
FINAL TECHNICAL REPORT (non-ARRA funding)

Title: A systems  biology,  whole-genome  association  analysis  of  the  molecular 
regulation of biomass growth and composition in Populus deltoides

Project Number: DE-SC0003893

Period: Year 5

INTRODUCTION

Poplars trees are well suited for biofuel production due to their fast growing habit, favorable 

wood  composition  and  adaptation  to  a  broad  range  of  environments.  The  availability  of  a 

reference genome sequence, ease of vegetative propagation and availability of transformation 

methods also make poplar an ideal model for the study of wood formation and biomass growth in 

woody, perennial plants. The objective of this project was to conduct a genome-wide association 

genetics  study  to  identify  genes  that  regulate  bioenergy  traits  in  Populus  deltoides (eastern 

cottonwood).  Association mapping was pursued by combining sequence-capture followed by 

high-throughput sequencing to genotype coding and regulatory sequences in the whole-genome. 

To detect genetic polymorphisms that can be applied to accelerate breeding for bioenergy we 

pursued the following goal:

(1)  Identifying significant SNP-trait associations with biomass growth and carbon partitioning  

to define genes and alleles that regulate trait variation.

This report represents research outcomes derived from PROJECT DE-SC0003893, from year 5. 

Results derived from the previous years (1-4), are described in a separate report.

MATERIALS AND METHODS

Tests for association between markers and phenotypes. Two GWAS strategies were followed 

to detect  associations between SNP markers and traits  in  the 391 unrelated individuals  with 

phenotypic  data:  i)  Single-variant  association  tests,  with  higher  power to  detect  marker-trait 
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associations with common variants, were carried out with PLINK version 1.9  (Purcell  et al., 

2007); and ii) Multiple-variant association test with higher power to detect associations with rare 

variants were performed with the R package SKAT version 1.0.1 (Wu et al., 2011) (referred to as 

“SKAT  package”).  Only  genic  SNPs  were  included  in  all  association  analyses  performed 

(PLINK and SKAT package). Association tests with PLINK used a linear model for analysis of 

quantitative traits and were done for the consensus SNPs with minor allele frequency (MAF) > 

0.003835 (corresponding to SNPs present in at least two samples in the population), consensus 

SNPs with MAF ≥ 0.05 (referred to as “common SNPs” hereafter), and functional SNPs with 

MAF > 0.003835. Analysis with SKAT was performed using all consensus SNPs and functional 

SNPs,  grouping  variants  by  gene.  Seven  different  association  tests  available  in  the  SKAT 

package for R (Wu et al., 2011; Lee et al., 2012; Ionita-Laza et al., 2013) were used: (i) sequence 

kernel association test (SKAT), (ii) burden test, (iii) optimal unified SKAT test (SKAT-O), (iv) 

combined  sum test  with  SKAT test  for  common and low-frequency  variants  (SKAT-C),  (v) 

combined sum test with burden test for common and low-frequency variants (Burden-C), (vi) 

adaptive sum test with SKAT test for common and low-frequency variants (SKAT-A), and (vii) 

adaptive sum test with burden test for common and low-frequency variants (Burden-A). Original 

SKAT and Burden tests are designed to identify association of rare variants with phenotype. 

SKAT is a variance component test that assigns a higher weight to rare variants in the statistical 

model compared with the weight assigned to common variants  (Ionita-Laza  et al., 2013). The 

Burden test collapses all rare variants into one genetic score and tests it for association with the 

trait using a linear model (Lee et al., 2014a). SKAT-O is an omnibus test that combines SKAT 

and Burden tests. It behaves like either one of the individual tests when a single test is more 

powerful  (Lee  et al., 2012). The combined sum tests SKAT-C and Burden-C analyze common 

and rare variants separately and then combine the results into an overall test statistic in a way 

that both variant classes contribute to the test statistic equally. The adaptive sum tests SKAT-A 

and  Burden-A differ  from the  combined sum tests  in  that  they  test  for  association  between 

markers and traits using different weight parameters and then report the result with the lower 

p-value (Ionita-Laza et al., 2013). Combined and adaptive sum tests define rare variants using a 

threshold that depends on sample size, considering variants with minor allele frequency (MAF) ≤ 

1/√2n to be rare (1/√2n = 1/√(2 x 391) = 0.036 in this study). Detailed descriptions of the seven 

tests applied using the SKAT package are available in the articles published by Wu et al. (2011; 
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SKAT), Lee  et al. (2012; SKAT-O) and Ionita-Laza  et al. (2013; adaptive and combined sum 

tests). For a review see Lee et al. (2014).

All GWAS models (PLINK and SKAT package) included STRUCTURE ancestry as a covariate 

to correct for population structure, assuming four subpopulations. For comparison, six principal 

components were also used to correct for population structure. The results of this analysis are 

available in the Supporting Information. A 5% false discovery rate (FDR) threshold was used to 

correct for multiple testing. For all genes found to be significantly associated with a trait, their 

function and gene name matching the P. trichocarpa version 3.0 (v3.0) genome annotation were 

obtained from the PopGenIE (Sjödin et al., 2009) database. For a reduced number of v2.2 gene 

names not found in PopGenIE, the corresponding v3.0 gene was identified aligning the gene 

sequence to the  P. trichocarpa  v3.0 genome using BLAST 2.2.29 (blastn,  e-value ≤  1x10-5). 

Linkage disequilibrium (LD) between SNPs significantly associated with a trait was assessed 

with PLINK 1.9 (Purcell et al., 2007) and LD in genes or regions of interest was plotted using 

the  R  package  snp.plotter  (Luna  &  Nicodemus,  2007).  Linkage  disequilibrium  decay  with 

physical  distance  within  genes  that  contained  two  or  more  consensus  SNPs  in  the  total 

population was estimated for markers  with MAF ≥ 0.10.  Pairwise LD between markers was 

calculated  with  PLINK  1.9  and  LD  decay  was  obtained  following  Marroni  et  al. (2011). 

Manhattan and q-q plots were generated with the R package qqman (Turner, 2014).

Detection of signatures of selection in genes associated with lignin percentage. Only genic 

SNPs identified with GATK were used for this analysis. This marker set was filtered removing 

SNPs with a quality score below 50, mapping quality below 30, strand bias (p-value ≤ 0.00001), 

and end distance bias (p-value ≤ 0.00001). Also, genotypes with a quality score below 20 and 

depth below eight were recoded as missing and SNPs with more than 25% missing data were 

excluded.  Tajima’s  D analysis  was  performed  by gene  with  the  PopGenome package for  R 

(Pfeifer et al., 2014).

RESULTS

3



Identification  of  putative  regulators  of  complex  traits  in  P.  deltoides.  Genome-wide 

association analysis in crop plants has been done typically by sequentially testing the correlation 

between alleles at individual loci and traits of interest  (Huang & Han, 2014). This approach is 

suitable  for  analysis  of  common variants,  but  has  limited  power  to  detect  associations  with 

low-frequency variants, unless a large population is available or the variant has a significant 

impact on the phenotype (Li & Leal, 2008; Lee et al., 2014a). Thus, low-frequency variants are 

commonly excluded from GWAS (Lipka et al., 2015). To address these limitations, methods that 

group low-frequency variants by genomic region can be used to increase the power to detect trait 

associations (Lee et al., 2012). Because approximately half of the consensus SNPs obtained for 

the population under study are common SNPs and the other half are low frequency SNPs, both 

approaches described above were applied. 

Single-variant and multiple-variant associations were tested with eight phenotypes measured in 

the  association  population.  For  each  trait,  the  phenotype  range  (and  heritability  estimate) 

obtained for the 15 week old plants used in this study was: i) height: 10.6 - 113.9 cm (0.71); ii)  

diameter: 3.8 - 8.3 mm (0.51); iii) leaf biomass: 1.6 - 15.9 g (0.53); iv) stem biomass: 0.4 - 9.2 g 

(0.61);  v) lignin percentage: 17.8 - 28.3 % (0.64); vi) lignin S:G ratio: 1.0 - 1.8 (0.63);  vii)  

5-carbon sugars: 20.6 - 29.3 mass to charge ratio (m z-1) sum of peak intensities associated with 

this trait obtained with pyrolysis-molecular beam mass spectrometry (Py-MBMS) (0.41); and 

viii)  6-carbon  sugars:  22.9  -  38.0  m  z-1 peak  intensity  sum  (0.51).  Although  trees  were 

phenotyped at a very young age, a positive correlation (r = 0.3) was observed for height and 

diameter between the plants grown in the glasshouse and three year old clones of these plants 

currently growing in the field. Additionally, lignin percentage and lignin S:G ratio measured in 

this population are similar to the range of values reported for two year old Populus nigra trees 

(lignin percentage: 19.5 - 26.5 %; lignin S:G ratio: 1.3 - 2.1) grown in field conditions (Guerra et  

al., 2013). This indicates a degree of overlap in the genetic control of these traits throughout 

developmental stages. 

Single-marker  association tests  carried out  with PLINK 1.9  (Purcell  et al.,  2007) used three 

different SNP sets: consensus SNPs (including 334,679 SNPs with MAF > 0.003835, threshold 

that removed alleles detected less than three times in the population), common SNPs (185,526 
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consensus SNPs with MAF ≥ 0.05), and functional SNPs (76,804 consensus SNPs predicted by 

SNPEFF 4.0 (Cingolani et al., 2012) to cause missense and nonsense mutations). The latter set 

was selected because of the higher probability of these SNPs  to affect protein function and, 

potentially, plant phenotypes. 

Analysis of common SNPs, representing loci that would be normally included in association 

studies, identified 22 genes (23 SNPs) associated with a phenotype at a 5% FDR significance 

level (Fig. 1, Table 1). A much larger number of genes were identified as associated with a trait 

when  including  low-frequency  variants.  A set  of  240  genes  (294  SNPs)  was  significantly 

associated with a trait when using the consensus SNPs in single-variant association tests, at a 5% 

FDR significance level. Out of these, 17 genes were also identified when analyzing common 

SNPs. Most of the identified genes,  211 out of 240, were associated with lignin percentage. 

Low-frequency polymorphisms caused 191 of these associations with lignin percentage and all 

of them were negatively correlated with the trait.  The majority of associations detected with 

height  (six  out  of  seven  total  associations)  and  stem  biomass  (seven  out  of  eight  total  

associations) were also caused by low-frequency SNPs. To assess if there is evidence of selection 

acting on the genes containing low-frequency variants associated with lower lignin percentage, 

we  estimated  their  Tajima’s  D  and  compared  it  to  the  mean  value  estimated  for  all  genes 

characterized in this study. On average, Tajima’s D was significantly lower (p-value = 0.0004) 

among  the  genes  associated  with  lower  lignin  content  (-1.242)  relative  to  all  the  genes 

characterized in this study (-1.065).

Association  tests carried  out  using  the  functional  SNPs  identified  83  genes  (94  SNPs) 

significantly associated with a trait at a 5% FDR significance level. Among these, 78 genes were 

associated  with  lignin  percentage,  including  10  genes  not  identified  when  analyzing  the 

consensus SNPs or only common SNPs. The proportion of significant associations detected out 

of the total number of SNPs tested was 19.6% higher in this set compared to the consensus SNPs 

(87 SNPs out of 76,804 SNPs tested for functional SNPs v/s 317 SNPs out of 334,679 SNPs 

tested for all consensus SNPs) at a significance threshold of 4.8 x 10-5, corresponding to the 

highest significant p-value at 5% FDR for the consensus SNPs. These associations are of special 

5



interest  because  they  have  a  higher  probability  of  representing  the  causative  polymorphism 

responsible for part of the phenotypic variation.

Sequence kernel association and burden tests identify associations missed by individual 

SNP analysis. Due to the presence of a high number of low frequency SNPs in P. deltoides, we 

applied  association  tests  designed  to  assess  the  combined  effect  of  these  variants  on  traits. 

Variants were grouped by gene and seven association methods  (Wu et al., 2011) were utilized 

(see Materials and Methods section). SKAT, Burden and SKAT-O are designed to detect trait 

associations with low-frequency variants, while the combined and adaptive sum tests also have 

high power to detect associations with common variants (Ionita-Laza et al., 2013). The power of 

the  seven  tests  to  detect  associations  with  low-frequency  SNPs  depends  on  the  genetic 

architecture of the trait and each test  has particular scenarios where it  performs better.  Their 

respective advantages and disadvantages have been summarized elsewhere  (Ionita-Laza  et al., 

2013; Lee et al., 2014a). Analysis of the consensus and functional SNPs with the SKAT package 

identified 62 and 60 associations, respectively, at a 5% FDR significance level. The vast majority 

of genes identified with the SKAT package were associated with lignin percentage (consensus 

SNPs: 57/62 associations, functional SNPs: 60/60 associations) and 22 associations were shared 

by both SNP sets. Also, the use of seven different multiple-marker association tests allowed the 

discovery of a large number of genes contributing to biomass previously not detected by the 

analysis  of  individual  variants.  Among  the  100  total  associations  identified  with  the  SKAT 

package, 51 were not identified in the marker-by-marker association analysis conducted with 

PLINK. 
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Figure 1: Manhattan plots for single-marker association tests using common SNPs, performed 

with eight traits in Populus deltoides. The red line in the Manhattan plots indicates a 5% FDR 

significance threshold.
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Table 1: Significant trait associations with common SNPs identified by single-marker tests in Populus deltoides.

Trait Gene v2.2 (v3.0) SNP Allele Frequency P-value Q-value Beta Annotation

5-C sugars
POPTR_0016s05750 
(Potri.016G057100)

scaffold_16:3693589 C 0.057 2.71E-06 0.020 -0.040 Transcription initiation factor

6-C sugars
POPTR_0002s03910 
(Potri.002G038000)

scaffold_2:2450309 G 0.172 3.40E-06 0.023 0.034 Intracellular protein transport

6-C sugars
POPTR_0006s04850 
(Potri.006G050000)

scaffold_6:3373462 A 0.102 1.06E-06 0.008 -0.056
Nodulin-like protein, nutrient transport, plant-microbe 
interactions

6-C sugars
POPTR_0014s02780 
(Potri.014G027900)

scaffold_14:2312090 C 0.052 2.03E-06 0.014 0.062 Remorin, hormone and pathogen response

6-C sugars
POPTR_0014s15490 
(Potri.014G156700)

scaffold_14:11541215 C 0.146 3.92E-06 0.025 0.041 Unknown

Diameter
POPTR_0006s10910 
(Potri.006G108600)

scaffold_6:8278651 C 0.189 1.70E-06 0.012 0.368 Serine/threonine protein kinase

Height
Stem biomass

POPTR_0001s16600 
(Potri.001G165800)

scaffold_1:13379115 C 0.096
2.77E-07
1.01E-06

0.002
0.007

23.080
1.645

Spt20, chromatin remodelling

Leaf biomass
POPTR_0001s04530 
(Potri.001G008000)

scaffold_1:3555495 G 0.079 2.95E-06 0.019 -1.327 Unknown

Leaf biomass
POPTR_0001s27920 
(Potri.001G272300)

scaffold_1:26764684 A 0.076 4.74E-06 0.030 1.566 Unknown

Leaf biomass
POPTR_0002s06000 
(Potri.002G059100)

scaffold_2:3984967 T 0.469 1.55E-06 0.011 1.031 Transcription factor

Leaf biomass
Lignin percentage

POPTR_0005s25790 
(Potri.005G236600)

scaffold_5:23971775 T 0.053
8.33E-06
9.67E-09

0.047
0.000

-1.852
-2.020

Methyltransferase

Leaf biomass
POPTR_0010s19410 
(Potri.010G186800)

scaffold_10:17325446 A 0.051 6.55E-06 0.039 3.018 Unknown

Leaf biomass
POPTR_0012s03370 
(Potri.012G036700)

scaffold_12:2666211 T 0.305 6.76E-06 0.039 -0.810 Protein degradation

Leaf biomass
POPTR_0013s06840 
(Potri.013G071000)

scaffold_13:5530235 A 0.499 2.82E-06 0.019 -9.799
Unknown

scaffold_13:5530250 G 0.499 2.59E-06 0.018 -9.817

Lignin percentage
POPTR_0004s08740 
(Potri.004G088700)

scaffold_4:7324296 C 0.051 3.66E-06 0.025 -1.374 Protein degradation

Lignin percentage
POPTR_0016s00260 
(Potri.016G000600)

scaffold_16:29160 A 0.079 2.77E-07 0.002 -1.530 Protein degradation

Lignin percentage
POPTR_0016s05850 
(Potri.016G058100)

scaffold_16:3775933 T 0.078 5.33E-06 0.034 -0.996 Unknown

Stem biomass
POPTR_0007s13210 
(Potri.007G021800)

scaffold_7:13329788 A 0.232 5.60E-06 0.039 1.474 RNA helicase

Lignin S:G ratio
POPTR_0005s11950 
(Potri.005G117500)

scaffold_5:8723671 T 0.174 9.10E-10 0.000 -0.079 F5H3, lignin biosynthesis

Lignin S:G ratio
POPTR_0010s05920 
(Potri.010G049400)

scaffold_10:7348539 T 0.229 5.20E-06 0.036 0.058 Unknown
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