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Outline

• Pulsed Compression on the Z Accelerator

• High-Stress Isentropic compression measurements

– Tantalum

• High-Pressure Hugoniot measurements

– Quartz

• Melting of Diamond in the Multi-Mbar Regime
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Magnetic compression on Z enables access to a 
large region of the equation of state surface
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Marx 
generator

insulator 
stack

laser-
triggered 

gas switch
magnetically 

insulated 
transmission 

lines

The Sandia Z Machine

22 MJ stored energy

~25 MA peak current

~200-600 ns rise time

Experiment
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plasma – gas – liquid – solid

• pulse of electric current through 
rectangular coaxial electrodes (shorted 
at one end) induces magnetic field

• JB  magnetic force transferred to 
electrode material

shorting cap cathode

anode

J

sample

cathode
anode/sample

undisturbed material

Magnetic compression on Z produces smooth ramp 
loading to ultra-high pressures

short

cathode

anode
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t = 2360 nst = 2460 nst = 2560 nst = 2650 nst = 2700 nst = 2750 nst = 2800 nst = 2850 nst = 2900 nst = 2950 nst = 3000 nst = 3050 ns10 mm wide stripline

Fully self-consistent, 2-D MHD simulations required 
to accurately predict experimental load performance
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Tentative sample EOS & Load Design

Magnetic Field B(t) in AK Gap Behind Sample

Load Current ILOAD(t) Including 2D/3D Effects

Machine Settings

Actual Shot

MITL Current IMITL(t) Including Losses

1-D Alegra MHD with Dakota optimization

2-D Alegra MHD, strip-line approximate method

Need accurate time-dependent loss model !

Bertha circuit model

Velocity Data

MITL Current Data

Quasi-Isentrope

Unfold
analysis

Success requires integration of theoretical, 
computational, and experimental capabilities

QMD
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Isentropic Compression Experiments (ICE)*

Magnetically launched flyer plates

Magnetically driven Isentropic Compression
Experiments (ICE) to provide measurement

of continuous compression curves to ~4 Mbar
- previously unavailable at Mbar pressures

Magnetically driven flyer plates for shock
Hugoniot experiments at velocities to > 40 km/s

- exceeds gas gun velocities by > 5X and
pressures by > 10X with comparable accuracy

* Developed with LLNL

Two platforms have been developed for accurate 
equation of state studies – both major advances
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Outline

• Pulsed Compression on the Z Accelerator

• High-Stress Isentropic compression measurements

– Tantalum

• High-Pressure Hugoniot measurements

– Quartz

• Melting of Diamond in the Multi-Mbar Regime
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• requires simple right-going waves

• compression is usually quasi-isentropic due to 
dissipative phenomena (plastic work, viscosity, 
thermal conduction, etc.)
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Ramp compression provides a measure of the 
stress-density response of a material to peak stress 

conservation equations
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Very high Lagrangian sound speeds 

at high stress result in small transit 

times – this places stringent demands 

on timing accuracy.

~100 ps timing accuracy required to 

obtain ~1% accuracy in density

High-stress ICE experiments place stringent 
demands on wave profile measurements

density (g/cc)
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pulse shaping delays intersection of loading characteristics

The rapid increase in sound speed requires pulse 
shaping to delay shock formation
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Tentative sample EOS & Load Design

Magnetic Field B(t) in AK Gap Behind Sample

Load Current ILOAD(t) Including 2D/3D Effects

Machine Settings

Actual Shot

MITL Current IMITL(t) Including Losses

1-D Alegra MHD with Dakota optimization

2-D Alegra MHD, strip-line approximate method

Need accurate time-dependent loss model !

Bertha circuit model

Velocity Data

MITL Current Data

Quasi-Isentrope

Unfold
analysis

This process was followed to design an ICE 
experiment on Ta to 400 GPa

QMD
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x

Density

x
d(t)

Magnetic Field from Ray Lemke

Density

x
d(t)

Magnetic Field from Ray Lemke

Al Ta

B(t)

J(t)

Desired current

Desired current is determined through several 
iterative 1-D and 2-D MHD simulations 

Desired 
B field

Desired 
velocity
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Marx 
generator

insulator 
stacklaser-triggered 

gas switch
magnetically 

insulated 
transmission 

lines

Independently triggerable gas switches provide the 
variability necessary for pulse shaping

Experiment

18 independently 
triggerable groups of 2 

transmission lines



17

The Bertha circuit model enables fairly accurate 
prediction of machine performance

Current comparison Wave profile comparison
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Data have been obtained which enable extraction of 
the Ta isentrope to nearly 400 GPa
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We are pursuing a single sample technique to take 
advantage of the relative large sample thickness

• Dakota optimization framework drives Alegra 1-D MHD simulations
• B(t) represented by constrained cubic spline (25-50 points) with 
time shift and stretch factors
• objective function is metric of isometry between simulated and 
experimental velocity history at electrode back surface

MHD simulations:
• high confidence in aluminum EOS and conductivity models
• high spatial resolution (2.5-µm cells)

Z1884
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electrode

electrode

A-K gap B(t)

VISAR

VISAR

thick sample

electrode

electrode

A-K gap B(t)

VISAR

VISAR
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σx

ρmaterial response

Single sample yields isentrope by iterating inverse 
analysis with simulated “zero-thickness” velocity

1. measure velocity at back faces of sample and opposite electrode

2. use optimization to determine B(t) from electrode measurement

3. use B(t) and first-guess sample EOS (Sesame table + strength) to 
simulate electrode/sample interface “zero-thickness” velocity

4. perform inverse Lagrangian analysis on simulated “zero-thickness” 
velocity and measured back-face velocity of sample

5. convert resulting σx(ρ) curve to full tabular EOS by assuming constant 
cV and Γ/V, equating stress to pressure (strength folded into EOS)

6. use B(t) and new tabular EOS to simulate electrode/sample interface

7. repeat steps 4-6 until material response converges
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Outer loop of single-sample approach converges

result changes < 0.015% from 6th to 7th iteration
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Single-sample measurement of tantalum to 320 GPa 
decreases uncertainty over two-sample measurement 

Z1883/Z1884

TANTALUM
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Outline

• Pulsed Compression on the Z Accelerator

• High-Stress Isentropic compression measurements

– Tantalum

• High-Pressure Hugoniot measurements

– Quartz

• Melting of Diamond in the Multi-Mbar Regime
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Anode/Flyer Plate

Target

Cathode
Anode

Lemke, et al., J. Appl. Phys. 98, 073530 (2005)

J

B

With proper pulse shape and design the anode can 
be launched as an effective high-velocity flyer plate
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C targets (500, 
750, and 1000 m) 

(6 mm )

Quartz (or 
Sapphire) windows

(4mm )
Flyer
plate

Quartz has been used as a transparent window 
enabling multiple flyer velocity measurements

VISAR
diagnostics

Typical configuration

Knudson, et al., Science 322, 1822 (2008)
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Melt transition 
in flyer plate

VISAR provides highly accurate in line flyer plate 
and quartz shock velocity measurements

aluminum flyer

copper flyer

quartz shock

Knudson, et al., PRL 103, 225501 (2009)
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Us-up Hugoniot for -Quartz

pdu

pps ecubuaU




Knudson, et al., PRL 103, 225501 (2009)
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Pressure – density Hugoniot for -Quartz

Knudson, et al., PRL 103, 225501 (2009)
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0.1

Us residuals with respect to the Z-fit indicate 
dissociative effects extend to much higher pressure

Knudson, et al., PRL 103, 225501 (2009)
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QMD calculations provide unique insight into the 
dynamics of the fluid at multi-Mbar pressures

Hicks, et al., Phys. Rev. Lett. 97, 025502 (2006)

total

electronic contribution

ionic contribution
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quartz up

quartz 

Differences in Z- and -fits will have a significant 
impact on quantities inferred from quartz Us

Knudson, et al., PRL 103, 225501 (2009)
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Recently published deuterium data becomes 
significantly stiffer upon reanalysis

Hicks, et al., Phys. Rev. B 79, 014112 (2009)Knudson, et al., Phys. Rev. B 68, 064204 (2003); PRL 103, 225501 (2009)

Z-fit-fit
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Errors in density compression, , are given by the 
error in quartz up multiplied by the factor ( – 1) 

error in 
for deuterium

(error in )/( – 1) 
for deuterium

Knudson, et al., PRL 103, 225501 (2009)
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Outline

• Pulsed Compression on the Z Accelerator

• High-Stress Isentropic compression measurements

– Tantalum

• High-Pressure Hugoniot measurements

– Quartz

• Melting of Diamond in the Multi-Mbar Regime



36

Several chemical picture
models for diamond

Reflectivity study on Omega 
suggests complete melt near 

1100 GPa

Existing models for diamond exhibit a broad range 
of predicted melt behavior – melt poorly understood

Bradley, et al., Phys. Rev. Lett. 93, 195506-1 (2004)
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Diamond Hugoniot

Correa, et al., PNAS 103, 1204 (2006)

Quantum Molecular Dynamics calculations provided 
estimates for melt and predicted a triple point (TP)
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The proposed TP is manifest on the Hugoniot by 
significant changes in compressibility



39

C targets (500, 
750, and 1000 m) 

(6 mm )

Quartz (or 
Sapphire) windows

(4mm )
Flyer
plate

Relatively large flyer plates enabled multiple, 
redundant measurements increasing accuracy

VISAR
diagnostics

Diamond experimental configuration

Knudson, et al., Science 322, 1822 (2008)
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Flyer velocities

Knudson, et al., Science 322, 1822 (2008)

• Multiple samples and diagnostics allowed for 
redundant measurements for increased 
accuracy

• Transparency of the diamond samples 
allowed for in-line measurement of impact 
velocity and shock transit time

• Impact velocity and shock speed 
measurement provides tight constraint on 
the inferred particle velocity and density

The Z platform provided extremely accurate 
measurements of the diamond Hugoniot
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This accuracy allowed for quantitative comparison 
with QMD predictions and evidence of the TP
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saturation in 
reflectivity

Knudson, et al., Science 322, 1822 (2008)

• Both the three and four 
piece fits indicate 
significant changes in 
slope at ~9.1 and ~10.85 
km/s

• Both suggest the onset of 
melt just below ~700 GPa

• The three piece linear fit 
would suggest completion 
of melt below 900 GPa 

– ~200 GPa below the 
saturation in reflectivity

• The four piece fit is 
consistent with Bradley, et 
al. and suggest a TP at 
~860 GPa

Four piece linear fit leads to consistency with the 
reflectivity measurements of Bradley, et al.
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Bounds for 
TP location

• The breakpoints of the 
four segment fit are in 
excellent agreement with 
those predicted by QMD

• The slope of each 
segment is also in 
excellent agreement with 
the slopes predicted by 
QMD

• This level of agreement 
provides validation 

– Strongly suggests the 
presence of a higher 
pressure solid phase of 
carbon above ~860 GPa

Location of breakpoints and slopes are in excellent 
agreement with the QMD predictions
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• Magnetic ramp compression is 
enabling new regions of a material’s 
phase diagram to be explored under 
dynamic compression

• Obtaining unprecedented accuracy 
in the multi-Mbar pressure regime 
both on and off-Hugoniot

• Future direction will be to couple 
advanced capabilities to ramp 
compression facilities

– Pre-heat capability

– Sample recovery

– Advanced diagnostics

» pyrometry

» x-ray diffraction

Conclusion
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