SEP 24 1998

Prepared by
Sandia National Lab
Albuguerque, Ne

;leérmore, California 94550

operated by Sandia Corporation,
for the United States Department of
04-94A1L85000.

Sandiaisam
a Lockheed

release; further dissemination unlimited.

| Sandia National Laboratories

»

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The wviews and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, F'TS 626-8401

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: AO1

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

SAND98-2102
Unlimited Release
Printed September 1998

An Automatic Coastline Detector
for Use with SAR Images

Ireena A. Erteza
Signel Processing and Research Department
Sandia National Laboratories
P.O. Box 5800 Albuquerque, NM 87185-1207

Abstract

SAR imagery for coasrline detection has many potential advantages over conventional
optical stereoscopic techniques. For example, SAR does not have restrictions on being
collected during daylight or when there is no cloud cover. In addition, the techniques
for coastline detection with SAR images can be automated.

In this paper, we present the algorithmic development of an automatic coastline de-
tector for use with SAR ‘magery. Three main algorithms comprise the automatic coast-
line detection algorithm. The first algorithm considers the image pre-processing steps
that must occur on the original image in order to accentuate the land/water boundary.
The second algorithm automatically follows along the accentuated land/water boundary
and produces a single-pixel-wide coastline. The third algorithm identifies islands and
marks them.

This report describes in detail the development of these three algorithms. Examples
of imagery are used throughout the paper to illustrate the various steps in algorithms.
Actual code is included in appendices. The algorithms presented are preliminary versions
that can be applied to antomatic coastline detection in SAR imagery. There are many
variations and additions to the algorithms that can be made to improve robustness and
automation, as required by a particular application.

Acknowledgements

This work was supported by the United States Department of Energy under Con-
tract DE-AC04-94A185000.

i

Contents
1 Introduction 1
2 General Approach 1
2.1 Land/Water Boundary Enhancement 2
2.1.1 MEDIAN FILTERING 2
2.1.2 HISTOGRAM EQUALIZATION (FLATTENING) 3
2.1.3 THRESHHOLDING 3
2.1.4 MAXIMUM FILTERING (DILATION) 3
2.2 Contour Following 4
2.3 Island Detection and Marking 0L 6
3 Algorithm Implementation 6
3.1 Image Pre-Processing for Land/Water Boundary Enhancement . . . 6
3.2 Contour Following, 6
321 Conventions 6
3.2.2 Startingpoint oL oo 7
3.2.3 Next Pixel Location 8
3.2.4 Orientation for Next Pixel 8
3.3 Island Detection and Marking 9
3.3.1 Comventionso v o it 10
4 Results 15
5 Conclusions 26
6 Future Work 26

A Example of How to Run Automatic Coastline Detection Code 26

B extractsubsetDSP.c 29

C removehdr.c 30

1l

D nonlin2dsize.c

E threshhold.c

F followboundarytopologyV2.c
G overlay

H overlay5x5.c

I coastpreprocFinal.c

List of Figures

10
11
12

Example of how the contour of an object is traced in a clockwise

direction. e 5
Convention for row and column indexing of an image. 7
Convention for how beginning and ends of horizontal boundary runs
are labeled. * indicates a boundary pixel. 10
Assuming scanning from right to left, this figure illustrates the four
possible cases for horizontal runs with water on the right of the
horizontal boundary run. 11
Assuming scanning from right to left, this figure illustrates the four
possible cases for horizontal runs with land on the right of the hor-
izontal boundary run. Lo 12
Assuming scanning from left to right, this figure illustrates the four
possible cases for horizontal runs with water on the right of the
horizontal boundary run.o L L. 13
Assuming scanning from left to right, this figure illustrates the four
possible cases for horizontal runs with land on the right of the hor-
izontal boundary run. Lo L L. 14
Original large coastline analyzed. 15
Boundary for Original large coastline analyzed. 16
Original 1999 x 1999 coastline analyzed. 17
Results after two passes with a 3x3 median filter. 18
Results after median filtering and histogram equalization. 19

iv

13

14

15

16
17

Results after median filtering and histogram equalization and thresh-
holding at 200.

Results after mzdian filtering, histogram equalization, threshhold-
ing and two passes of a 7x7 dilation operation.

The final result: the automatically detected coastline overlayed over
the original image. L.

The automatically detected coastline and the detected islands. . . .

Subset of the large coastline including a beach. The detected coast-
line is overlayed on the original image.

1 Introduction

Currently there are many miles of US coastline that have not been mapped. While
adequate mapping is certainly of use in navigation, these maps are also of crit-
ical importance in determining US coastal boundaries. The locations of these
boundaries are used in determining legal rights (ownership and liability) in vari-
ous off-shore ventures.

Traditionally, coastline mapping has been done via optical stereoscopic imaging.
The actual boundary is determined by some combination of the lowest low-tide
and the highest high-tide. However, since optical stereoscopic images are used, it
is often impossible to get images of the desired location at exactly lowest low-tide
or highest high-tide. The optical stereoscopic imaging systems require the correct
illumination and a clea: view (i.e. no clouds). Optical stereoscopic imaging for
coastline detection is also a time consuming, non-automated process.

In an effort to find more robust alternatives for coastline detection, SAR has been
proposed. SAR has a variety of possible benefits. First, SAR does not require
flying during daylight. Also, SAR is effective, even if clouds are present. In
addition to forming a traditional SAR image, if interferometric SAR is used, it
may be possible to forin a height map of the area and to extract the boundary
from the height map.

In this report, we will present an algorithm for automatically identifying the
coastline boundary in a standard (non-interferometric) SAR image. Using this
technique with any SAR image, a land/water boundary can be identified. That
boundary, itself, could be a viable final result. However, if two SAR images are
available at low and high tides, the coastal boundary could be found by judicious
combination of the two high- and low-tide boundaries.

The main benefit of this coastline detection is that the process can be automated.
The algorithm appears to be fairly robust, but it has only been tested on Alaska
coastline data. This report describes in detail the development of the coastline al-
gorithm and the parameters used. Examples of actual imagery are used throughout
the paper to illustrate the various steps in algorithm. Actual code is included in
appendices.

2 General Approach

The approach taken to solve the automatic coastline detection problem can be bro-
ken into three main parts. The first part is to perform a variety of image processing
steps on the original image in order to accentuate the land/water boundary. This
is necessary in order to make a robust contour following program that can work
consistently on a wide variety of coastline data. The second part of automatic
coastline detection is to automatically follow along the accentuated land/water

1

boundary resulting from the first step and to produce a single-pixel-wide bound-
ary of the shoreline. The third part is to identify any existing “islands” in the
image. An “island” is a group of pixels that meet the land criteria, but that are in
what the algorithm identifies as water. At this time, the algorithm only identifies
islands. No attempt is made to find coastlines of the islands, although this could
easily be added.

2.1 Land/Water Boundary Enhancement

In order to be able to accentuate and identify a land/water boundary, one must
come up with some criteria to distinguish land from water. Ultimately, we are in-
terested in a single pixel boundary to mark the transition between land and water,
therefore our criteria will be applied ultimately on a pixel by pixel basis. However,
there is a large degree of pixel-to-pixel variety in a SAR image of either just land
or just water. We must come up with a way of minimizing that variation within
pixels of land and within pixels of water, while maintaining distinct characteristics
for each. We achieve these goals through a series of image processing steps.

2.1.1 MEDIAN FILTERING

The first step is a median filtering operation. In this step a 3x3 window is scanned
over the entire image. At each step in the scan, the center pixel is replaced by
the median value of the 9 pixels in the window. The effect of a median filter is to
remove single points whose values are out of line with neighboring pixels. In the
particular context of SAR images of coastlines, a median filter minimizes (1) the
speckle normally associated with SAR images and (2) the bright returns from ice,
rough water or other matter in a predominantly dark part of the image (water).

The median filtering is actually performed twice, i.e. the output of the median
filtering process described above is again median filtered. With each additional
pass, there is added minimization in variation. Ultimately, however, the incremen-
tal change between passes becomes negligible. The median filtering process is time
consuming on large images. Empirically two passes of a 3x3 median filter appear
adequate for our purposes. This is discussed in more detail in the Implementation
section.

A median filter can be thought of as a smoothing filter, but a significant difference
with respect to edges must be understood and emphasized. A median filter will
not blur the transition point or edge as a traditional, low-pass, smoothing filter
would. This is important when maintaining a sharp and accurate transition point
is required.

2.1.2 HISTOGRAM EQUALIZATION (FLATTENING)

The next step to accentuate the land/water boundary is a histogram flattening
step. In this step, a histogram is made of the image after median filtering. The
histogram is a count of how many times each pixel value (0 - 255) actually occurs in
an image. The flattening step re-maps the pixel values in the image, such that the
histogram after equalization is constant (hence the term “histogram flattening”).
With a flat histogram, each possible pixel value occurs the same number of times,
i.e. the probability density function for pixel values 0 through 255 is uniform.

The main effect of histogram equalization is to increase the contrast throughout
the image. This is done by effectively allocating more pixel levels where the most
pixels are originally, and allocating fewer pixel levels where there are fewer pixels
originally.

An added benefit of histogram flattening is that it helps to “standardize” the look
of the images. This will enable us to determine characteristics for land and water
that are the same for different images. This feature is of particular importance in
making a robust automatic coastline detector.

2.1.3 THRESHHOLDING

The next image processing step for land/water boundary enhancement is thresh-
holding. This step is where we apply a distinction between land and water. In
general, we expect the radar return from land to be higher than from water. As
a result, land pixels generally have a higher pixel value than water pixels. There
are exceptions, however. Ice or turbulence in the water can have a significant
radar return (i.e. higher pixel values). Similarly, land that is in a shadow (from a
cliff) can have a very low radar return, since it is not illuminated with much radar
energy. In this step, we apply a threshhold of 200 to distinguish land from water
in the histogram flattened image. This is a non-linear step, in which a pixel with
a value < 200 is assignad a value of 0, and pixels with a value >200 do not have
their pixel value changed.

Because of the histogram flattening step, the threshhold value of 200 should be
effective for a variety of images. It is possible, however, that different imaging
scenarios may produce SAR images that have different characteristics for land
vs. water. In that casz, this threshhold may need to be altered to optimize the
algorithm’s performance.

2.1.4 MAXIMUM FILTERING (DILATION)

The final image processing step for the land/water boundary enhancement is two
passes through a maximum (or dilation) filter. The mechanics of this step are
very similar to the mecian filtering step. In this case a window is scanned over the

3

entire image. However, at each step, the center pixel is replaced by the maximum
value of all the pixels in the window.

The effect of a maximum filter is to make the brighter areas larger, and the darker
areas smaller. Although the resulting image can be greatly distorted, the general
shape of large areas of brightness and darkness are preserved. As a result, this step
is useful in image segmentation. For our particular application, we would specif-
ically like the dilation operator to accomplish two things: (1) Make a continuous
exterior boundary (without any gaps) between interior land and exterior water.
(2) Minimize shadow regions in the interior land.

The dilation filtering is performed with a 7x7 window. It is also performed in
two passes. The 7xT7 dilation process is time consuming for a large image. Two
passes seems to be a nice compromise in terms of closing the exterior boundary
gaps, while also not extending the actual borders too much. (With two 7x7 passes,
it is possible to extend the land/water boundary by 14 pixels beyond the actual
boundary.) If this extension is unacceptable, some additional steps may be added
to mitigate the extension on the boundary, while still maintaining the benefit of
closing gaps in the boundary. Closing the gaps in the boundary is critical to
the operation of the automatic contour following algorithm, as discussed in the
following section.

2.2 Contour Following

Once the image processing steps have been performed to enhance the land/water
boundary, the next step is to form and mark a one pixel wide boundary between
the land and water.

The algorithm we employ to do the contouring is based on one of the most simple
available. The simple clockwise contour following algorithm by Duda and Hart is
described in several places. [BB82, DH73] The technique involves scanning across
an image until a pixel that is part of the object to be outlined is encountered.
This is the starting point. From the pixel, turn left and move one pixel. Each
time a pixel that is part of the object is encountered, turn left and move one pixel.
If a non-object pixel is encountered, turn right and move one pixel. Repeating
this process, the entire object boundary will be traversed (albeit in a serpentine
fashion) in a clockwise direction. This is illustrated in Figure 1.

We extend and modify this algorithm to coastline detection as follows. For coast-
line detection, we do not necessarily have land that we completely encircle. In
general, in an image of a coastline there is a main land mass on one side or an-
other of the picture (right or left). If we always start our scans at the bottom
of the image, it may be necessary to follow the contour in either a clockwise or
counter-clockwise direction. We can extend the contour following algorithm from
Duda and Hart to counter-clockwise following by: (1) turning right and moving
one pixel if you encounter an object pixel; and (2) turning left and moving one

4

v k

A

Figure 1: Example of how the contour of an object is traced in a clockwise direction.

pixel if you encounter a non-object pixel.

Therefore our coastline following algorithm will require the user to specify if land
is on the right side or left side of the figure. The image then will be scanned from
the bottom until an ob:ect pixel is reached. If land is on the right, the scan starts
from the left, and vice versa. From this starting pixel, the boundary is traced
clockwise if the land is on the right. It is traced counter-clockwise if the land is
on the left. The coastline tracing will terminate when it reaches within the top 10
rows of the image, or if it returns to within one pixel or to the same row as the
original starting pixel.

As the algorithm is implemented now, the program will terminate after it traces
out a boundary island at the bottom of the image. Additional programming can
be added to have the program continue until the main coastline has been found
and traced.

The simple algorithm we are using has some drawbacks. First, it is possible for
the algorithm to miss a pixel that is only connected diagonally with a previously
identified part of the object. Also, this algorithm requires that the object to be
outlined have no gaps in it. If there is a gap, the contour following algorithm will
follow into the interior of the object. It is this requirement that necessitates the
dilation step in the image preprocessing. In general, we expect that the two 7x7
dilation operations should remove gaps in the exterior boundary. There may be
some cases, however, where this may not be sufficient. Additional dilation steps
may be needed in some= cases.

Finally, we don’t want the serpentine path to be the boundary, so we mark any
land pixels that the serpentine path contains as boundary pixels. A land pixel is
any pixel with value >200. The boundary pixels are given a value of 255.

3

2.3 Island Detection and Marking

The final part of our automatic coastline detection is not actually involved with
detecting the coastline. Instead, the purpose of this final step is to mark land pixels
that are beyond the mainland, in water. The reason for this is that there may be
barrier islands of substantial size, whose boundaries might actually be the coastline
of interest. The way the automatic coastline detection algorithm is designed and
implemented, it will in general find the coastline between the mainland and ocean.
(The exception is for a barrier island that exists at the bottom of the image).

The goal of this final step is to mark islands, so that an analyst can determine if
those barrier islands significantly alter the identified mainland coastline. At this
time, this determination is made by an analyst. It should be possible, however, to
automatically find the boundaries for the “islands”, and to modify a “maximum
coastline” appropriately.

3 Algorithm Implementation

3.1 Image Pre-Processing for Land /Water Boundary En-
hancement

The image processing steps described in the previous section for land /water bound-
ary enhancement are straightforward image processing steps. In order to imple-
ment them, we used a standard C language library for digital signal and image
processing. The library routines used are found in C Language Algorithms for
Digital Signal Processsing by Paul Embree and Bruce Kimble. [EK91] Additional
routines for adding and removing the DSP header format, for threshholding and
for doing nonlinear filtering with various size windows were written. The routines
used in this project are included in the appendix.

3.2 Contour Following
The basic algorithm for contour following was described in the previous section.

In order to implement both clockwise and counter-clockwise boundary following,
without having to write two completely separate branches, requires some analysis.

3.2.1 Conventions

In order to do the analysis to combine the two cases for clockwise and counter-
clockwise boundary following, we adopt some conventions and terminology. First,
we assume that an image is indexed such that the upper left corner is (0,0). The

6

index for rows, i, increases as you go down. The index for columns, j, increases as
you go right. This is illustrated in Figure 2.

Image

Figure 2: Convention for row and column indexing of an image.

Next, the orientation when entering a pixel is important. If a pixel is entered from
the left, we label that verbally “IL” and numerically “0”. (The vector describing
entering from the left, —, makes a 0° angle with respect to the positive = axis.)
Similarly, if a pixel is entered from the right, we use the labels “IR” and “180”.
If a pixel is entered from the top, the verbal label is “IT” and “270”. Finally, if a
pixel is entered from tke bottom, we use the labels “IB” and “90”.

The final important piece of information required by the algorithm is if the bound-
ary is to be traversed in a clockwise or counter-clockwise direction. We assign a
numerical label of 1 for clockwise traversal, and -1 for counter-clockwise traversal.

With these conventions, we can do the analysis of the algorithms and write logic to
handle the different steps required for clockwise and counter-clockwise traversal.

3.2.2 Starting poirt

When the first land pixel is identified, the start orientation and the index changes
needed to get to the start pixel will be different for clockwise (CW) and counter-
clockwise (CCW) traversal.

CW (DIR =1) | CCW (DIR = -1)
Orientation 180° 0°
Start Pixel 1,i-1) Li+1)

This can be reduced ir both cases to the rules in the following table.

Orientation | 90° + 90°* DIR
Start Pixel (1,j - DIR)

3.2.3 Next Pixel Location

The location for the next pixel depends on-3 things: (1) the direction for boundary
traversal; (2) orientation into current pixel; and (3) the current pixel value. This
is illustrated in the following pictures and tables.

Case Pixel Value = Land Next Pixel Location
CW (DIR =1) | CCW (DIR = -1)
“0 — Q4 Y i-1 P41
“0” — O N i+1 1-1
“970” l
| Y j+1 j-1
“270” |
a N j-1 j+1
“180” O « Y 141 i-1
“180”7 O «— N 1-1 1+ 1
“90” O
T Y j-1 j+1
“9077 D
T N j+1 j-1

For both CW and CCW traversal, this can be reduced as follows:

] Case Pixel Value = Land | Next Pixel Location |
“0” — 0 Y 1 - DIR
“0” — O N 1 4+ DIR
“270” |
0 Y i + DIR

07 |
0 N i - DIR
“180” O « Y i+ DIR
“180” O « N i- DIR

“90” D
7 Y j - DIR

“90” O
T N j + DIR

3.2.4 Orientation for Next Pixel

The orientation for the next pixel also depends on three things, as illustrated in
the following table.

Current Oriertation Clockwise Counter Clockwise
La,ndJ Not Land | Land | Not Land
IL B T IT IB
“W — 0 180 270 270 180
IT IL IR IR IL
“270” |
Cl 0 180 180 0
IR IT IB IB IT
“180” O 270 90 90 270
IB IR IL IL 1R
“90” D
T 180 0 0 180

Once again, this can be reduced to the following logic for CW and CCW traversal.

Current Orientation | Orientation for Next Pixel
Land Not Land
IL
“0 — 0O 0+90*DIR 0-90*DIR
IT
“70” |
O 270+90*DIR | 270-90*DIR
IR
“180” O « 180+90*DIR | 180-90*DIR
IB
“90” O
T 90+90*DIR | 90-90*DIR

3.3 Island Detection and Marking

The goals for island detecting and marking seem quite simple, however it is some-
what complicated to implement. The way the island detection goal is achieved is
by scanning the image and cleaning land pixels which are part of the “mainland”.
Intuitively, it is easy to just clear pixels from the right edge (assuming land is on
right) until a boundary is reached. When a boundary is reached, the algorithm
should switch from clearing pixels to saving land pixels. The factors which cause
complications are bays or coves, and horizontal boundaries. With some analysis,
however, logic can be written to handle these situations.

In general, when a single boundary pixel (i.e. it is not part of a number of con-
secutive horizontal boundary pixels) is encountered, the algorithm should toggle
between clearing pixels and not clearing pixels. The case is not so straightforward,
however, when a row of consecutive, horizontal boundary pixels are encountered.
The analysis becomes more clear if we adopt a few more conventions.

9

3.3.1 Conventions

The topology at the beginning and end of a horizontal boundary run, along with
the initial state of clearing/not clearing pixels and the direction of the scan will
determine if the clear pixel variable should be toggled or not.

Let B designate a border pixel that is at the beginning of a horizontal run. Let
E designate a border pixel that is at the end of a horizontal run. There are four
possible topologies we need to label. These are illustrated in Figure 3. With either
B or E in the center of a 3x3 window, if the pixels above and to the above right
are also boundary pixels, the topology is labeled “1”. (Note that the pixels in the
first quadrant are boundary pixels.) If the pixels below and below right are also
boundary pixels, the topology is labeled “4”. (Note that the pixels in the fourth
quadrant are boundary pixels.) Similarly, if the pixels above and above left are
also boundary pixels, the topology is labeled “2”. (Note that the pixels in the
second quadrant are boundary pixels.} Finally, if the pixels below and below left
are also boundary pixels, the topology is labeled “3”. (Note that the pixels in the
third quadrant are boundary pixels.)

* * * *
—— ==> "1"
B/E B/E
B/E === "3" B/E == 4"
* *® * *

Figure 3: Convention for how beginning and ends of horizontal boundary runs are labeled. *
indicates a boundary pixel.

The 8 cases for scanning from right to left are illustrated in Figures 4 and 5. In

these figures, C indicates the clearing pixels state (i.e. pixels should be cleared),
and C indicates the state where pixels aren’t cleared.

10

Land Water
B=1 c iEi ¢ B c
E=3
Land
Water ‘ Land ‘ Water
B= - -
E B
C=2 c C o
B=4 T E C iB el
1i=3
Water Land Water]
Water
F=4
=2 c E C B T
Land
Water
L

Figure 4: Assuming scanning from right to left, this figure illustrates the four possible cases
for horizontal runs with water on the right of the horizontal boundary run.

l B | E] Clear Pixel State—l

113 Toggle
112 Don’t Toggle
413 Don’t Toggle
412 Toggle

In the table we see that if the |B — E| = 2, the clear pixel value should be toggled.
If |B — E| = 1, the clzar pixel value should stay the same before and after the
horizontal run.

11

Land
B=1 ‘E E C B c
E=3
‘Water Land
Land Water l Land
B=1
(o E B Cc
C=2 <
= C E C B C
=3
Land Water Land;
Land
=2 < iE c__iB c
Water
Land

Figure 5: Assuming scanning from right to left, this figure illustrates the four possible cases
for horizontal runs with land on the right of the horizontal boundary run.

The 8 cases for scanning from left to right are illustrated in Figures 6 and 7. In
these figures, C indicates the clearing pixels state (i.e. pixels should be cleared),
and C indicates the state where pixels aren’t cleared.

12

1 Land " Water
c BT ¢ i3 T
B=3
Land
E=1 Water Land Water
B=2 — —_
C B c E [
E=4 < Bf _C Ik <
Water Land Water]
Water
E=4
Be2 c B C ik T
Land
Water

Figure 6: Assuming scanning from left to right, this figure illustrates the four possible cases
for horizontal runs with water on the right of the horizontal boundary run.

13

Land

u

-
al
o

I

=
[e}

u
w

Water Land
Land Water l Land
" C B C E C
4 C B C E C

Land Water

3

non
a
]
(2]
=
o]

Water
. Land

Figure 7: Assuming scanning from left to right, this figure illustrates the four possible cases
for horizontal runs with land on the right of the horizontal boundary run.

| B | E | Clear Pixel State |

311 Toggle
1 Don’t Toggle
4 Don’t Toggle
4 Toggle

B O N

Once again we see that if the |B — E| = 2, the clear pixel value should be toggled.
If |B— E| =1, the clear pixel value should stay the same before and after the
horizontal run.

14

4 Results

The algorithm for automatic coastline detection was tested on the image shown
in Figure 8. This image has 12592 rows and 2000 columns. There are two final
results: (1) the original image with the coastline overlayed; and (2) the coastline,
itself, with the islands shown. The large size of the image make it difficult to
display the single pixel coastline overlayed on the original image (the single pixel
becomes too fine to see). Figure 9 shows the single pixel coastline that is output
from the algorithm, along with the detected islands.

Figire 8: Original large coastline analyzed.

15

Figure 9: Boundary for Original large coastline analyzed.

In order to better understand the algorithm, it is helpful to examine intermediate
results. In order to better illustrate the actions of the algorithms, we will work will
a smaller subset of the large coastline. Figure 10 is a 1999 by 1999 subset taken
from Figure 8. Results from each of the intermediate steps done on this smaller
image are shown in subsequent figures.

16

Figure 10: Original 1999 x 1999 coastline analyzed.

Figure 11 is the image after two passes through the 3x3 median filter. After the
median filtering, the variations in the water and land are reduced. There are some
additional bright pixels added, but the overall speckling is reduced. There are
still some residual areas of moderate reflectance in the water, especially near the
shoreline. Subsequent passes through the median filter would help to remove this,
but at the cost of longer computation time.

Figure 12 is the image after median filtering and histogram flattening. The flat-
tening brings out all tae details in the water that we will need to remove. It is

clear from this figure that in general the pixel values in water have a lower value
than those in land.

Figure 13 is the result of threshholding the previous image at a value of 200. The
threshholding level was: chosen empirically. Because of the histogram equalization
step, this value should e fairly robust. Depending on different imaging geometries
or terrain (different land or water conditions), the actual threshhold value may
need to be changed to give optimal performance.

The final image processing steps are two passes through a 7x7 dilation filter. Recall
that these steps are necessary to close any gaps in the land/water boundary. The
results of the dilation filtering are shown in Figure 14. The effect of the dilation
is to make the bright parts of the images grow. As a result of the dilation, the

17

Figure 11: Results after two passes with a 3x3 median filter.

border does move out slightly.

After the image processing steps are completed, the coastline is identified using the
countour following algorithm. Figure 15 shows the detected coastline overlayed on
the original image. As discussed previously, the detected coastline is continuous
and one pixel thick.

Figure 16 is the detected coastline and the identified islands. The coastline for
the islands are not automatically detected. The main purpose is to indicate the
presence of islands to an analyst. The analyst can then determine if the islands are
significant enough to warrant recalculation of the coastline. Further modifications
to the software can be added that can handle certain conditions automatically.

Figure 12: Results after median filtering and histogram equalization.

19

Figure 13: Results after median filtering and histogram equalization and threshholding at 200.

20

Figure 14: Results after median filtering, histogram equalization, threshholding and two passes
of a 7x7 dilation operation.

21

Figure 15: The final result: the automatically detected coastline overlayed over the original
image.

22

Figure 16: The automatically detected coastline and the detected islands.

23

The image we have been studying has some interesting features. Note that in
Figure 10, the upper peninsula has a high cliff, which causes a shadow in the land.
This is a rather difficult situation for the algorithm to handle, because the shadow
from the cliff is so close to the shore. Here the dilation step is critical. Without
it, the countour following algorithm would have “walked” inland and made the
shadow into a bay.

In Figure 10, there are various isolated bright pixels near the shoreline. We do not
have ground truth, but these bright returns could be due to either rocky jetties, or
due to ice chunks in the water. The image processing steps attempt to minimize
the smaller isolated returns that could be small ice chunks, while maintaining
larger, brighter clusters. The image processing steps also try to cluster with the
mainland bright pixels very close to the shoreline. The contour following then
follows the mainland coastline, but any significant isolated clusters in the water
are marked.

Another interesting feature is shown in Figure 17. Near the shoreline there is a
very smooth light gray border. Once again we do not have ground truth, so it is
hard to know if the image shown in Figure 17 contains a shallow beach with water
covering some of the sand, or if it is an artificial artifact of the image formation.
This area needs to be ground truthed, in order to see how accurately the algorithm
performed.

24

Figure 17: Subset of the large: coastline including a beach. The detected coastline is overlayed
on the original image.

25

5 Conclusions

In this report we have presented an automatic coastline detector for SAR imagery.
The algorithm requires some image pre-processing before the coastline detection
step is run. The results from the algorithm are a single pixel boundary between
land and water, and the identification of islands. The algorithm appears to be
robust, but more testing is necessary. Also, many variations and additions to the
algorithm can be made, as required by a particular application.

6 Future Work

This report simply documents a first-cut algorithm directed at automatic coastline
detection in SAR images. Future work to this algorithm includes further assess-
ment of robustness and addressing specific requirements for specific applications.
These might be such things as automatically finding island boundaries, in addition
to just identifying the islands, and altering the start and stop conditions perhaps
to guarantee finding a mainland/water boundary. Future work also includes trans-
forming the detected boundary to standard earth coordinates.

A Example of How to Run Automatic Coastline
Detection Code

This appendix shows the sequence of programs to run to produce the automatically
detected coastline and overlays. The programs are assumed to be in a directory
/CODE that is at the same level as a directory containting the data. The original
data is a one byte detected image, with suffix .s1. All the image processing code
works on dsp files with a .dsp suffix. The .i suffix refers to images without header
and in a short int format. saoimage is a UNIX tool for displaying images.

Following is a brief description of the various codes. The codes use the image pro-
cessing library supplied with Reference [EK91]. Additional programs were written
to implement the automatic coastline detection. These additional programs that
are not part of the image processing library supplied with Reference [EK91] are
included in subsequent appendices.

extractsubsetDSP is a program that extracts an image subset from a one byte
image. From the subset, it produces a dsp file and a short int image file.

nonlin2dsize is a program that performs multiple types of nonlinear filtering:
erosion, dilation or median filtering. This program takes user input to determine
the type of filtering, the window size and the number of passes.

flatten is a program that performs the histogram equalization on an image.

26

threshhold is a program that thresholds an image. It takes a threshold value as
user input.

followboundarytopology V2 is the code that includes the contour following. It
. takes as input the preprocessed image, and returns a file containing the coastline
and islands.

overlay is a program that takes the boundary found in followboundarytopology V2
and overlays it over an image.

removehdr is a program that strips off the header from a dsp file. The result is
a short int image file that can be used in a number of display programs.

> ../CODE/extract/extractsubsetDSP rma_out.2048.16384.s1 test.dsp test.i
Enter the number of rows to skip

4000

Enter the number of columns to skip
0

Enter the number of 1ows Input
16384

Enter the number of columns Input
2048

Enter the number of 1ows Output
1999

Enter the number of columns Output
1999

Size of short int = 2
> saoimage -ul -i2 1999 1999 test.i &

> cd TEST/
/home/iaertez/ALASKA/TEST
test.dsp test.1

> ../CODE/nonlin2dsize
Enter name of input :image file : test.dsp
Enter the function desired:
1 -- Erosion of light areas (min)
2 -- Dilation of light areas (max)
3 -- Median filter of the image
Enter your choice [1...3] : 3
Enter number of passes [1...10] : 2

Enter value of size for kernel [3...15] : 3

0O 16 32 48 64 80 96 112 128 144 160 176 ...
0O 16 32 48 64 80 96 112 128 144 160 176 ...

27

Enter filtered output file name : test.med3x2.dsp
> 1s

test.dsp test.i test .med3x2.dsp
>

> ../CODE/flatten

Enter image file to be histogram flattened : test.med3x2.dsp

Enter histogram file name : test.hst

Enter histogram flattened image name : test.med3x2.flt.dsp

> 1s
test.dsp test.i test.med3x2.flt.dsp
test.hst test.med3x2.dsp

> ../CODE/threshhold

Enter image file to be threshholded : test.med3x2.flt.dsp
Enter value of detection threshold [0...255] : 200

Enter threshholded image name : test.med3x2.flt.thr.dsp
>

> ../CODE/nonlin2dsize

Enter name of input image file : test.med3x2.flt.thr.dsp
Enter the function desired:

1 -- Erosion of light areas (min)

2 -- Dilation of light areas (max)

3 == Median filter of the image

Enter your choice [1...3] : 2
Enter number of passes [1...10] : 2
Enter value of size for kermel [3...15] : 7

0 16 32 48 64 80 96 112 128 144 160 176 .
0 16 32 48 64 80 96 112 128 144 160 176 ...

Enter filtered output file name : test.med3x2.flt.thr.dil7x2.dsp
>

../CODE/followboundarytopologyV2

Enter image file to find boundary in : test.med3x2.flt.thr.dil7x2.dsp

Enter What side of the image is the land. left==> -1; right ==>1 (-1...1]

28

1

Enter Set threshhold to use as criteria for land [0...255] : 200

Enter Do you want to input the row to start coastline search?
yes==>1; no==> 0 [0...1] : 1

Enter Enter the row rumber to look for starting point [0...1990] : 1987
Enter Enter the row rnumber to stop searching for coastline [10...1990] : 10
Enter boundary image name : test.bndry.i

>

> ../CODE/extract/removehdr test.med3x2.flt.thr.dil7x2.dsp test.med3x2.flt.thr.dil7
Number of Records (rows) 1999

Number of entries per record (cols)1999

Data type (code)5

Data size (size of each element)2

> saoimage -ul -i2 1999 1999 test.med3x2.flt.thr.dil7x2.i
> ../CODE/overlay

Enter image file to overlay boundary on : test.dsp

Enter image boundary file to be overlayed : test.bndry.dsp

Enter overlayed image name : test.overlay.dsp

>

> ../CODE/extract/removehdr test.overlay.dsp test.overlay.i
Number of Records (rows) 1999

Number of entries pe1r record (cols)1999

Data type (code)5

Data size (size of each element)2

> saoimage -ul -i2 1999 1999 test.overlay.i &

B extractsubsetDSP.c

#include “include .h" /¢ This declares all the global vars as EXTERN to this file »/
#include “global.h" /+ This declares all the global vars =*/
#include “defines.h" /* This includes constant and macro defss/

typedef struct {
unsigned char type; /* data type */
unsigned char element_size; /¥ size of each alement of data */
unsigned short int records; /* nuaber of data records %/
unsigned short int rec_length; /* number of elements in each record +/
} HEADER;

main(int argec, char ssargv)
{

/ o
This program extracts a subset from a .s1 (one byte char image)
and makes it into a short int DSP file.

»/
/ o
xxeekrnasrs expensses VARTABLE DECLARATI ONS#xvewts xrsnsssnhsnxsp ks
*/

int i, iRowskip, iColskip,
iNumRowsIn, iNumColsIn ,
iNumRowsOut, iKumColsOut,
uintsize, j;
unsigned char *puiBuffer;
short int spsiBuffer;
FILE #filepInput, *filepOutputl, *filepOutputDSP;
HEADER #¢headerinfo;

headerinfo = (BEADER "#) malloc(sizeof(HEADER)#1);
if((filepInput=fopen{arg v[1],"r"))==NULL)
{

printf("nable to open input file %s\n", argv{1l);exit(0);

if ((£ilepUut putDSP=fopen(argv[21,"w"))==NULL)
{ printf(“Unable to opem output file ¥s \n", argv[2]);exit(0);}

if((fileplut putI=fopen{argv[3],"w"))==NULL)
{ printf(“Unable to open output file %s \n", argv[3]);exit(0);}

printf(“Enter the number of rows to skip \n");
scanf(“%a", kiRowskip);

printf(“Enter the number of colmms to skip \n");
scanf("%d", &iColskip);

printf("Enter the number of rows Input \n"};
scanf("%d", kiNumRowsIn);

printf("Enter the number of colwmms Input\n");
scanf("%d", kiFumColsIn);

printf("Enter the number of rows QOutput\n');
scanf("¥%d", tiNumAouwsDut);

printf("Enter the number of columms {utput \n');
scanf(*%d", gilumColsOut) ;

printf("Size of shoxrt int = %d \n", sizeof(short int));
uintsize = sizeof (unsigned char);
puiBuffer = (unsigned char =*)malloc(sizeof(unsigned char) * iNwmColsCut);

psiBuffer = (short int s)malloc(sizeof(short int)} » iNumColsOut);

i=6; /» signed integer =/

headerinfo ~>records = (unsigned short int) iNumRowsGut;
headerinfo->type = (unsigned char) i; /* signed int */
headerinfo->rec_langth= (unsigned short int) iNumColsfut;
headerinfo->element_size= sizeof (short int);

frrite(headerinfo,sizeof (HEADER), 1,filepOutputDSP);
for (i=0; i<iNumRowsOut; i++)

/* fseek to correct rowe/
fseek(filepInput, (iRouskip+i)siNumColsIn @* unintsize ,0);
/= fseek to correct range samples/
fseek(filepInput, iColskip* uintsize, 1);
/% read in the number of samples to be processed */
fread(puiBuf fer ,nintsize , iKumColsOut ,filepInput);
for (§j=0; j<iNumColsDut; j++)
{
#(psiBuffer+j)= (short int) *(puiBuffer+j};
}
furite(psiBuffer,sizeof(short int), iNumColsOut ,filepOutputDSP);
furite(psiBuffer,sizeof(short int), i¥umColsCut ,filepOutputl);

C removehdr.c

tinclude “include.h’ /+ This declares all the global vars as EXTERN to this fila
#include "global.h* /* This daclares 21l the global vars */
#include “defines.h' /* This includes constant and macro defs%/

30

typedef struct {
ungigned char type; /* data type */
unsigned char element_size; /* sizy of each element of data */
unsigned short int records; /* numder of data records */
unsigned short int rec_length; /+ iumber of elements in each record */
} HEADER; ’

main(int argc, char *+argv)

7,

/ L]
xrrrhnnnns wxsasesss VARTABLE DECLARAT[DES##skans shnxssunkhrs hx
L2 /
int i,
B 3

short int *piBuffer;
FILE #filepInput, *fileplutputl ;
HEADER #*headerinfo;

headerinfo = (HEADER #*) malloc(siz:of(HEADER)* 1);
if ({£ilepInput=fopen{argv [1],"r")):-=FULL)
{

printf("Unable to open input file %s\n", argv{1]);exit(0);

if((£ileplut putI=fopen(argv(2],"w"))==NULL)
{ printf("Unable to open sutput file ¥%s \n", argvi3]);exit(0);}

fread(header info,sizeof (HEADER), 1,filepInput);

printf(“"Nember of Records (rows) ¥4 \n", headerinfo ->records);

printf(“Nunmber of entries per record (cols)%d \n“, headerinfo->rec_length);
printf(“Data type {code)%d \n", (int) headerinfo~>type);

printf(”Data size (size of each elament)%d \n", (int) headerinfo->element_size);

piBuffer = (short int *)malloc(siziof(short int) * headerinfo->rec_length);
for (i=0; i<(int) headerinfo->records; i++)

/+ read in the number of samples to be processed */
fread(piBuffer,sizeof(short int) , headerinfo->rec_length,filepInput};
furite(piBuffer, sizeof(short int), headerinfo->rec_length,fileplutputl);

D nonlin2dsize.c

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "matrix.h"
#include “get.h"

7,
/

BONLI¥2D : This program does min, max, or median filtering
of an image nsing the function noniin2d().

IBPUTS: DSP format image file.

OUTPUTS: DSP format image file.

main()
{
MATRIX *IN, *0UT;
int i, passes, inval, filtype, size;
B ao{

IN = matrix_read(get_string(''name of input image file"));
Jwhile(!I¥);

printf("Enter the function desired:\n");

printf(* 1 -- Erosion of light areiz (min)\n'");
printf£(* 2 -- Dilation of light areas (max)\n");
printf(* 3 — Median filter of the image\n');
inval = get_int("your choice", t, 3;

passes = get_int("number of passes", 1, 10);
filtype = inval = 1;

R /* Get the size value as a user input */

31

size = get_int("value of size for kernmel", 3, 15);

for (i=0; i<passes; i++){
OQUT = nonlin2d4(IN, size, filtype);
it
if (i < passes)
I¥ = nonlin2d(QUT, size, filtype);
}

if (passes’2)

matrix vrite(OUT, get_string("filtered output file name"));

else

matrix_vrite (I¥, get_string(“filtered output file name"));

E threshhold.c

#include <stdio .h>
#include <stdlib.h>
#include <math.h>
#include “get.h"
#include ‘“matrix.h"

/

Threshhold : THIS PROGRAM will threshhold the image
at a value specified by the user.

INPUTS: IMAGE TO BE threshholded IN DSP FILE FORMAT

QUTPUTS: NEW Threshholded IMAGE .

main()

{
DSP_FILE +*dsp_info;
MATRIX *IN, »0UT;

int i, j, temp_int, min, max, threshold;
short int *in, *out;
char *in_name, trail[100];

/% Read input file into a matrix structure. =/
do{
in_name = get_string(“image file to be threshholded ");
I¥ = matrix_read (in_name);
Iuhile(tIN);

if (IN->element_size != sizeof(short int)){
printf(" \nError: Input file is not of integer type\n');
exit(1);

min = 0;
max = 255;
/* Get the threshold value as a user input %/

threshold = get_int(‘value of detectiorn threshold", min, max);

/* Using the threshhold create a new image
from the original »/

OUT = matrix_allocate{IK->rows, IN->cols, sizeof(short int));

for (i=0; i<IN->rows; i++}{
in = (short int *)IE->ptr{il;
out = (short int *)OUT->ptr[il;
for {j=0; j<IN->cols; j++){
temp_int = inf[j];
temp_int = temp_int>255 ? 255 : temp_int;
temp_int = temp_int<threshold 7 0 : temp_int;
out{jl = {short int) temp_int;
¥
}

/+ ¥rite the new image to disk */
matrix_write(OUT, get_string('threshholded image name"));
}

32

F followboundarytopologyV2.c

#include <stdio.h>

#include <stdlib.h> -
#include <math.h>

#include ‘''get.h"

#include ‘'matrix.h"

/ -

followboundary: THIS PROGRAM will follow the boundary in
an image. The user mmst specify which half of
the image represents the object (land). A threshhold
valne ®ill also be input by the user to designate
a pixel level criteria to reopresent the object.

IKPUTS: IMAGE TC BE threshholded IN DSP FILE FORMAT
Direction (i.e. vhich side of the image is the
object on }
Threshhold to determine what is an object pixel

This modification (V2) asks the user for a start row,
and also exits gracefully if the coastline falls off the
image at either side or bottom of image.

OUTPUTS: NEW boundary IMAGE .

main()

DSP_FILE =dsp_info;

MATRIX *I¥, *=0UT;

int i, j, temp_int, min, max, DIR, threshold, orientation,
reachedend, clearpixels, cont, prevpix, toggle, q, val, horizbound,
below,belouleft, belowright, above, aboveleft, aboveright,
BeginTopo, EndTopo, BeginState, starti, startj, userinput ,
mini, exitrow;

short int #*in, *out, »*inbelow, *inaktove;

char *in_name, trail[100];

/* Read input file into a matrix structure. =/
dof
in_name = get_string{‘image file 10 find boundary in ");
I¥ = matrix_read (in_name);
Iwhile({IN);

if (IF->element_size != sizeof(short int)){
printf(* \nError: Input file is nct of integer type\n');
exit{1);

}

min = -1;
max = 1;
/* Get the direction that the boundary finder should travel.
If the land is on the right side o the image, the boundary
finder will travel clockwise, and DIR=1;
If the land is on the left side of the image, the boundary
finder will travel counter clockwise and DIR = -1;
*/
DIR = get_int("What side of the image is the land. left==> -1; right => 1%, min, max);
min = O;
max = 255;
threshold = get_int("Set threshhold to use as criteria for land", min, max);

starti = Q;
startj = 0;
userinput = get_int("Do you want tc inpnt the row to start coastline search? yes==>1; no==> 0" , 0, 1);
if (userinput==1)
{
starti = get_int("Enter the row number to look for starting point",
min, IN->rows -~9);
i = starti;
exitrow = get_int("Enter the rov number to stop searching for coastline",
10, IN~>rows -9);
}
else
{
i = IN-d>rows -9; /+ bottom most row */
starti = i;

¥

/% Scan the bottom row input image for the first land pixel.
For land on right, dir=1, start scmning from the left.
For land on left , dir=-1, start s:amming from the right.

«/

in = (short int *)IE->ptr(il;
if (DIR == 1)

33

j=0;
while ({int)in[j] < thresheld)
{
print£("i,j = %d, %4, val =% ", i, j, in[iD);
kiast '
if (j=IE->cols-1) -
{
printf("¥o starting point found on row %d \n", starti);
exit;
3
}
}
else if (DIR == -1)
{
j = I¥->cols ~1;
while ((int)in[j] < threshold)
{
3=
if (§==0)
{
printf("¥o starting point found on row ¥d \n", starti);
exit;
}
}
}

/%
Start pixel is [i, (j-DIR)]
Start orientation is 90 + DIR*90

*/
j=3 - DIR;
orientation = 90 <+ 90+DIR;
startj = j;
mini = starti;
printf(’Starting pixel is (%d, %d) ", i, §);
reachedend = 0;
do
{
in = (short int =)I¥->ptr(i];
/>
cont= get_int(“Continue the search", min, max);
*/

print£("\n in{%d, %d] = %@ \n", i, j, Cint) in{jl);
printf(“orientation = %d \n “, oriemtation);

mini = i< mini? i : mini;

if (i <exitrow)

{
pringf("Reached top (i = ¥d) \a", i);
while (in[j] <threshold)
{
j = j + DIR;
in[jl= =1;
reachedend = 1;
}

else if ((abs(i-starti) < 1) #& ((starti - mini)> 15))
{
printf("Reached bottom again (i = %d) \n", i);
reachadend = 1;

}
else if ((j==0) & ((int)in(jl>=threshold))
{

infj} = -1;
orientation = 0Q;
i=i-1i;

else if ((j==IN->cols -1) & ((int)in[j]l>=threshold))
{

in(§] = -1;

printf{"Marked pixel is (%d, %d) \n", i, j);
orientation = 180;

i=i-1;

}
else if (((int }in[j] >=threshold) || ({imt Jin{jl == -1))
{
in{j] = -1;
switch (oriemtation)
{
case O:
printf(“Case O Land \n");
i = i-DIR;
break;
case 270:
printf("Case 270 Land \n");
j = j*DIR;
break;
case 180:

34

printf(""Case 180 Land \n");
i = i+DIR;
break;
case 90:
printf("Case 90 Land \n"};
j = j-DIR;
break; -
}
orientation =
(orientation + 90+DIR) < 260 ? (orientation + 90«DIR): (orientation + 90+DIR)-360;

else
{
switch {orientation)
{
case 0:
printf("Case G \n"};
i = i+DIR;
‘break;
case 270:
printf("Case 270 \n");
j= j-DIR;
break;
case 180:
printf(“Case 180 \n");
i= i-DIR;
break;
case 90:
printf(“Case 90 \n");
j=" j*DIR;
break;
}
orientation =
(orientation - 90*DIR} >= 0 ? (orientation = 90+DIR): (orientation - 90+DIR)+360;
}
}
vhile (reachedend==0};

printf(" Finished marking pixels \1. *);
OUT = matrix_allocate{IN->rows, IN-3cols, sizeof(short int));

if (DIR == 1)
{

/* LATER, COPY THE IMAGE BOUNDARY ROW! AT BORDERS WHICH AREN'T SCANNED %/

for (i=1; i<IN->rows-1; i++)

{
clearpixels = 1;
prevpix = 0;
horizbound = 0;
in = (short int *)IN->ptr[i]
inbelow= (short int »)IN->ptr|i+i];
inabove= (short int *)IE->ptrii-il;
out = (short int *)OUT->ptr[i.;

for (j=IN->cols-2; j >=0; j-=)
{

if (clearpixeis ==1)
{
temp_int = in[jl;
if (temp._int != -1)
{
temp_int = 0;
if (horizbound ==1)

1{
horizbound =0;
/* figure out end topo */
belos = inbelow[j--11;
belowleft = inbelow(jl;
above = inabove[j~-1l;
aboveleft = inabove{j];
if ((below==-1) || (belowleft == -1))
{
EndTopo = 3;
else if ((above ==-1) || (aboveleft == -1))
{
EndTopo = 2;
}
/* Depending on beginning and emnd topo,
fignre out stats for clearpixels »/
toggle = BeginTop:) - EndTopo;
toggle = toggle > 07 toggle: —-1istoggle;
if (toggle ==1) clearpixels = BeginState;
else if (toggle ==2) clearpixels = -1 * BeginState;
}
pravpix = 0;

if (temp_int == -1)
{

temp_int = 255;
if (prevpix== 0}
{

below = inbelow (jl;
belowright= inbelow[j+1];
above = inabove[jl;
aboveright= inabove[j+1]; -
if ((above==~1) || (aboveright == -1))
{
BeginTopo = 1;

else if ((below ==-1) || (belowright == -1))
{
BeginTopo = 4;

BeginState = clearpixels;

clearpixels = clearpixels x -1;
}
if (prevpix== -1)

horizbound = 1;
cleaxrpixels = 1;
}

prevpix= ~1;
out{jl = {short int) temp_int;
else /* clearpixels = -1 */
{

temp_int = in[jl;
if (temp_int != -1)
{
prevpix= 0;
/% clearpixels = 1; */
}
temp_int = temp_int>255 7 255 : temp_int;
if (temp_int == ~1)
{
temp_int = 255;
if (prevpix== 0)
{

below = inbelow{jl;
belowright= inbelow[j+1];
above = inabove{jl;
aboveright= inabove[j+1];
if ((above==-1) || (aboveright == -1))
{
BeginTopo = 1;

else if { (below ==-1) || (belowright = -1})
{
BeginTopo = 4;

BeginState = clearpixels;

clearpixels = clearpixels #* -1;
}
if (prevpix== -1)
{

horizbound = 1;
clearpixels = 1;

prevpix= -1;
}
temp_int = temp_int <threshold ? 0 : temp_int;
outfjl = (short int) temp_int;

} /* for each colummn */
} /* for each row */
} /#* DIk =1 %/
else if (DIR == -1)
{

/% LATER, COPY THE IMAGE BOUNDARY ROWS AT BORDERS WHICH AREX’T SCANEED */

for (i=1; i<IF->rows-~1; it++)

{
clearpixels = 1;
prevpix = 0;
horizbound = 0;
in = (short int *)IN->ptr[i];
inbelow= (short int *)IN->ptr(i+1];
inabove= (short int *)IN->ptr{i-1];
out = (short int *)OUT->ptrlil;

for (j = 1; j< IE->cola-1; j++)
{
if (clearpixels ==1)

{
temp_int = in{jl;

36

if (temp_int != -1)
{
temp_int = 0;
if (horizbound ==1)
{
horizbound =0;

/+ figure out end topo */
below = inbelow [j-1];
belowright= inbelo:[j];
above = inabove(j-1];
aboveright= inabov:{j]l;
if ((above==-1) || (aboveright == -1))
{
EndTope = 1;

else if { (below ==-1) [| (belowright == -1))
{
EndTopo = 4;

/* Depending on beginning and end topo,
figure out state for clearpixels */

toggle = BeginTopo - EndTopo;

toggle = toggle > 07 toggle: -1stoggle;

if (toggle ==1) clearpixels = BeginState;

else if (toggle ==2) clearpixels = -1 * BeginState;
}
prevpix = 0;

if (temp_int == ~1)
{
temp_int = 255;
if (prevpix== 0)
{

below = inbelow[jl;
belowleft = inbelow[j-1];
above = inabove[jl;
aboveleft = inabova{j-1];
if ((below==-1) {| (belowleft == -1))
{
BeginTopo = 3;

_ else if ((above ==-1) || (aboveleft == -1))
{
BeginTopo = 2;

B BeginState = clearpixels;
clearpixels = clearpixels * -1;
}
if (prevpix== -1)
{

horizbound H
clearpixels = 1;

}

prevpix= -1;
out{jl = {short int) temp_int;
else /* clearpixels = -1 %/
1{

temp_int = in[j];
if (temp_int != -1)
{
prevpix= 0;
/* . clearpixels = 1; */
}

temp_int = temp_int>256 | 255 : temp_int;
if (temp_int = -1)
{
temp_int = 255;
if (prevpix== 0)
below = inbelow[j];
belowleft = inbelew{j-1];
< above = inabove[j];
aboveleft = inabove[j-1];
if ((below==-1) || (belowleft == -1))
{
BeginTopo = 3;

else if ((above :=-1) || (aboveleft == -1))
{

BeginTopo = 2;
BeginState = cleaipixels;

clearpixels = cleixpixels * -1;

37

if (prevpix== -1)
{

horizbound = 1;
clearpixels = 1;

prevpix= -i;

temp.int = temp_int<threshold ? 0 : temp_int;
‘out{j] = (short int) temp_int;
¥
} /* for each colum »/
} /# for each row */

} /+*DIR = -1 */

/% Write the new image to disk %/
matrix_write(OUT, get_string('“boundary image name"));

G overlay

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "get.h"
#include ‘"matrix.h"

/

overlay: THIS PROGRAM will overlay a boundary over the image
IEPUTS:
IMAGE with boundary TO BE overlayed IE DSP FILE FORMAT
TMAGE in which to overlay boundary IN DSP FILE FORMAT

OUTPUTS: NEW overlayed IMAGE .

main()

{
DSP_FILE *dsp_info;
MATRIX +IN, »0UT, *INB;

int i, j, temp_intb, temp_int, min, max, threshold;
short int *in, *out, *inb;
char +in_name, *in_nameb, trail{100];

/* Read input file into a matrir structure. =/
do{
in_name = get_string("image file to overlay boundary omn");
IN = matrix_read (in_name);
Iohile(!IN);

if (IN->element_size != sizeof(short int)){
printf(" \nError: Input file is not of integer type\n");
exit(1);

}

/* Read input file into a matrix structure. */
do{
in_nameb = get_string(“image boundary file to be overlayed ");
INB = matrix_read(in_nameb);
}uhile(!INB);

if (IEB->element_size != sizeof(short int))}{
printf(*\nError: Input file is not of integer type\n");
exit(1);

¥

/* Using the threshhold create a new image
from the original */
OUT = matrix_allocate(IN->rows, IN->cols, sizeof(short int));

for (i=0; i<IN->rows; i++){
in = (short int *)IN->ptr(i];
inb = (short int *)INB->ptr{il;
out = (short int *)OUT->ptrlil;
for (j=0; j<IN->cels; j++){
temp_int = in(j];
temp_intb = inb(j};
temp_int = temp_intb==255 ? 255 : temp_int;

38

out{jl = {(short int) temp_int;

/% Write the new image to disk */
matrix.write(0UT, get_string(“overlayed image name'});-
}

H overlay5xf.c

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include ‘“get.h"
#include ‘“matrix.h"

/

overlay: THIS PROGRAM will overlay a boundary over the image
The boundary will be overlaynd with a 5x5 width.

INPUTS:
IMAGE with boundary TD BE overlayed IN DSP FILE FORMAT
IMAGE in which to overlay boundary IN DSP FILE FORMAT

OUTPUTS: NEW overlayed IMAGE .

-y /

main()
{
DSP_FILE =»dsp_info;
MATRIX *1¥, *QUT, »OUTTHICK, *I¥B,

int i, j, ii, jj, temp_intb, tamp_int, min, max, threshold;
short int =*in, sout, soutthick, »inb;
char *in_name, *in_nameb, trail (100];

/* Read input file into a matrix struciure. »*/

do{
in_name = get_string ("image file t) overlay boundary on");
I¥ = matrix_read (in_name);

}ahile(:IN);

if (IN->element_si ze !'= sizeof(short int)){
printf(* \nError: Input file is no: of integer type\n");
exit(i);

}

/* Read input file into a matrix struciure. %/
do{
in_nameb = get_string(“image boundiry file to be overlayed ");
INB = matrix_read(in_nameb);
}while(1INB);

if (INB->element_size != sizeof{shor: int}){
printf(“\nError: Input file is no: of integer type\n");
exit(1);

}

/# Using the threshhold create a new inage

from the original #*/

OUT = matrix_allocate(IN->rows, IE->iols, sizeof(short int));
OUTTHICK = matrix_allocate(IN->rows, [(N->cols, sizeof(short int));

for (i=0; i<IN->rows; i++){

in = (short int *)IN->ptr[il;

inb = (short int *)INB->ptrli];

out = (short int «)OUT->ptr[il;

outthick = (short int #)OUTTHICK->ptrlil;

for (j=0; j<IE->cols; j++){
temp_int = in{j];
temp_intb = inb[j];
temp_int = temp_intb==265 7 255 . temp_int;
out{j] = <(short int) temp_imnt;
outthick{jl = out{jl;

/% ¥rite the new image to disk #/
matrix_write(OUT, get_string("overlajed image name"));

39

for (i=5; i<IN-d>rows-5; i++)
{
out = (short imt *)0UT->ptr{il;
for (j=5; j<IE->cols-5; j++)
{

if (out[j] == 255)
{

for (ii = -5; ii <6; ii++)

{
outthick = (short int *) OUTTEICK->ptr{i+ii];
for (jj = -5; jj < &; jj+»)
{

outthick[j+jjl= 255;

}
} /* end if %/
} /* end j*/
} /% end i ¢/
/* ¥rite the new thick image to disk »/
matrix_write (QUTTHICK, get_string(“overlayed THICK image name"));

I coastpreprocFinal.c

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
tinclude "matrix.h"
#include ‘‘get.h"

/

coastpreproc : This program does the sequency of image
processing steps mecessary to accentuate the land/
water boundary for coastline detection.

The steps are:

- a 2 pass median filter to get rid of speckle
- a histogram flattening

- a thresholding step

- a 2 pass dilation with kernal size of 7

The parameters for these operations are fixed in
the code (i.e. they are not input by the user).
They may need to be twiddled with later.

INPUTS: DSP format image file.
The image must be a short int file.

GUTPUTS: DSP format image file.
This file will be the input to the coastline detector.

main()

MATRIX +IN, =0UT, *TEMP ;
int i, passes, inval, filtype, size;

/% variables from flatten */

float *hist_array;

double image_size, temp_flt;

int 3, nev_gray_level[256], temp_int;
short int *in, =out;

char +in_name, trail{100];

/* variables from threshholde/
int min, max, threshold;

/* First get in the name of the input file %/
do{
IN = matrix_read(get_string("'name of input image file"));
Iwhile(1IN ;

/* Our next step is to do a 10 pass median filter,
so inval = 3 (determined by the nonlin2d function to
do median filter)
and passes = 10
Eernel size is 3
*/

inval = 3;

passes = 2;
filtype = inval - 1;

40

size = 3; /* it can be between 3 and 15 %/

/*
Call the function monlin2d to actwilly implement the median
filter. The output of nonlin2d is a pointer to the
filtered image.)

*/ -

printf ("MEDIAN FILTERING \n ');

for (i=0; i<passes; i++){
OUT = nonlin2d(IN, size, filtype),
it
if (i < passes)
IN = nonlin2d(0UT, size, filtypu);
}

/* If you alter the number of passes o be other than 10,
the pointer to the result may be eithor IN or OUT.

If the number of passes is odd (passer%2 =1) the result
is in QUT.

If the number of passes is even (passcs¥2 =0) the result
is in IN.

*/

/* Bow, we want to flatten out the median filtered image */

printf("FLATTENING IMAGE \n ");

FLATTEN: THIS PROGRAM USES THE FUNCT.ON histogram T0 LEVEL
THE HISTOGRAM OF AN INPUT IMAGE.

INPUTS: IMAGE T0 BE HISTOGRAM FLATTINED IN DSP FILE FORMAT

OUTPUTS: HEEW IMAGE WITH FLATTENED HISTOGRAM.

/¢ Our input file for the histogram i pointed to by the pointer
- IN +/

/+ Calculate the number of pixels in :he image. #*/
image_size = (double) I¥->rows * (double) IN->cols;

7 /* Create an array of 256 floats whicli represent the number
of pixels in the image at a particidar gray level.
Write the array to disk as the firiut record in a
two record DSP file. #/

hist_array = histogram(IN,0,255);

/* The following commented section cin bu used to write the histogram,
if desired. */

#ifdef WRITEHISTOGRAMS

do{
dsp_info = open_write(get_string('histogram file name") ,FLOAT,2,256);
}while(!dsp_info) ;

write_record((char #»)hist_array ,dsp.info);
tendif

/* Using the histogram array create a mapping of the original
gray levels to the new histogram fl.attened gray levels =/

temp_flt = 0.;
for{i=0; i<256; i++){ /* Loop thru original gray levels »/

/#* Find the distribution function of ‘;he image at each gray level »/
temp_flt += hist_array [i]/image_s:.=ze;

/* Use the distribution functien to cieate the mapping
B from old to new gray levels »/
new_gray_level[i] = (255.*temp_fit) + 0.5;

/* Using the new mapping of gray level.s create 2 new image
. from the original */
OQUT = matrix.allocate(IN->rows, IN-cols, sizeof(short int));

for (i=0; i<IN->rows; it++){

in = (short int =)IN->ptr{i);

out = (short int *)OUT->ptriil;

for {j=0; j<IN->cols; j++){
temp_int = in[j];
temp_int = temp_int>258 ? 255 : temp_int;
temp_int = temp_int<0 ? O : temp_int;
ont{j] = new_gray_level[temp_int};

41

}
}

#ifdef WRITEHISTOGRAMS .
/% Find the histogram of the newly created image and write as the .
second record in the file which is already open »/ !

hist_array = histogram (DUT,0,255);
write_record({char =*}hist_array,dsp._info);

/* make descriptive trailer for ountput histogram file */
sprintf(trail,
“Histograms of file %s before and after flattening",in_name);
write_trailer(trail,dsp_info);
#endif

/% The flattened image is pointed to by OUT */
/* The next step is to threshhold the image. */

/* Our input file for the threshhold is pointed to by the pointer
ouT »/

printf(" THRESHHOLDING IMAGE \n ");
min = 0;
max = 255;
/#The threshhold we will use is 200.
This may need to be tweaked later . The thrashhoeld
should be between O and 255 */

threshold = 200;

/* Using the threshhold create a new image fram the original =/

/* To make the terminociogy ok, let’s assign the value of the pointer
OUT to the pointer IN. Then we can nse the code in threshhold.c
as is. */
TEMP = IN; /+ save the location that I¥ pointed to, since
it was already allocated */
IN = OUT;
OUT = TEMP;

for (i=0; i<IN-drows; i++){
in = (short int *)IN->ptr{il;
out = (short int *)0UT->ptr[il;
for (j=0; j<IN->cols; j++}{

temp_int = in[j];
temp_int = temp_int>255 7 255 : temp_int;
temp_int = temp_int<threshold ? 0 : temp_int;

out{j] = (short int) temp_int;
}
¥

/% The threshholded image is pointed to by OUT */
/* To make the terminology ok, let’s assign the value of the pointer
OUT to the pointer IN. Then we can use the code in nmonlin2d.c
as is. */

TEMP = IN; /* save the location that IN pointed to, since

it was already ailocated %/
IN = OUT;
0UT = TEMP;

/* The final step is to dilate the image with a kernel of 7
and with 2 passes.

printf(" DILATING IMAGE \n ");

so inval = 2 (determined by the nonlin2d function to
do median filter)

and passes = 4

Kernel size is 5

*/

inval = 2;

passes = 2;

filtype = inval - 1;

size = 7; /* it can be between 3 and 15 */

/% .

Call the function nonlin2d to actually implement the dilation
filter. The output of nonlin2d is a pointer to the filtered image.
*/

for (i=0; i<passes; i++){
OUT = nonlin2d(I¥, size, filtype);
it
if (i < passes)
IF = nonlin2d(0UT, size, filtype);
}

/* If you alter the number of passes to be other than 10,

42

the pointer to the result may be eithor IN or OUT.
If the number of passes is odd (passe:;}%2 =1) the result
is in OUT.
If the number of passes is even (passusi2 =0) the result
is in IN.
*/
if (passes’?2)
matrix_srite(OUT, get_string("coast preprocessed file name"));
else
matrix_write(I¥, get_string(‘‘coa:t preprocessed file name"));

} /* end main */

References

[BB82] Dana Ballard and Christopher Brown. Computer Vision. Prentice-Hall,
Inc., 1982.

[DH73] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis.
J. Wiley and Sons, 1973.

[(Ed72] Satosi Watanabe (Editor). Frontiers of Pattern Recognition. Academic
Press, 1972.

[(Ed88] J.C. Simon (Editor). From Pizels to Features. North-Holland, 1988.

[EK91] Paul Embree aad Bruce Kimble. C Language Algorithms for Digital Signal
Processing. Przntice Hall PTR, 1991.

[GW8T7] Rafael Gonzalez and Paul Wintz. Digital Image Processing. Addison-
Wesley, 1987.

[Hor82] R. Michael Hord. Digital Image Processing of Remotely Sensed Data.
Academic Press, 1982.

[Jah91] Bernd Jahne. Digital Image Processing Concepts, Alorithms and Scientific
Applications. Springer-Verlag, 1991.

[RD84] Christian Ronse and Pierre Devijver. Connected Components in Binary
Images: the Detection Problem. Research Studies Press, 1984.

[RK82] Azriel Rosenfe d and Avinash Kak. Digital Picture Processing, Volumes
1 and 2. Academic Press, second edition, 1982.

DISTRIBUTION:

MS 1207 I. A. Erteza, 5912

MS 1207 C. V. Jakowatz, 5912

MS 1207 D. A. Yocky, 5912

MS 9018 Central Technical Files, 8940-2

MS 0899 Technical Library, 4916

MS 0619 Review and Approval Desk, 12690
For DOE/OSTI

N BN — = = Ot

44

