCS status and value of additional tests

1.0% chance of SRV failure
0.1% chance of DV failure
0.1% chance of FV failure

~100% chance of SRV failure
<0.1% chance of DV failure
<0.1% chance of FV failure

Suggests checking 
RPV level (t0), 
RPV pressure (t0), 
Core Exit temp (t0)

Suggests checking 
RPV level (110, 
t157, t93)

Observation: RPV Level (time 0) = low

Implemented in GeNIe: http://genie.sis.pitt.edu/



Sodium Fast Reactor design

 Generic Small SFR design 
 ~100 MW
 4 Electromagnetic Pumps

 Large earthquakes creates 
the potential for:
 SCRAM Failure
 Sinusoidal core motion
 Sinusoidal control rod motion
 Primary decay heat removal 

failure

 Accident management 
options
 Increase and/or decrease 

pump flow rates to reduce 
fuel temperatures

SAND2013-8096C
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Case study/problem description

 Create proof-of-principle BN model which can 
differentiate between

– Unprotected Transient Overpower (UTOP) 

– Protected Transient Overpower 

– Unprotected Loss of Flow and 

– Protected Loss of Flow 

 Provide insight into operator deployment of accident 
mitigation strategies (e.g., effectiveness of 
overworking the coolant pumps to address UTOP)
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Proof-of-concept model for LOF and TOP 
diagnosis
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Equipment 
status

Plant 
Parameters 
at various 
times

Accidents

BN-based tool can be used to provide insight into instruments are most essential 
for diagnosis of specific accidents. This information can provide insight into, 
reactor design e.g.,  which instruments need to be accident hardened



Input data

 Equipment & Accident 
parameters: assigned by experts 
based on available historical 
data on SFRs

 Plant parameters: 7188 
scenarios from coupled 
DDET/SAS4A
 Branching parameters include: 

TOP magnitudes, LOF magnitude, 
BOP availability (LOHR), Scram 
state, DRACS state, Inherent 
Reactivity Response…
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Plant parameter data parsing

 7188 scenarios from coupled DDET/SAS4A

 Parsed into 100 times steps using SAS4a data parser
 Steps 0-24: First 6 minutes of the accident (~15s steps)

 Steps 25-49:  Minutes 6-60 (~2minute steps)

 Steps 50-74: Hours 1- Hour 10 (~20 minute steps)

 Steps 75-99: Hour 10-Hour 100 (~3.5hr steps)

 Plant parameters each binned as low/medium/high 
(each 33% of the range of that parameter).
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Diagnosis of Protected TOP: Prior
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Diagnosis of protected TOP
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High Hot Pool 
Temperature

Reduced Flow



Diagnosis of a Loss of Flow
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High Hot Pool 
Temperature

Late Low Cold Pool 
Temperatures



Instrument insights from the model

 Experiment with model to get 
insights on value of specific 
indicators (in progress). 
Example insights:
 Power and Reactivity are 

redundant
 Reactivity is a better diagnostic 

indicator than Power
 Hot pool temperature 

(T_Coolant) has high diagnostic 
value for both LOF and TOP

 Cold Pool Temperature has 
better diagnostic value for LOF
than TOP

 SCRAM status provides no 
additional info for power-to-
flow ratio.
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Loss Of Flow  Diagnosis

Transient Overpower Diagnosis



Conclusions

 Preliminary model illustrates possibilities for using 
Dynamic PRA offers insight into accident diagnosis 
and management
 Requires multiple parameter inputs (no single indicator for diagnosis)

 Preliminary insights match expectations (redundancy between 
power/reactivity, high diagnostic value for T_coolant)

 Outstanding questions around: scalability (diversity of 
scenarios, amount of equipment modeled); optimality of 
different discretization schemes  

 Ongoing work focusing on testing predictions of 
models against additional simulations.
 Which discretization scheme is 
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Thank you!

Katrina Groth
Risk and Reliability Analysis
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12 cycles, fails closed, low decay power
12 cycles, fails closed, high decay power
12 cycles, fails open (high or low power similar)
44 cycles, fails closed, low decay power
44 cycles, fails closed, high decay power (containment overpressure)
44 cycles, fails open (high or low power similar)
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long term SRV cycling (80+ cycles) - no SRV failure
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Dashed lines:no core damage for 7 days
Solid lines: core damage predicted



Approach: “Smart Procedures” Model 
development methodology
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Supporting diagnosis

 Bayesian Networks (BNs) are used to support diagnosis 
activities in a range of industries
 Medicine

 HEPAR II: Diagnosis of liver disorders

 CHILDE: Congenital heart disease diagnosis

 MUNIN: Preliminary Diagnosis of neuromuscular diseases

 SWAN: System for insulin adjustment for diabetics

 PATHFINDER: Diagnosis of breast cancer

 Business and Management

 Finance-Fraud/Uncollectible debt collection

 Engineering & Science

 BOBLO: Expert system based for cattle blood group determination 

 Diagnosis of faults in waste water treatment process
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Quantifying the prior

Generic PRA data
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Sas4A data parser

 Build Java-based data 
parser to automate part of 
insertion of SAS4A results 
into inputs for BN model

 Allows handling of larger 
sets of SAS4A data

 (e.g., input 10,000+ 
SAS4A runs into BN in a 
few days instead of 
months (first 84 runs))

 Currently addressing bug 
in memory handling 
which is limiting intake 
size
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Types of reasoning/inference

Causal:
(Forward, Inference)

Evidential:
(Backward, Diagnosis)

Error

Time Stress

Intercausal:

Error

Time Stress

Error

Time Stress
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Backward reasoning (diagnosis)

 Changing about T_CoreExit (to “Low”) changes belief about 
status of FV and DV (….and also the other parameters)
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Prior:
(Before)

Posterior: 
(After) 



Forward reasoning
 Changing belief about FV (to FV=Closed) changes expectations 

about the parameters

Prior:
(Before)

Posterior: 
(After) 
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Conclusions

 Fukushima accident drives need for new procedures

 “Smart SAMGs” – a new paradigm for accident 
management: 

 Evidence-based, automation-assisted guidance

• Comprehensive –thousands of scenarios

• Detailed – Examines accidents that experts may overlook.

• Defensible – Built on the best knowledge

• Faster-than-real-time – allows operators to project future 
states, and predict future impact of various corrective 
actions.
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