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Pulsed Compression on the Z Accelerator

High-Stress Isentropic compression measurements
— Tantalum

High-Pressure Hugoniot measurements
— Quartz

Melting of Diamond in the Multi-Mbar Regime
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53¢, to accurately predict experimental load performance

» Fully self-consistent, 2-D MHD simulations required
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Tentative sample EOS & Load Design | <*—
\ 1-D Alegra MHD with Dakota optimization

Magnetic Field B(t) in AK Gap Behind Sample
T \ 2-D Alegra MHD, strip-line approximate method
Load Current | ,,5(t) Including 2D/3D Effects

\Need accurate time-dependent loss model !

Unfold MITL Current I, (t) Including Losses

analysis \ Bertha circuit model

Machine Settings

MITL Current Data
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Isentropic Compression Experiments (ICE)*

Magnetically driven Isentropic Compression
Experiments (ICE) to provide measurement
of continuous compression curves to ~4 Mbar
- previously unavailable at Mbar pressures

* Developed with LLNL

Magnetically launched flyer plates

Magnetically driven flyer plates for shock
Hugoniot experiments at velocities to > 40 km/s
- exceeds gas gun velocities by > 5X and
pressures by > 10X with comparable accuracy
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Pulsed Compression on the Z Accelerator

High-Stress Isentropic compression measurements

— Tantalum

High-Pressure Hugoniot measurements
— Quartz

Melting of Diamond in the Multi-Mbar Regime
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The rapid increase in sound speed requires pulse

'4 i shaping to delay shock formation

" RUAT pulse shaping delays intersection of loading characteristics
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Tentative sample EOS & Load Design | <*—
\ 1-D Alegra MHD with Dakota optimization

Magnetic Field B(t) in AK Gap Behind Sample
T \ 2-D Alegra MHD, strip-line approximate method
Load Current | ,,5(t) Including 2D/3D Effects

\Need accurate time-dependent loss model !

Unfold MITL Current I, (t) Including Losses

analysis \ Bertha circuit model

Machine Settings

MITL Current Data

=\

(i) sandia National Laboratories

Quasi-lsentrope |«—— Velocity Data
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*" Independently triggerable gas switches provide the
L2552 varlablllty necessary for pulse shaping
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- The extracted isentrope discriminates between
'4 B various tabular equations of state for Ta
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IS * Dakota optimization framework drives Alegra 1-D MHD simulations

* B(?) represented by constrained cubic spline (25-50 points) with
time shift and stretch factors
* objective function is metric of isometry between simulated and
experimental velocity history at electrode back surface
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1. measure velocity at back faces of sample and opposite electrode

2. use optimization to determine B(?) from electrode measurement

3. use B(t) and first-guess sample EOS (Sesame table + strength) to
simulate electrode/sample interface “zero-thickness” velocity

4. perform inverse Lagrangian analysis on simulated “zero-thickness”
velocity and measured back-face velocity of sample

5. convert resulting o, (p) curve to full tabular EOS by assuming constant
cyand I/V, equating stress to pressure (strength folded into EOS)

6. use B(t) and new tabular EOS to simulate electrode/sample interface

7. repeat steps 4-6 until material response converges
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% “resuylt changes < 0.015% from 6" to 7t iteration
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ingle-sample measurement of tantalum to 320 GPa

ecreases uncertainty over two-sample measurement
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Pulsed Compression on the Z Accelerator

High-Stress Isentropic compression measurements
— Tantalum

High-Pressure Hugoniot measurements
— Quartz

Melting of Diamond in the Multi-Mbar Regime
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With proper pulse shape and design the anode can

. 3 be launched as an effective high-velocity flyer plate

Anode/Flyer Plate
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U, residuals with respect to the Z-fit indicate

| dissociative effects extend to much higher pressure
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Quartz Pressure (TPa)
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Difference (%)
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Pulsed Compression on the Z Accelerator

High-Stress Isentropic compression measurements
— Tantalum

High-Pressure Hugoniot measurements
— Quartz

Melting of Diamond in the Multi-Mbar Regime
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Several chemical picture
models for diamond
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Quantum Molecular Dynamics calculations provided

_l estimates for melt and predicted a triple point (TP)
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22 Relatively large flyer plates enabled multiple,

| redundant measurements increasing accuracy

~— C targets (500, Quartz (or
750, and 1000 um)  gapphire) windows
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Multiple samples and diagnostics allowed for
redundant measurements for increased
accuracy

Transparency of the diamond samples
allowed for in-line measurement of impact
velocity and shock transit time

Impact velocity and shock speed
measurement provides tight constraint on
the inferred particle velocity %d density
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Both the three and four
piece fits indicate
significant changes in
slope at ~9.1 and ~10.85
km/s

Both suggest the onset of
melt just below ~700 GPa

The three piece linear fit

would suggest completion
of melt below 900 GPa

— ~200 GPa below the
saturation in reflectivity

The four piece fit is
consistent with Bradley, et
al. and suggest a TP at
~860 GPa
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Location of breakpoints and slopes are in excellent

A2 agreement with the QMD predictions
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« Magnetic ramp compression is ;
enabling new regions of a material’'s ] -

phase diagram to be explored under =¥
dynamic compression B
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» Obtaining unprecedented accuracy
in the multi-Mbar pressure regime
both on and off-Hugoniot
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» Future direction will be to couple
advanced capabilities to ramp —
compression facilities A0 e
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