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1 Introduction

In this work we consider a modification to an arbitrary order mixed mimetic finite difference method (MFD)
for a diffusion equation on general polygonal meshes [1]. The modification is based on moving some degrees
of freedom (DoF) for a flux variable from edges to vertices. We showed that for a non-degenerate element
this transformation is locally equivalent, i.e. there is a one-to-one map between the new and the old DoF.
Globally, on the other hand, this transformation leads to a reduction of the total number of degrees of
freedom (by up to 40%) and additional continuity of the discrete flux.

In this work we will follow the Mimetic Finite Difference method construction that is largely similar to
that of Finite Element methods in the sense that it follows the same steps. It starts of with rewriting the
PDE in a weak form. Elements of the approximation spaces are represented in terms of their DoFs, which
are associated with vertices, edges and the area of the elements. The bilinear forms corresponding to the
integrals of products of functions arising in the weak formulation in the discrete settings are represented by
matrices that are built element by element and then assembled into their global form.

Since for non-degenerate elements there is a one-to-one map between the new and old DoF for the flux
variable we were able to build a prototype of the new method based on the old one [1] simply by inserting
this transformation matrix locally. Testing the prototype method on non-degenerate meshes we verified that
it has the same order of convergence as the previous method [1], but now with additional benefits of fewer
DoF. Henceforth, we made built and implemented the original construction (not based on the transformation
from the old construction) for the necessary blocks (to be discussed later in details) and tested on wide range
of meshes. These meshes included degenerate elements (e.g. hanging nodes) both on and away from the
boundary. In all cases the new method showed the same convergence rate as the previous method for
problems with continuous diffusion tensor coefficient.

A number of experiments with discontinuous diffusion coefficient demonstrated that in order to obtain
higher order of convergence the mesh has to conform to the discontinuity. For such meshes the previous
method did retain the same convergence rate (as for continuous diffusion coefficient) while the new method
did not. This happens due to the added continuity in the tangential component of the discrete flux variable
at the interface vertices. This continuity is generally not present in the continuous solution. We are presently
investigating a remedy based on additional DoF for the interface vertices that would correspond to the jump
in the tangential component of the flux. The preliminary results are very promising.

The rest of the report is organized as follows. In section 2 we present a more detailed outline of the
construction. In section 3 we present the discretizations of the bilinear form discussed in section 2. In
section 4 we present various numerical tests for the new method and the comparison with the previous
method. Finally, in section 5 we make several concluding remarks.
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2 Outline of the mixed mimetic finite difference discretization

We consider a steady state diffusion problem

div (K∇p) = −f in Ω ⊂ R2 (1)

with appropriate boundary conditions, e.g. Dirichlet boundary conditions p = g on ∂Ω. Here K is a
symmetric diffusion tensor that may vary in space. We will assume it to be uniformly elliptic.

The mixed formulation of (1) is based on the introduction of a new variable u for the flux and rewrite
(1) as a first order system for u and p:

u = −K∇p in Ω, (2)

divu = f in Ω, (3)

p = g on ∂Ω. (4)

The MFD construction, just like the Finite Element (FE) one will be based on the weak formulation

〈K−1u,v〉Ω − 〈p, divu〉Ω = −〈g,v · ν〉∂Ω ∀v ∈ H(div ,Ω), (5)

〈divu, q〉Ω = 〈f, q〉Ω ∀q ∈ L2(Ω). (6)

Here ν is a unit outward normal to the boundary ∂Ω and the bilinear forms 〈u, v〉Ω and 〈u, v〉∂Ω stand for
the integrals

〈u, v〉Ω :=

∫
Ω

u v dΩ and 〈u, v〉Ω :=

∫
∂Ω

u v ds. (7)

Let Ωh be a tessellation of the domain Ω into polygonal elements E. Take

h = max
E∈Ωh

diamE

to be a characterization of the mesh refinement. The MFD formulation will have a form similar to (5-6):
find (uh, ph) ∈ Xh ×Qh such that

[uh,vh]Xh
− [ph,DIV vh]Qh

= −〈gh,vh · ν〉h ∀vh ∈ Xh, (8)

[DIV uh, qh]Qh
= [fh, qh]Qh

∀qh ∈ Qh, (9)

where uh,vh, ph and qh are discrete version of u,v, p and q. We will give a precise definition of the discrete
spaces Xh and Qh and the mimetic inner products [uh,vh]Xh

and [ph, qh]Qh
in section 3. In fact, the

definition of the discrete space Qh will be the same as in the original method [1]. Next we will discuss the
changes from the original method.

2.1 Changes to the flux DoF

The original method described in [1] uses degrees of freedom for flux defined on each element E ∈ Ωh and
on each edge e ∈ ∂E. Their number depends on the order of the scheme k. In this project we remove two
DoFs from each edge e and move them to the vertices. Thus each vertex now has two DoFs associated with
it. These DoFs are simply the x- and y-components of the flux at this vertex.

Figure 1: Flux degrees of freedom for original method
on a quadrilateral element (k = 2)

Choose k ∈ N that represents the order of MFD method, fix E ∈ Ωh and let EE be the set of all edges of
E and VE be the set of all vertices of E. Then the DoFs of flux u on E are defined as
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� the moments of u with respect to ∇φE,i where {φE,i}i is the basis of Pk−1(E), the space of all
polynomials on E with degree less or equal to k − 1:

uIE,i :=
1

|E|

∫
E

〈u,∇φE,i〉dx for i = 1, . . . , nEk−1; (10)

Here we skip the first constant polynomial since the gradient turns it into zero. For the sake of
simplicity of implementation we take φE,i = xα1yα2 where i indexes the power α = (α1, α2).

� the moments of u · νE,e with respect to φe,i, where νE,e is the unit outward normal to the element E

at the edge e and {φe,i}ki=0 is the orthogonal basis of Pk(e) - polynomials of degree up to k on e:

uIe,i :=
1

|e|

∫
e

〈u, νE,e〉φe,i(s)ds for i = 2, . . . , k ∀e ∈ EE ; (11)

We take orthogonal Legendre polynomials as φe,i. Here we skip the first two polynomials 1 and s since
the coefficients in front of them can be determined through the vertex DoFs.

� the values of u at the vertices of E:
uIv := u|v ∀v ∈ VE . (12)

Note, that uIv = (uIv,1, u
I
v,2) is a vector and contains two scalar DoFs.

Figure 2: Change of the flux degrees of freedom for new method
on a quadrilateral element (k = 2)

The DoFs of a scalar function p on E are defined as

� the polynomial coefficients of the projection ΠE
k−1p of the function p on space Pk−1 of polynomials of

order up to k − 1:

ΠE
k−1p =

nE
k−1∑
i=0

pIE,iφE,i, (13)

where φE,i = xαiyβi are the monomials that form the basis of Pk−1.

Figure 3: Degrees of freedom for potential
on a quadrilateral element (k = 2)

The local change of DoFs shown on Figure 2 is a one-to-one correspondence TE as soon as E does not have
hanging nodes, that are the vertices with parallel incident edges. Such approach was used at the beginning
and the matrix TE was calculated for each element E ∈ Ωh so that

TEu
I
old = uInew. (14)
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Later the more detailed approach was used where all flux DoFs were found independently of the original
method. This approach is discussed in Section 3.

Despite the local change of DoFs is one-to-one for elements with no hanging nodes, globally the number
of DoFs decreases (Figure 4).

Figure 4: Change of the flux degrees near single node

The number of DoFs near one node is decreased by the number of incident edges and increased by two.
Figure 5 shows the global decrease of number of DoFs for a regular square mesh.
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Figure 5: Ratio of number of new DoFs to number of old DoFs

Another difference between two methods is that the new method has additional continuity of the flux at
the vertices (Figure 6) since vertex DoFs match with DoFs on incident edges.

Figure 6: Flux is continuous at the vertices

This brings additional properties for the discrete approximation but also creates additional difficulties
when dealing with the problems with discontinuous diffusion coefficient. The actual analytical solution
for such problems has a continuous normal component across the edges of discontinuity but its tangential
component can have jumps that our model does not allow. Therefore the discontinuous diffusion coefficient
case requires special consideration.
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3 Discretization of bilinear forms

To solve the problem (8)-(9) we need to describe the discrete divergence operator DIV and the mimetic
inner products [·, ·]Xh

and [·, ·]Qh
that are the bilinear forms on the corresponding vector spaces. The bilinear

forms correspond to some symmetric positive definite matrices MXh
and MQh

:

[u,v]Xh
= uTMXh

v, (15)

[p, q]Qh
= pTMQh

q, (16)

where u,v ∈ Xh and p, q ∈ Qh are represented as column vectors collecting all their DoF. Our job is to find
DIV , MXh

, and MQh
. We fix element E ∈ Ωh and construct the local matrices DIVE , MXE

, and MQE
.

The global matrices are then constructed additively.
The bilinear form for the scalar variable MQE

is constructed in the same way as in [1] since the scalar
moments pIE,i are not changed. It contains all pairwise L2-inner products of basis monomials φE,i. If p and
q are scalar functions on E, then

[pI , qI ]QE
: =

∫
E

ΠE
k−1p ·ΠE

k−1q dx =

∫
E

∑
i

pIE,iφE,i ·
∑
j

qIE,jφE,jdx

=
∑
i,j

pIE,i q
I
E,j (MQE

)ij =
(
pI
)TMQE

qI (17)

where

(MQE
)ij =

∫
E

φE,iφE,jdx. (18)

Instead of the discrete divergence operator we consider the combination ofMQh
with DIVE and describe

[DIVE uI , pI ]Qh
with p ∈ Pk−1(E) as an action of some operator on the discrete representation uI of u. The

coordinates of the vector uI are simply the DoFs of u associated with the element E. This includes DoFs
associated with verteces and edges of the element E as well as those associated with the area of the element.
To understand how [DIVE uI , pI ]Qh

is represented through the DoFs of u for any polynomial p ∈ Pk(E),
we test it on all basis monomials φE,i = xα1yα2 with |α| ≤ k − 1. By definition

[DIVE uI , φE,i]Qh
= [(divu)I , φE,i]Qh

=

∫
E

divu · φE,idx

= −
∫
E

u · ∇φE,idx+
∑
e∈EE

∫
e

〈u, νE,e〉φE,ids

= −uIE,i +
1

|E|
∑
e∈EE

∫
e

〈u, νE,e〉φE,ids. (19)

Now fix e ∈ EE and calculate
∫
e
〈u, νE,e〉φE,ids. Both the monomial φE,i and polynomial 〈u, νE,e〉 can be

represented through the Legendre basis on the edge e (for simplicity we skip the dependence on E, i, and e)

φE,i =

k∑
j=0

pjφe,j and 〈u, νE,e〉 =

k∑
j=0

qjφe,j . (20)

Then ∫
e

〈u, νE,e〉φE,ids =

∫
e

〈u, νE,e〉
k∑
j=0

pjφe,jds

= |e|
k∑
j=2

pju
I
e,j +

|e|
2

∫ 1

−1

(q0φe,0 + q1φe,1) (a0φe,0 + p1φe,1) dt

= |e|
k∑
j=2

pju
I
e,j +

|e|
2

[
2q0p0 +

2

3
q1p1

]
. (21)
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The only unknowns here are q0 and q1 and we want to represent them through edge DoFs uIe,j , j = 2, . . . , k

and vertex DoFs uIv1 and uIv2 , where v1 and v2 are the adjacent to e vertices.
For simplicity we start with auxiliary DoFs instead of uIv1 and uIv2 that are their normal components

w.r.t. νE,e:
〈uIv1 , νE,e〉 = 〈u, νE,e〉|v1 = uAv1,2 and 〈uIv2 , νE,e〉 = 〈u, νE,e〉|v2 = uAv2,1. (22)

Since the rescaled Legendre polynomials φe,j(t) on [−1, 1] take value 1 at t = 1 and alternate between −1
and 1 at t = −1, we can write the system for q0 and q1:

uAv1,2 = 〈u, νE,e〉|v1 =

k∑
j=0

qjφe,j(−1) = q0 − q1 + q2 − · · ·+ (−1)kqk, (23)

uAv2,1 = 〈u, νE,e〉|v2 =

k∑
j=0

qjφe,j(1) = q0 + q1 + q2 + · · ·+ qk. (24)

The coefficients qi, i ≥ 2 are simply the edge DoFs up to some factor:

uIe,i =
1

|e|

∫
e

〈u, νE,e〉φe,ids =
1

|e|

∫
e

k∑
j=0

qj φe,jφe,ids

=
qi
|e|
· |e|

2

∫ 1

−1

(φe,i)
2
ds =

qi
2
· 2

2i+ 1
=

1

2i+ 1
qi. (25)

Therefore we can express q0 and q1 through edge DoFs uIe,i and auxiliary vertex DoFs uAv,j :

q0 =
uAv2,1 + uAv1,2

2
−
b k2 c∑
l=1

(4l + 1)uIe,2l , (26)

q1 =
uAv2,1 − u

A
v1,2

2
−
b k−1

2 c∑
l=1

(4l + 3)uIe,2l+1 . (27)

Finally, using (22) and (26)-(27) we able to rewrite the edge integral as a linear combination of the edge and
original vertex DoFs:

∫
e

〈u, νE,e〉φE,ids = |e|

(1

2
p0 −

1

6
p1

)
〈uIv1 , νE,e〉+

(
1

2
p0 +

1

6
p1

)
〈uIv2 , νE,e〉

+

k∑
j=2

(
pj − (2j + 1)αj

)
uIe,j

 (28)

where

αj =

{
p0, when j is even,
1
3p1, when j is odd.

(29)

The equations (19) and (28) allow us to express the action of discrete divergence operator on uI through
the DoFs of u and represent it as a matrix DE of size nsk × nvk where nsk is the number of scalar DoFs and
nvk is the number of vector DoFs on element E. Thus, we can write

[DIVE uI , p]QE
=
(
pI
)T DEuI . (30)

The right hand side of (8) is the sum of the integrals over all boundary edges:

〈gh,vh · ν〉h =
∑

e∈∂Ωh

∫
e

〈vh, νe〉ghds (31)

6



and can be calculated by (28)-(29) using the Legendre coefficients of gh with respect to the basis {φe,j}kj=0.
Finally, we construct the bilinear form for the vector variable MXh

. The local consistency condition
states that for any q ∈ Pk+1(E) and any vector function v on E the following holds:

[
(
ΠE
k (K∇q)

)I
,vI ]XE

=

∫
E

〈∇q,v〉dx, (32)

i.e. the bilinear form is equivalent to integration for polynomials of order up to k + 1. We test (32) on
all monomials of order up to k + 1. If q = φE,j is a monomial of order less or equal than k − 1, then∫
E
〈∇φE,j ,v〉dx is simply the face DoF of v multiplied by |E|. In the other case we use the divergence

theorem to calculate the right hand side:∫
E

〈∇q,v〉dx = −
∫
E

qΠE
k−1divv dx+

∑
e∈E

∫
e

〈v, νE,e〉q ds

= −
(
vI
)T DTE qI +

∑
e∈E

∑
j

qIE,j

∫
e

〈v, νE,e〉φE,j ds (33)

The edge integrals in (33) can be calculated by (28) as an inner product of vI with some vector cj . Then
the formula (33) can be written in a vector form:∫

E

〈∇φE,j ,v〉dx =
(
vI
)T (−DTE (φE,j)

I + cj
)

(34)

for all φE,j ∈ Pk+1(E). We introduce the matrix of coefficients in the right hand side for all test functions
φE,j :

R = [R j ]
nE
k+1

j=1 :=
[
−DTE (φE,j)

I + cj
]nE

k+1

j=1
. (35)

On the other hand, the integral on the left is the bilinear form∫
E

〈∇φE,j ,v〉dx =
(
vI
)TMXE

(
ΠE
k (K∇φE,j)

)I
. (36)

We define the matrix of discrete representations of all ΠE
k (K∇φE,j) as N :

N = [N j ]
nE
k+1

j=1 :=
[(

ΠE
k (K∇φE,j)

)I]nE
k+1

j=1
. (37)

The matrices R and N can be directly calculated and since the equations (34) and (36) hold for any vector
function v on E, we deduce that the matrix MXE

satisfies

MXE
N = R . (38)

Thus we obtained the local consistency condition in a matrix form. In order to satisfy consistency and
stability conditions (see [1]), the matrix MXE

is constructed by the standard formula for mimetic inner
product:

MXE
=M 0 +M 1 = R (N TR )−1R T + µE

(
I −N (N TN )−1N T

)
, (39)

where the matrix M 0 is responsible for consistency and the matrix M 1 is responsible for stability. Note,
that the matrix N TR is a Gram matrix for inner products between ∇φE,i and ∇φE,j , so it is symmetric
and positive definite, and therefore invertible. Thus, the formula (39) is well-defined.
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4 Numerical Results

We tested the new method in comparisson with the original method on a square domain Ω = [0, 1]2 with a
variety of polygonal meshes (Figure 7).

(a) (b) (c) (d)

(e) (f) (g)

Figure 7: Meshes

The results below were calculated on a perturbed square mesh, see Figure 7c, with various degree of
refinement for the tensor diffusion coefficient

K =

[
2 + x2 0

0 2 + y2

]
(40)

and the potential p(x, y) = sinπx cosπy with the prescribed exact Dirichelet boundary conditions.
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Variable Old method error New method error

Flux

2−7 2−6 2−5 2−4 2−3 2−2 2−1 20

h, resolution (linear)

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

E
rr

or
(fl

ux
,o

ld
)

k = 1

k = 2

k = 3

k = 4

2−7 2−6 2−5 2−4 2−3 2−2 2−1 20

h, resolution (linear)

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

E
rr

or
(fl

ux
,n

ew
)

k = 1

k = 2

k = 3

k = 4

Potential

2−7 2−6 2−5 2−4 2−3 2−2 2−1 20

h, resolution (linear)

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

E
rr

or
(p

ot
en

ti
al

,o
ld

)

k = 1

k = 2

k = 3

k = 4

2−7 2−6 2−5 2−4 2−3 2−2 2−1 20

h, resolution (linear)

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

E
rr

or
(p

ot
en

ti
al

,n
ew

)

k = 1

k = 2

k = 3

k = 4

Table 1: Error comparison

The errors for the flux uI and the potential pI are comparable to the errors in the previous method that
does not use vertex DoFs (see, Table 1). Similar results are obtained for other types of meshes, such as square
meshes with removed edges (Figure 7b), regular hexagonal (Figure 7e), deformed hexagonal (Figure 7f), and
non-convex octagonal meshes (Figure 7g). Table 2 and Table 3 illustrate the errors for the flux uI and
potential pI , respectively. The results are very similar for all test meshes that we used.
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Mesh Error (flux) Convergence rate (flux)

Square mesh
with

removed
edges

2−7 2−6 2−5 2−4 2−3 2−2 2−1 20

h, resolution (linear)

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

E
rr

or
(fl

ux
,r

em
ov

ed
ed

ge
s)

k = 1

k = 2

k = 3

k = 4

2−7 2−6 2−5 2−4 2−3 2−2 2−1

h, resolution (linear)

0

1

2

3

4

5

6

7

C
on

ve
rg

en
ce

ra
te

(fl
ux

,r
em

ov
ed

ed
ge

s) k = 1

k = 2

k = 3

k = 4

Regular
hexagonal

mesh

2−7 2−6 2−5 2−4 2−3 2−2 2−1 20

h, resolution (linear)

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

E
rr

or
(fl

ux
,r

eg
ul

ar
he

x
m

es
h)

k = 1

k = 2

k = 3

k = 4

2−7 2−6 2−5 2−4 2−3 2−2 2−1

h, resolution (linear)

0

1

2

3

4

5

6

7

C
on

ve
rg

en
ce

ra
te

(fl
ux

,r
eg

ul
ar

he
x

m
es

h) k = 1

k = 2

k = 3

k = 4

Deformed
hexagonal

mesh

2−7 2−6 2−5 2−4 2−3 2−2 2−1 20

h, resolution (linear)

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

E
rr

or
(fl

ux
,d

ef
or

m
ed

he
x

m
es

h)

k = 1

k = 2

k = 3

k = 4

2−7 2−6 2−5 2−4 2−3 2−2 2−1

h, resolution (linear)

0

1

2

3

4

5

6

7
C

on
ve

rg
en

ce
ra

te
(fl

ux
,d

ef
or

m
ed

he
x

m
es

h)
k = 1

k = 2

k = 3

k = 4

Non-convex
octagonal

mesh

2−7 2−6 2−5 2−4 2−3 2−2 2−1 20

h, resolution (linear)

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

E
rr

or
(fl

ux
,n

on
co

nv
ex

oc
t

m
es

h)

k = 1

k = 2

k = 3

k = 4

2−7 2−6 2−5 2−4 2−3 2−2 2−1

h, resolution (linear)

0

1

2

3

4

5

6

7

C
on

ve
rg

en
ce

ra
te

(fl
ux

,n
on

co
nv

ex
oc

t
m

es
h)

k = 1

k = 2

k = 3

k = 4

Table 2: Flux error comparison for different meshes
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Mesh Error (potential) Convergence rate (potential)

Square mesh
with

removed
edges

2−7 2−6 2−5 2−4 2−3 2−2 2−1 20

h, resolution (linear)

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

E
rr

or
(p

ot
en

ti
al

,r
em

ov
ed

ed
ge

s)

k = 1

k = 2

k = 3

k = 4

2−7 2−6 2−5 2−4 2−3 2−2 2−1

h, resolution (linear)

0

1

2

3

4

5

6

7

C
on

ve
rg

en
ce

ra
te

(p
ot

en
ti

al
,r

em
ov

ed
ed

ge
s)

k = 1

k = 2

k = 3

k = 4

Regular
hexagonal

mesh

2−7 2−6 2−5 2−4 2−3 2−2 2−1 20

h, resolution (linear)

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

E
rr

or
(p

ot
en

ti
al

,r
eg

ul
ar

he
x

m
es

h)

k = 1

k = 2

k = 3

k = 4

2−7 2−6 2−5 2−4 2−3 2−2 2−1

h, resolution (linear)

0

1

2

3

4

5

6

7

C
on

ve
rg

en
ce

ra
te

(p
ot

en
ti

al
,r

eg
ul

ar
he

x
m

es
h)

k = 1

k = 2

k = 3

k = 4

Deformed
hexagonal

mesh

2−7 2−6 2−5 2−4 2−3 2−2 2−1 20

h, resolution (linear)

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

E
rr

or
(p

ot
en

ti
al

,d
ef

or
m

ed
he

x
m

es
h)

k = 1

k = 2

k = 3

k = 4

2−7 2−6 2−5 2−4 2−3 2−2 2−1

h, resolution (linear)

0

1

2

3

4

5

6

7
C

on
ve

rg
en

ce
ra

te
(p

ot
en

ti
al

,d
ef

or
m

ed
he

x
m

es
h)

k = 1

k = 2

k = 3

k = 4

Non-convex
octagonal

mesh

2−7 2−6 2−5 2−4 2−3 2−2 2−1 20

h, resolution (linear)

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

E
rr

or
(p

ot
en

ti
al

,n
on

co
nv

ex
oc

t
m

es
h)

k = 1

k = 2

k = 3

k = 4

2−7 2−6 2−5 2−4 2−3 2−2 2−1

h, resolution (linear)

0

1

2

3

4

5

6

7

C
on

ve
rg

en
ce

ra
te

(p
ot

en
ti

al
,n

on
co

nv
ex

oc
t

m
es

h)

k = 1

k = 2

k = 3

k = 4

Table 3: Potential error comparison for different meshes

The convergence rates obtained experimentally (Table 2 and Table 3, third column) are k+ 1 for the flux
and k + 2 for potential when k ≥ 2. In the case k = 1 the potential converges with the rate k + 1. Thus we
observe the superconvergence effect for pI in the high-order schemes with k ≥ 2.

Table 4 shows the condition number of the global coefficient matrix of the overall linear system. The
plots show that condition number does not grow much for a fixed order k for different meshes, that means
that the new DoFs are independent variables and the system is well-posed.
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Method Mesh Condition number

Old
Perturbed square

mesh

2−7 2−6 2−5 2−4 2−3 2−2 2−1 20

h, resolution (linear)

102

103

104

105

106

C
on

di
ti

on
nu

m
be

r
(o

ld
)

k = 1

k = 2

k = 3

k = 4

Perturbed square
mesh

2−7 2−6 2−5 2−4 2−3 2−2 2−1 20

h, resolution (linear)

102

103

104

105

106

C
on

di
ti

on
nu

m
be

r
(q

ua
d

m
es

h)

k = 1

k = 2

k = 3

k = 4

New
Regular hexagonal

mesh

2−7 2−6 2−5 2−4 2−3 2−2 2−1 20

h, resolution (linear)

102

103

104

105

106

C
on

di
ti

on
nu

m
be

r
(r

eg
ul

ar
he

x
m

es
h)

k = 1

k = 2

k = 3

k = 4

Deformed hexagonal
mesh

2−7 2−6 2−5 2−4 2−3 2−2 2−1 20

h, resolution (linear)

102

103

104

105

106

C
on

di
ti

on
nu

m
be

r
(n

on
co

nv
ex

oc
t

m
es

h) k = 1

k = 2

k = 3

k = 4

Table 4: Condition number comparison for different methods and meshes
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5 Conclusion

As was demonstrated by a number of numerical experiments the new method retains all the same properties
of the original method [1], such as the convergence rate both for the flux and the potential; it works equally
well on structured and unstructured general polygonal meshes. At the same time the number of degrees of
freedom in the new method is significantly less compared to the original method: up to 40% in the low-order
case and up to 10− 18% in the high-order cases.

The added continuity in the new method did not manifest itself through any added convergence rates.
It would be interesting to identify the problems where this continuity would be beneficial or even crucial.

The added continuity presented some challenges in the cases when the diffusion coefficient is discontinuous.
In these cases the new method is enforcing the tangential continuity of flux variable at the interface, where
such continuity is not present in the solution. As a result the new method experiences critical convergence
rate loss. An idea for fixing this apparent problem is to introduce additional degrees of freedom at the
interface vertices. These degrees of freedom would quantify the jump in the tangential component of the
flux and therefore will remove the continuity restriction (only on the interface). The preliminary results we
obtained for this problem are promising, but they cannot yet be attached to this report.
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