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INTRODUCTION

Poplars trees are well suited for biofuel production due to their fast growing habit, favorable
wood composition and adaptation to a broad range of environments. The availability of a
reference genome sequence, ease of vegetative propagation and availability of transformation
methods also make poplar an ideal model for the study of wood formation and biomass growth in
woody, perennial plants. The objective of this project was to conduct a genome-wide association
genetics study to identify genes that regulate bioenergy traits in Populus deltoides (eastern
cottonwood). Association mapping was pursued by combining sequence-capture followed by
high-throughput sequencing to genotype coding and regulatory sequences in the whole-genome.
To detect genetic polymorphisms that can be applied to accelerate breeding for bioenergy we

pursued the following goal:

(1) Identifying significant SNP-trait associations with biomass growth and carbon partitioning

to define genes and alleles that regulate trait variation.

This report represents research outcomes derived from PROJECT DE-SC0003893, from year 5.
Results derived from the previous years (1-4), are described in a separate report.

MATERIALS AND METHODS

Tests for association between markers and phenotypes. Two GWAS strategies were followed

to detect associations between SNP markers and traits in the 391 unrelated individuals with

phenotypic data: i) Single-variant association tests, with higher power to detect marker-trait



associations with common variants, were carried out with PLINK version 1.9 (Purcell et al.,
2007); and ii) Multiple-variant association test with higher power to detect associations with rare
variants were performed with the R package SKAT version 1.0.1 (Wu et al., 2011) (referred to as
“SKAT package”). Only genic SNPs were included in all association analyses performed
(PLINK and SKAT package). Association tests with PLINK used a linear model for analysis of
quantitative traits and were done for the consensus SNPs with minor allele frequency (MAF) >
0.003835 (corresponding to SNPs present in at least two samples in the population), consensus
SNPs with MAF > 0.05 (referred to as “common SNPs” hereafter), and functional SNPs with
MAF > 0.003835. Analysis with SKAT was performed using all consensus SNPs and functional
SNPs, grouping variants by gene. Seven different association tests available in the SKAT
package for R (Wu et al., 2011; Lee et al., 2012; Ionita-Laza et al., 2013) were used: (i) sequence
kernel association test (SKAT), (ii) burden test, (iii) optimal unified SKAT test (SKAT-0O), (iv)
combined sum test with SKAT test for common and low-frequency variants (SKAT-C), (v)
combined sum test with burden test for common and low-frequency variants (Burden-C), (vi)
adaptive sum test with SKAT test for common and low-frequency variants (SKAT-A), and (vii)
adaptive sum test with burden test for common and low-frequency variants (Burden-A). Original
SKAT and Burden tests are designed to identify association of rare variants with phenotype.
SKAT is a variance component test that assigns a higher weight to rare variants in the statistical
model compared with the weight assigned to common variants (Ionita-Laza et al., 2013). The
Burden test collapses all rare variants into one genetic score and tests it for association with the
trait using a linear model (Lee et al., 2014a). SKAT-O is an omnibus test that combines SKAT
and Burden tests. It behaves like either one of the individual tests when a single test is more
powerful (Lee et al., 2012). The combined sum tests SKAT-C and Burden-C analyze common
and rare variants separately and then combine the results into an overall test statistic in a way
that both variant classes contribute to the test statistic equally. The adaptive sum tests SKAT-A
and Burden-A differ from the combined sum tests in that they test for association between
markers and traits using different weight parameters and then report the result with the lower
p-value (Ionita-Laza et al., 2013). Combined and adaptive sum tests define rare variants using a
threshold that depends on sample size, considering variants with minor allele frequency (MAF) <
1/V2n to be rare (1/V2n = 1/V(2 x 391) = 0.036 in this study). Detailed descriptions of the seven
tests applied using the SKAT package are available in the articles published by Wu et al. (2011;



SKAT), Lee et al. (2012; SKAT-O) and Ionita-Laza et al. (2013; adaptive and combined sum

tests). For a review see Lee et al. (2014).

All GWAS models (PLINK and SKAT package) included STRUCTURE ancestry as a covariate
to correct for population structure, assuming four subpopulations. For comparison, six principal
components were also used to correct for population structure. The results of this analysis are
available in the Supporting Information. A 5% false discovery rate (FDR) threshold was used to
correct for multiple testing. For all genes found to be significantly associated with a trait, their
function and gene name matching the P. trichocarpa version 3.0 (v3.0) genome annotation were
obtained from the PopGenlE (Sjodin et al., 2009) database. For a reduced number of v2.2 gene
names not found in PopGenlE, the corresponding v3.0 gene was identified aligning the gene
sequence to the P. trichocarpa v3.0 genome using BLAST 2.2.29 (blastn, e-value < 1x107).
Linkage disequilibrium (LD) between SNPs significantly associated with a trait was assessed
with PLINK 1.9 (Purcell et al., 2007) and LD in genes or regions of interest was plotted using
the R package snp.plotter (Luna & Nicodemus, 2007). Linkage disequilibrium decay with
physical distance within genes that contained two or more consensus SNPs in the total
population was estimated for markers with MAF > 0.10. Pairwise LD between markers was
calculated with PLINK 1.9 and LD decay was obtained following Marroni et al. (2011).
Manhattan and g-q plots were generated with the R package qgman (Turner, 2014).

Detection of signatures of selection in genes associated with lignin percentage. Only genic
SNPs identified with GATK were used for this analysis. This marker set was filtered removing
SNPs with a quality score below 50, mapping quality below 30, strand bias (p-value < 0.00001),
and end distance bias (p-value < 0.00001). Also, genotypes with a quality score below 20 and
depth below eight were recoded as missing and SNPs with more than 25% missing data were
excluded. Tajima’s D analysis was performed by gene with the PopGenome package for R

(Pfeifer et al., 2014).

RESULTS



Identification of putative regulators of complex traits in P. deltoides. Genome-wide
association analysis in crop plants has been done typically by sequentially testing the correlation
between alleles at individual loci and traits of interest (Huang & Han, 2014). This approach is
suitable for analysis of common variants, but has limited power to detect associations with
low-frequency variants, unless a large population is available or the variant has a significant
impact on the phenotype (Li & Leal, 2008; Lee et al., 2014a). Thus, low-frequency variants are
commonly excluded from GWAS (Lipka et al., 2015). To address these limitations, methods that
group low-frequency variants by genomic region can be used to increase the power to detect trait
associations (Lee et al., 2012). Because approximately half of the consensus SNPs obtained for
the population under study are common SNPs and the other half are low frequency SNPs, both

approaches described above were applied.

Single-variant and multiple-variant associations were tested with eight phenotypes measured in
the association population. For each trait, the phenotype range (and heritability estimate)
obtained for the 15 week old plants used in this study was: i) height: 10.6 - 113.9 cm (0.71); ii)
diameter: 3.8 - 8.3 mm (0.51); iii) leaf biomass: 1.6 - 15.9 g (0.53); iv) stem biomass: 0.4 - 9.2 g
(0.61); v) lignin percentage: 17.8 - 28.3 % (0.64); vi) lignin S:G ratio: 1.0 - 1.8 (0.63); vii)
5-carbon sugars: 20.6 - 29.3 mass to charge ratio (m z') sum of peak intensities associated with
this trait obtained with pyrolysis-molecular beam mass spectrometry (Py-MBMS) (0.41); and
viii) 6-carbon sugars: 22.9 - 38.0 m z"' peak intensity sum (0.51). Although trees were
phenotyped at a very young age, a positive correlation (r = 0.3) was observed for height and
diameter between the plants grown in the glasshouse and three year old clones of these plants
currently growing in the field. Additionally, lignin percentage and lignin S:G ratio measured in
this population are similar to the range of values reported for two year old Populus nigra trees
(lignin percentage: 19.5 - 26.5 %; lignin S:G ratio: 1.3 - 2.1) grown in field conditions (Guerra et
al., 2013). This indicates a degree of overlap in the genetic control of these traits throughout

developmental stages.

Single-marker association tests carried out with PLINK 1.9 (Purcell et al., 2007) used three
different SNP sets: consensus SNPs (including 334,679 SNPs with MAF > 0.003835, threshold

that removed alleles detected less than three times in the population), common SNPs (185,526



consensus SNPs with MAF > 0.05), and functional SNPs (76,804 consensus SNPs predicted by
SNPEFF 4.0 (Cingolani et al., 2012) to cause missense and nonsense mutations). The latter set
was selected because of the higher probability of these SNPs to affect protein function and,

potentially, plant phenotypes.

Analysis of common SNPs, representing loci that would be normally included in association
studies, identified 22 genes (23 SNPs) associated with a phenotype at a 5% FDR significance
level (Fig. 1, Table 1). A much larger number of genes were identified as associated with a trait
when including low-frequency variants. A set of 240 genes (294 SNPs) was significantly
associated with a trait when using the consensus SNPs in single-variant association tests, at a 5%
FDR significance level. Out of these, 17 genes were also identified when analyzing common
SNPs. Most of the identified genes, 211 out of 240, were associated with lignin percentage.
Low-frequency polymorphisms caused 191 of these associations with lignin percentage and all
of them were negatively correlated with the trait. The majority of associations detected with
height (six out of seven total associations) and stem biomass (seven out of eight total
associations) were also caused by low-frequency SNPs. To assess if there is evidence of selection
acting on the genes containing low-frequency variants associated with lower lignin percentage,
we estimated their Tajima’s D and compared it to the mean value estimated for all genes
characterized in this study. On average, Tajima’s D was significantly lower (p-value = 0.0004)
among the genes associated with lower lignin content (-1.242) relative to all the genes

characterized in this study (-1.065).

Association tests carried out using the functional SNPs identified 83 genes (94 SNPs)
significantly associated with a trait at a 5% FDR significance level. Among these, 78 genes were
associated with lignin percentage, including 10 genes not identified when analyzing the
consensus SNPs or only common SNPs. The proportion of significant associations detected out
of the total number of SNPs tested was 19.6% higher in this set compared to the consensus SNPs
(87 SNPs out of 76,804 SNPs tested for functional SNPs v/s 317 SNPs out of 334,679 SNPs
tested for all consensus SNPs) at a significance threshold of 4.8 x 107, corresponding to the

highest significant p-value at 5% FDR for the consensus SNPs. These associations are of special



interest because they have a higher probability of representing the causative polymorphism

responsible for part of the phenotypic variation.

Sequence kernel association and burden tests identify associations missed by individual
SNP analysis. Due to the presence of a high number of low frequency SNPs in P. deltoides, we
applied association tests designed to assess the combined effect of these variants on traits.
Variants were grouped by gene and seven association methods (Wu et al., 2011) were utilized
(see Materials and Methods section). SKAT, Burden and SKAT-O are designed to detect trait
associations with low-frequency variants, while the combined and adaptive sum tests also have
high power to detect associations with common variants (Ionita-Laza et al., 2013). The power of
the seven tests to detect associations with low-frequency SNPs depends on the genetic
architecture of the trait and each test has particular scenarios where it performs better. Their
respective advantages and disadvantages have been summarized elsewhere (Ionita-Laza et al.,
2013; Lee et al., 2014a). Analysis of the consensus and functional SNPs with the SKAT package
identified 62 and 60 associations, respectively, at a 5% FDR significance level. The vast majority
of genes identified with the SKAT package were associated with lignin percentage (consensus
SNPs: 57/62 associations, functional SNPs: 60/60 associations) and 22 associations were shared
by both SNP sets. Also, the use of seven different multiple-marker association tests allowed the
discovery of a large number of genes contributing to biomass previously not detected by the
analysis of individual variants. Among the 100 total associations identified with the SKAT
package, 51 were not identified in the marker-by-marker association analysis conducted with

PLINK.
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Figure 1: Manhattan plots for single-marker association tests using common SNPs, performed
with eight traits in Populus deltoides. The red line in the Manhattan plots indicates a 5% FDR

significance threshold.



Table 1: Significant trait associations with common SNPs identified by single-marker tests in Populus deltoides.

Trait Gene v2.2 (v3.0) SNP Allele Frequency P-value Q-value Beta Annotation
5-C sugars g?) fgﬁfggt%s;)lsoz)s)o scaffold_16:3693589 C 0.057 2.71E-06 0.020 -0.040 Transcription initiation factor
6-C sugars ?[2, 1[3518632;%235;030901)0 scaffold_2:2450309 G 0.172 3.40E-06 0.023 0.034 Intracellular protein transport
6-C sugars fgfiﬁagg%%ﬁfogoio scaffold_6:3373462 A 0.102 1.06E-06  0.008  -0.056 E?i‘;lclg;;];e protein, nutrient transport, plant-microbe
6-C sugars g?) fgﬁizgtés%ﬁ%o scaffold_14:2312090 C 0.052 2.03E-06 0.014 0.062 Remorin, hormone and pathogen response
6-C sugars ?[2, lsglgfggléssl%t)g)o scaffold_14:11541215 C 0.146 3.92E-06 0.025 0.041 Unknown
Diameter fpc()) fggaggq%;lgog(})o scaffold_6:8278651 C 0.189 1.70E-06 0.012 0.368 Serine/threonine protein kinase
Igltiir{:rj’lhlt)iomass fﬁﬂ ﬁafgﬂ?;g%ﬁg)o scaffold_1:13379115 C 0.096 igig:gé g:ggg i?,éggo Spt20, chromatin remodelling
Leaf biomass ?[2, lsglgagg%tsé)éo?)o scaffold_1:3555495 G 0.079 2.95E-06 0.019 -1.327 Unknown
Leaf biomass fpc()) f$§6?82$22370902)0 scaffold_1:26764684 A 0.076 4.74E-06 0.030 1.566 Unknown
Leaf biomass g?) 355632}%255;)160000)0 scaffold_2:3984967 T 0.469 1.55E-06 0.011 1.031 Transcription factor
oo TOTRIOSTD  usaons 1 oos SR D B e
Leaf biomass fpc()) 1;5318811%56189(?01)0 scaffold_10:17325446 A 0.051 6.55E-06 0.039 3.018 Unknown
Leaf biomass g?) fgﬁiggtésg%soéo scaffold_12:2666211 T 0.305 6.76E-06 0.039 -0.810 Protein degradation
L eat biomass POPTR_0013506840 scaffold_13:5530235 A 0.499 2.82E-06  0.019 979

(Potri.013G071000) scaffold_13:5530250 G 0.499 2.59E-06  0.018 -9.817
Lignin percentage ?[2, 1[351;622;%?;780704)0 scaffold_4:7324296 C 0.051 3.66E-06 0.025 -1.374 Protein degradation
Lignin percentage fpc()) fggfggt%?ggoio scaffold_16:29160 A 0.079 2.77E-07 0.002 -1.530 Protein degradation
Lignin percentage g?) fiﬁfggt%?lsogoio scaffold_16:3775933 T 0.078 5.33E-06 0.034 -0.996 Unknown
Stem biomass ?[2, 1551;632;%72511330201)0 scaffold_7:13329788 A 0.232 5.60E-06 0.039 1.474 RNA helicase
Lignin S:G ratio fpc()) 1;5}36?825157151(?05)0 scaffold_5:8723671 T 0.174 9.10E-10 0.000 -0.079 F5H3, lignin biosynthesis
Lignin S:G ratio POPTR_0010s05920 scaffold_10:7348539 T 0.229 5.20E-06 0.036 0.058 Unknown

(Potri.010G049400)
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