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We start by presenting our main research results on the scenario generation problem in Sections 1–2. We
present our algorithmic results on interior point methods for convex optimization problems in Section 3. We
describe a new ‘central’ cutting surface algorithm developed for solving large scale convex programming
problems (as is the case with our proposed research) with semi-infinite number of constraints in Section 4.
In Sections 5–6 we present our work on two application problems of interest to DOE.

Note that all figures and tables providing information on our research results are given in the appendix.

1 Scenario generation for stochastic optimization problems via the sparse
grid method

The probability measure P of a stochastic optimization problem is approximated by a discrete one, with
finite number of scenarios ξk (k = 1, . . . ,K) and weights wk, which amounts to the approximation of the
integral required in computing the expected value by a finite sum:

min
x∈X

∫
Ξ
f(ξ, x)P (dξ) ≈ min

x∈X

K∑
k=1

wkf(ξk, x). (1)

The generation of scenarios that efficiently achieve good approximation in (1) is, thus, an important problem
in stochastic optimization.
Summary. In [44], we showed that, under a regularity assumption on the random function involved, the
sequence of optimal solutions of the sparse grid approximations converges to the true optimal solutions as the
number of scenarios increase. The rate of convergence is established and shown to be determined by the rate
of convergence in sparse grid approximation of the integration of a function. We treat separately the special
case when the underlying distribution is an affine transform of a product of univariate distributions, such
as the multinormal distribution, and show how the sparse grid method can be adapted to the distribution by
the use of quadrature formulas tailored to the distribution. Numerical comparison of the performance of the
sparse grid method using different quadrature rules with classic quasi-Monte Carlo (QMC) methods, optimal
rank-one lattice rules, and Monte Carlo (MC) scenario generation, using a series of utility maximization
problems with up to 160 random variables, show that the sparse grid method is very efficient when the
integrand is sufficiently smooth. In such problems the sparse grid scenario generation method is found to
need several orders of magnitude fewer scenarios than MC and QMC scenario generation to achieve the same
accuracy. It is indicated that the method appears scalable to problem with thousands of random variables.
However, it has its limitations due to the generation of ‘negative weights’ in the quadrature formula.

Two variants of a sparse grid scenario generation method are proposed for the solution of stochastic
optimization problems. Neither method requires knowledge of the exact distribution; it is sufficient that
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the moments up to a high enough order are known. However, to simplify the presentation we shall always
assume that we have a known distribution. The following theorem on sparse grid approximation of an
integration problems is extended to the case of solving the stochastic optimization problems.

Theorem 1.1. ([93], [60]) Consider the functional space

Wr
n :=

{
f : Ωn → R, max

‖s‖∞≤r
‖Dsf‖∞ <∞

}
, (2)

equipped with the norm ‖f‖ = max‖s‖∞≤r ‖D
sf‖∞. Assume that the chosen univariate quadrature rule

satisfies L(1) = 1, L(ν) = O(2ν). For n, r ∈ N, f ∈ Wr
n, then K:=|G(q, n)| = O(2qqn−1) is the

cardinality of the sparse grid. Furthermore, for some 0 < cr,n <∞ we have∣∣∣∣∫
Ωn
f(ω)ρ(ω)dω − SGq[f ]

∣∣∣∣ ≤ cr,nK−r(logK)(n−1)(r+1)‖f‖. (3)

The constant cr,n in Theorem 1.1 (though it may be exponential) depends only on dimension n, the
order of differentiability r, and the underlying univariate quadrature rule used by the sparse grid method.
For a given problem of dimension n, the integration error goes to zero fast for sufficiently differentiable
functions since for r ≥ 2 in (3) the term K−r dominates (logK)(n−1)(r+1). In comparison, the rate of
convergence for classic QMC methods (including Halton, Sobol, or Niederreiter sequences) is of the order
O(K−1(logK)n) for sufficiently “smooth” integrands, meaning integrands of bounded Hardy–Krause vari-
ation. Theorem 1.2 proved in our work presents a uniform convergence result for optimization using sparse
grid approximations for functions with bounded weak derivatives; and a rate of convergence result for the
sparse grid approximation is given in Theorem 1.3.

Theorem 1.2 (Convergence of the sparse grid method for stochastic optimization). Consider (??) and as-
sume that C is closed and bounded; f(ξ, x)ρ(ω) ≤ M < ∞ for all x ∈ C and ξ ∈ Ξ; and that ∀x ∈ C,
f(g(·), x) is in the spaceWr

n, 1 ≤ r <∞. Consider (1) where the scenarios are generated using the sparse
grid method. Let xK be a solution of (1), K = 1, . . . ,∞, and z∗K be the corresponding objective value.
Then,

(i) z∗ ≥ limK z
∗
K .

(ii) If {xK}∞K=1 has a cluster point x̂, then x̂ is an optimal solution of (??). Furthermore, for a subse-
quence {xKt}∞t=1 converging to x̂, limt z

∗
Kt
→ z∗.

Theorem 1.3 (Rate of convergence of sparse grid approximation for stochastic optimization). Consider (??)
and its sparse grid approximation (1). Assume that C is closed and bounded, and that for every x ∈ C the
function f(·, x) is bounded with f(g(·), x) ∈ Wr

n. Let x∗ be an optimal solution of (??), and xK be an
optimal solution of (1). Then,∣∣∣∣∣

K∑
k=1

wkf(ξk, xK)−
∫

Ξ
f(ξ, x∗)P (dξ)

∣∣∣∣∣ ≤ ε, and (4)∣∣∣∣∫
Ξ
f(ξ, xK)P (dξ)−

∫
Ξ
f(ξ, x∗)P (dξ)

∣∣∣∣ ≤ 2ε, (5)

where

ε = cr,nK
−r(logK)(n−1)(r+1) max

x∈C
‖f(g(·), x)‖, (6)

and cr,n, K,Wr
n, and ‖ · ‖ are defined as in Theorem 1.1.
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Figure 1: Shapes of Beta(α,β) distributions for (α, β) ∈ {1/2, 1, 3/2, 5}2.

We now illustrate that for sufficiently smooth (but not necessarily polynomial) integrands, sparse grid
formulas with high degree of exactness provide a good approximation of the optimal objective function
values of stochastic programs even for high-dimensional problems, regardless of the shape of the underlying
distribution. For this purpose, we considered utility maximization examples of the form

max
x

∫
Ξ
u(xTξ)p(ξ)dξ s.t. ‖x‖1 ≤ 1, x ≥ 0, (7)

for different utility functions u and density functions p. The three utility functions considered were:

u1(t) = − exp(t) (exponential utility), (8a)

u2(t) = log(1 + t) (logarithmic utility), and (8b)

u3(t) = (1 + t)1/2 (power utility). (8c)

The probability densities considered were product Beta distributions, obtained by taking the product of
univariate Beta(α,β) distributions with α, β ∈ {1/2, 1, 3/2, 5} (see Figure 1). The motivation behind this
choice is that it allows us to experiment with distributions of various shapes, and also to transform the
problem into product form, for which formulas with different degrees of polynomial exactness can be created
and compared. We compared both variants of the sparse grid method: we used GKP formulas transformed
with the appropriate diffeomorphism to scenarios for integration with respect to the product Beta distribution
(or transformed GKP formulas for short) and sparse grid formulas using the Patterson-type quadrature rules
derived for the Beta distribution (or Patterson-type sparse grid for short).

Table 1 shows the (estimated) optimal objective function values computed with different scenario gener-
ation techniques for the 100-dimensional exponential utility maximization (using u1 from (8) in (7)), where
p is the probability distribution function of the 100-fold product of the Beta(1/2,1/2) distribution (shown in
the upper left corner of Figure 1). In this example the optimal objective function value can be computed rel-
atively easily, because the objective function is the product of one-dimensional integrals; the optimal value
is approximately 0.60690986. The table shows great difference in the rate of convergence of the different
scenario generation methods. Monte Carlo (MC) integration achieves only 4 correct significant digits us-
ing 106 scenarios, quasi-Monte Carlo (QMC) integration with the Sobol sequence gets 6 digits with about
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2 ·105 scenarios, but only 3 digits with 2 ·104 scenarios. The optimal rank-one lattice rule achieves 4 correct
digits with 2 · 104 scenarios, and one additional digit with 2 · 105 scnarios. In contrast, the transformed
GKP rule gets 8 digits with 2 · 104 scenarios. (See column 4 in Table 1.) Finally, the Patterson-type sparse
grid achieves 6 correct digits already with 201 scenarios. (Column 5.) The latter formula was created us-
ing a nested Patterson-type rule for the Beta(1/2,1/2) distribution. We repeated the same experiment with
all of the 16 distributions shown on Figure 1, with the same qualitative results, with the exception of the
distribution Beta(1,1). The Beta(1,1) is the uniform distribution, hence the two sparse grid formulations are
equivalent (and still outperform MC and QMC); the details are omitted for brevity.

We also considered examples with less regular distributions, using the same distributions from Figure
1 as components. The underlying 160-dimensional product distribution has ten components distributed
as each of the distributions shown on Figure 1. The optimal objective function value is approximately
0.403148407; Table 2 shows the approximate objective function values computed with different techniques
using up to half a million scenarios. The sparse grid formula using the Patterson-type rule achieves the same
precision as QMC with an order of magnitude fewer points, reaching five correct digits with only 341 nodes.
MC performs considerably worse than both of them, it needs about 500,000 scenarios to get the fourth
significant digit correctly. Memory constraints prevented the solution of problems with more scenarios.
We repeated the above experiments for the logarithmic and power utility maximization problem, that is,
plugging u2 and u3 from (8) into (7), with the same experimental setup. The results were qualitatively very
similar (see Tables 2–3 in the Appendix) to those in the previous section; we only present the detailed results
of the 160-dimensional experiment involving the product Beta distribution with various parameters. We
conclude that sparse grid scenario generation appears to be a promising alternative to classic quasi-Monte
Carlo and Monte Carlo sampling methods, as well as to rank-one lattice rules for the solution of stochastic
optimization problems whenever the integrands in the problem formulation are sufficiently smooth. The
theoretical results on its efficiency, which state that the rate of convergence of the optimal objective value
is the same as the rate of convergence of sparse grid formulas for integration, is complemented by excellent
practical performance on a variety of utility maximization problems, which feature the expected values of
smooth concave utility functions as objectives.

2 Generating moment matching scenarios using optimization techniques

Summary. Our efforts in overcoming the major shortcoming of sparse grid method that it generates nega-
tive weights corresponding to a scenario led to the development of a moment matching scenarios generation
method for stochastic optimization [87]. Specifically, an optimization based method is proposed to generate
moment matching scenarios for numerical integration and its use in stochastic programming. A major ad-
vantage of the moment matching scenario method is its flexibility: it can generate scenarios matching any
prescribed set of moments of the underlying distribution rather than matching all moments up to a certain
order, and the distribution can be defined over an arbitrary set. This allows for a reduction in the number
of scenarios and allows the scenarios to be better tailored to the problem at hand. The method is based on
a semi-infinite linear programming formulation of the problem that is shown to be solvable with polyno-
mial iteration complexity. A practical column generation method is implemented. The column generation
subproblems are polynomial optimization problems, however, they need not be solved to optimality. It is
found that the columns in the column generation approach can be efficiently generated by random sampling.
Extensive numerical experiments were used to compare the proposed method with Monte Carlo and quasi-
Monte Carlo methods both on numerical integration problems and on stochastic optimization problems. The
benefits of being able to match any prescribed set of moments, rather than all moments up to a certain order,
is demonstrated using optimization problems with 100-dimensional random vectors. Empirical results show
that the proposed approach outperforms Monte Carlo and quasi-Monte Carlo based approaches on the tested
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problems.

2.1 Moment matching scenario generation

Moment matching methods in stochastic programming were previously proposed in the context of sampling
from partially specified distributions, where the goal is to efficiently sample some (unknown) distribution
that has given moments up to a certain order (usually three or four). Such sampling methods in the past
were only derived on a case-by-case basis. For instance in [82] the marginal distributions are given along
with a covariance matrix, and the latter is used to determine a transformation which is then used to generate
samples with the given marginals and the desired correlation. A similar approach is used in [66], where
marginal moments up to the fourth order are matched along with the mixed second moments. The method
in [66] has an additional drawback that it is not known to be convergent. The covariance matrix is matched
and the first four marginal moments are approximated using semidefinite optimization in [50]. None of these
methods can be generalized to match higher order moments, or any other set of moments.

The main motivation behind moment matching is the observation that cubature formulas with high
degree of polynomial exactness should provide accurate estimates of the integrals of functions that can
be approximated well by polynomials – this includes continuous functions on closed and bounded domains.
In this section we summarize the rate of convergence of moment matching cubature formulas as a function of
their modulus of smoothness proved in our paper [87]. We also showed that this rate of convergence cannot
be improved by any other formula, aside from constants in this function, without additional assumptions on
the integrand. We need the following definition.

Definition 2.1 (modulus of smoothness). The modulus of smoothness of a function f : Ξ 7→ R, denoted by
ωf is the function given by

ωf (δ)
def
= sup {|f(x)− f(y)| : x ∈ Ξ, y ∈ Ξ, ‖x− y‖ ≤ δ} .

It is known that the error of the best polynomial approximation of every continuous f can be bounded
by a function of ωf as follows.

Theorem 2.1 (see, e.g. [22]). Let f : Ξ 7→ R be continuous on a compact set Ξ ⊆ Rn. Then for every
nonnegative integer d there is a polynomial Pd of degree d satisfying

sup
Ξ
|f − Pd| ≤ Cωf (1/d),

where C is a positive constant depending only on Ξ, but not on d or f .

This rate of convergence (as the degree increases) is inherited by the error of cubature formulas.

Theorem 2.2. Assume that the support Ξ ⊆ Rn of the probability measure µ is compact. Then there is a
constant C̄ (depending only on Ξ) such that for every continuous f : Ξ 7→ R and for every cubature formula
with nodes ξ1, . . . , ξK , nonnegative weights w1, . . . , wK , and degree of exactness d,∣∣∣∣∣

∫
Ξ
f(ξ)µ(dξ)−

K∑
k=1

wkf(ξk)

∣∣∣∣∣ ≤ C̄ωf (1/d).

The rate of convergence of sequences of cubature formulas and scenario generation methods is usually
expressed as a function of the number of nodes (or scenarios) K.
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Theorem 2.3 (rate of convergence). Assume that the support Ξ ⊆ Rn of the probability measure µ is
compact. Then for everyK0 there exist a cubature formula withK ≥ K0 nodes ξ1, . . . , ξK and nonnegative
weights w1, . . . , wK satisfying∣∣∣∣∣

∫
Ξ
f(ξ)µ(dξ)−

K∑
k=1

wkf(ξk)

∣∣∣∣∣ ≤ O(ωf (O(K−1/n)))

for every continuous function f : Ξ 7→ R. In particular, formulas with increasing polynomial exactness have
this property.

The following theorem shows that this rate of convergence is essentially the best possible even when Ξ =
[0, 1]n, and integration is with respect to the uniform distribution on Ξ.

Theorem 2.4. Let Ξ = [0, 1]n and 0 < C1 < 1 and 0 < C2 < 2−n be fixed constants. Then there exist no
cubature formula on K nodes with positive weights that satisfies∣∣∣∣∣

∫
Ξ
f(ξ)dξ −

K∑
k=1

wkf(ξk)

∣∣∣∣∣ ≤ C1ωf (C2K
−1/n)

for every continuous f .

The estimates in Theorems 2.2 and 2.3 can be improved considerably for smooth functions.

Theorem 2.5. Suppose that in Theorem 2.2 all rth order partial derivatives of f are continuous. Then the
error bound of moment matching cubature formulas with degree of exactness d can be improved to∣∣∣∣∣

∫
Ξ
f(ξ)µ(dξ)−

K∑
k=1

wkf(ξk)

∣∣∣∣∣ ≤ Ĉd−rω(r)
f (1/d), (9)

where
ω

(r)
f (δ)

def
= sup

ρ∈Nn∑
i ρi=r

ωDρf (δ)

is the highest of the moduli of smoothness of the rth partial derivatives of f .
For functions of bounded rth partial derivatives, there exist moment matching formulas on K nodes,

including those generated by the algorithms of Section 2.1.1, whose error (as a function of K) tends to zero
at a rate O(K−r/n).

2.1.1 A column generation approach for moment matching

We also proposed a new approach to construct cubature formulas that match any prescribed set of moments.
This approach is based on a semi-infinite linear optimization formulation of the moment matching problem
that allows the construction of formulas for a considerably larger variety of measures than the methods so far
described. We shall also underline that the approach we are about to outline has more general applicability,
as it can be used to find cubature formulas that give exact values in any given finite dimensional linear space
of functions, not just in spaces of polynomials spanned by monomials. First, we need to introduce some
notation.

For a point x = (x1, . . . , xn) ∈ Rn, let ux ∈ RN denote the N -dimensional vector whose components
are the monomials whose corresponding moments we are trying to match, in an arbitrary, but fixed, order
(say, the graded lexicographic order). For example, if n = 3 and we want to match all moments up to order
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d = 2, then the number of moments to match is N =
(
n+d
d

)
= 10, and the moments correspond to the

monomials
ux = (1, x1, x2, x3, x

2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3)T,

(all the monomials in an arbitrary, but fixed, order) but if n = 2 and we want to match all mixed moments
up to order 3 as well as marginal moments up to order 5, then we have N = 14, and

ux = (1, x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2, x

4
1, x

4
2, x

5
1, x

5
2)T.

Note that we may use bases of polynomials other than the monomial basis; in fact, in our computations
we used Legendre polynomials to avoid numerical issues while trying to match high-order moments. In the
sequel we will only assume (without loss of generality) that the components of ux are linearly independent
polynomials.

The cubature formula (ξ, w) matches all the required moments if and only if

K∑
k=1

wkuξk = m
def
=

∫
Ξ
uξµ(dξ), (10)

with the integral on the right-hand side understood componentwise. The components of the vector m ∈ RN
are the required monomial moments of µ, ordered the same way as the components of ux.

For fixed ξ1, . . . , ξK , finding nonnegative weights to satisfy (10) is a linear programming (feasibility)
problem with variables w1, . . . , wK . Hence, we can view the scenario generation problem as a semi-infinite
linear programming (feasibility) problem, with a continuum of nonnegative variables indexed by the ele-
ments of Rn (or Ξ, if we are looking for an interior formula), and with N equality constraints. To motivate

our approach, we rewrite this feasibility problem as an optimization problem using the notation α =

( α1

...
αN

)
:

min
w:Ξ→R, α∈RN

{
N∑
i=1

|αi|

∣∣∣∣∣
∫

Ξ
w(ξ)uξdξ + α = m; w(ξ) ≥ 0 ∀ ξ ∈ Ξ

}
, (11)

whose optimal objective value is 0 if and only if all the required moments of the original distribution can be
matched, that is, if m is indeed a vector of moments. The objective function

∑
i |αi| may be replaced by

any other norm of α. To keep the exposition simple we will continue using the L1 norm.
To find the right (finite-dimensional) ξ in (10), we start with a candidate set of nodes {ξ1, . . . , ξ`},

possibly empty, and solve the auxiliary LP

min
w∈R`, α∈RN

{
N∑
i=1

|αi|
∣∣∣ ∑̀
k=1

wkuξk + α = m, w ≥ 0

}
. (12)

If the optimal objective function value is 0, with optimal solution (α∗ = 0, w∗), then the cubature formula
(ξ, w∗) is a positive formula matching all the desired moments. Otherwise, we can find a point ξ`+1 with
strictly negative reduced cost, and add it to the candidate node set.

Before discussing strategies to find the next node to add to the formula, we make two observations which
are stated in the following theorems.

Theorem 2.6. For every (not necessarily probability) measure µ there exists a positive interior cubature
formula with degree of exactness d with respect to µ on N(n, d) =

(
n+d
d

)
points. More generally, if an

arbitrary collection of N moments are to be matched, there exists a positive interior cubature formula on N
points that matches those moments.

7



Also note that if {ξ1, . . . , ξK} is the node set of some positive interior cubature formula, then the convex
polytope {

w ≥ 0
∣∣∣ K∑
k=1

wkuξk = m,

}
is non-empty, and has a vertex (basic feasible solution), which has at most as many non-zero components
as the number of equality constraints, which is N . Hence, an N -node formula can be obtained from every
K-node formula with K > N by solving a single linear programming problem.

Our next observation is that the ellipsoid method can be used to solve our moment matching semi-infinite
linear programming formulation using a polynomial number of iterations.

Theorem 2.7. Suppose we are given an oracle that finds a node ξ`+1 with strictly negative reduced cost,
given the nodes {ξ1, . . . , ξ`} and the optimal solution to the corresponding auxiliary linear program (12).
Using this oracle, a positive formula matching all required moments with absolute precision ε can be found
in oracle-polynomial time; here “polynomial” means polynomial jointly in log(1/ε) and N .

In our implementation the auxiliary LP (12) is solved using the simplex method. If it is not ε-optimal, the
oracle provides the new column ξ`+1 to be added to (12), after which the primal simplex method can be used
to resolve the auxiliary LP starting from the previous dual feasible solution. The column generation oracle
is solved using an internal-MC or QMC procedure. We also found that approximation of smooth stochastic
optimization problems using moment matching scenarios was significantly better than that from MC and
QMC scenario based approximation. The results for numerical integration for standard test functions and
stochastic optimization problems are shown in Figures 2–4 and Table 4.

3 Solution of Monotone Complementarity and General Convex Program-
ming Problems Using a Modified Potential Reduction Interior Point Method

Summary. In [67] we developed a homogeneous algorithm equipped with a modified potential function
for the monotone complementarity problem. We showed that this potential function is reduced by at least a
constant amount if a scaled Lipschitz condition (SLC) is satisfied. A practical algorithm based on this poten-
tial function is implemented. This implementation maintains global linear and polynomial time convergence
properties while achieving practical performance. It either successfully solves the problem, or concludes that
the SLC is not satisfied for the user specified parameter. When compared with a mature software package
MOSEK (barrier solver version 6.0.0.106), our solver solves convex quadratic programming problems,
convex quadratically constrained quadratic programming problems, and general convex programming prob-
lems in fewer iterations. Moreover, several problems for which MOSEK fails are solved to optimality. We
also find that our approach detects infeasibility more reliably than general nonlinear solvers Ipopt (version
3.9.2) and Knitro (version 8.0).

Let us consider a monotone complementarity problem (MCP) of the following form

s = f(x) (13)

0 ≤ s ⊥ x ≥ 0, (14)

where x, s ∈ Rn, f(x) is a continuously differentiable monotone mapping from Rn+ := {x ∈ Rn | x ≥ 0}
to Rn, and the notation 0 ≤ s ⊥ x ≥ 0 means that (x, s) ≥ 0 and that xT s = 0. This requirement is called
the complementarity condition. In monotone mapping, for every x1, x2 ∈ Rn+, we have

(x1 − x2)T (f(x1)− f(x2)) ≥ 0. (15)
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Let∇f(x) denote the Jacobian matrix of f(x). If ∇f(x) is positive semidefinite for all x > 0, that is,

hT∇f(x)h ≥ 0, ∀x > 0, h ∈ Rn,

then f(x) is a continuous monotone mapping.
Now, we consider an augmented homogeneous model related to MCP (HMCP):

s = τf(x/τ), (16)

κ = −xT f(x/τ), (17)

0 ≤ (s, κ) ⊥ (x, τ) ≥ 0. (18)

For simplicity in the following we let n̄ := n+ 1, x := (x, τ) ∈ Rn̄+ and s := (s, κ) ∈ Rn̄+. Let

rk := sk − F (xk),

and (x0, s0) = e be the starting point. Let C(µ̂) denote a continuous trajectory such that

C(µ̂) :=
{

(xk, sk) | sk − F (xk) = µ̂r0, Xksk = µ̂e, 0 < µ̂ ≤ 1
}
.

Note that such a trajectory always exists (Yoshise [114]). Moreover, Andersen and Ye [19, Theorem 2]
showed that this continuous trajectory is bounded and any limit point is a maximal complementary solution
for HMCP. At iteration k with iterate (xk, sk) > 0, the algorithm computes the search direction (dx, ds) by
solving the following system of linear equations:

ds −∇F (xk)dx = −ηrk, (19)

Xkds + Skdx = γµke−Xksk. (20)

Here η and γ are parameters between 0 and 1, and µk := (xk)T sk

n̄ . For a step size α > 0, let the new iterate
be

x+ := xk + αdx > 0 and

s+ := sk + αds + (F (x+)− F (xk)− α∇F (xk)dx)) = F (x+) + (1− αη)rk > 0. (21)

We consider the following potential function for the HMCP:

Φρ(x, s) := (ρ/2) log
{

(xT s)2 + θ‖r‖2
}
−

n̄∑
j=1

log xjsj , (22)

where θ is a constant parameter with positive value and ρ ≥ n̄ +
√
n̄. A potential function of this form

was introduced to the homogeneous LP model by Mehrotra and Huang [84]. Without loss of generality we
choose θ = 1 in (22).

In [67], we show that if f satisfies the SLC (and consequently so does F ), then at iteration k the theo-
retical direction (dx, ds) with an appropriate step size α results in

Φρ(x
+, s+)− Φρ(x

k, sk) ≤ ζ,

where ζ is a negative constant. We show that if Φρ(x
k, sk) is reduced by at least a constant amount at each

iteration and Φn̄(xk, sk) (potential function (22) with parameter ρ = n̄) is upper bounded by a constant
amount with some mild assumptions, then the interior point algorithm generates a maximal complementary
solution of desired precision in polynomial time.

All computations were performed on a 3.2 GHz Intel Dual-Core CPU machine with 4GB RAM. The
program is run on one CPU only. An AMPL [2] interface is implemented in our implementation to read the
AMPL nonlinear models and the first and second-derivative calculations. All problems are solved using the
same default parameter settings.
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3.1 Computational results on feasible problems

We solved the convex QP problems from Maros and Mézáros’s QP test set [83], the convex QCQP problems
from Mittelmann’s QCQP test set [8] and Vanderbei’s AMPL nonlinear Cute and Non-Cute set [3], the
general convex CP problems from Vanderbei’s AMPL nonlinear test set [3], and from Leyffer’s mixed-integer
nonlinear test set [9] while ignoring the integrality requirements.

Tables 5–8 provide a comparison between the MOSEK homogeneous interior point optimizer and our
implementation under their default settings. We focus on the number of iterations needed to achieve the
desired accuracy by both solvers.

Table 5 gives the computational results for solving 127 QP problems. The average number of iter-
ations used by our implementation (15.92 iters) and MOSEK (16.22 iters) are comparable. All problems
can be solved within 50 iterations by both solvers. Note that for three problems (liswet4, powell20,
and qpilotno) MOSEK terminates with NEAR OPTIMAL status. This implies MOSEK cannot compute a
solution that has the prescribed accuracy.

Table 6 gives the computational results for solving Mittelmann’s QCQP test set. Here two different
average performance results are provided. “Avg1” provides the average performance on problems for which
MOSEK terminates with OPTIMAL, NEAR OPTIMAL or UNKNOWN status. For problems QQ-aug2dqp
and QQ-powell20, MOSEK is not able to converge to the optimal solution within 400 iterations. We ex-
clude both problems in “Avg1”. For problems QQ-laser, QQ-qforplan, and QQ-qseba, MOSEK re-
quires more than 50 interior point iterations to successfully solve. We recompute the average perfor-
mance statistics again in “Avg2” by further excluding these three examples. Considering average perfor-
mances in these experiments, our implementation (Avg1=16.43 iters, Avg2=16.26 iters) is significantly
better than MOSEK (Avg1=20.91 iters, Avg2=18.34 iters). Note that for QQ-liswet1, QQ-liswet7–
QQ-liswet12, MOSEK terminates with UNKNOWN status. This may happen when MOSEK converges
slowly, and hence the primal, dual, or gap residuals may not attain the prescribed accuracy. On the other
hand, our implementation is able to terminate with OPTIMAL status for all the test problems within 40
iterations.

Table 7 contains the computational results for solving 11 QCQP problems in Vanderbei’s AMPL nonlin-
ear test set. Comparing the size to those in Mittelmann’s QCQP test set, the problems here are relatively
small, but may include a quadratic objective term and more than one quadratic constraint. Considering the
average iterations required for solving the problems, both solvers generate similar computational results
(MOSEK Avg=11.36 iters versus our implementation Avg=11.64 iters).

Table 8 contains the computational results for solving 46 general CP problems. Thirty five of the
CP problems are selected from Vanderbei’s AMPL nonlinear Cute and Non-Cute set, and 11 of the CP
problems are selected from Leyffer’s mixed-integer nonlinear test set. Two different average performance
statistics are provided. “Avg1” provides the average performance on all the instances, except problem
dallass, for which MOSEK fails to converge to an optimal solution within 400 iterations. For prob-
lems dallasm, dallasl, and elena-s383, MOSEK respectively requires 128, 74, and 85 iterations
before terminating with OPTIMAL status. Thus we recompute the average statistics again in “Avg2” by
additionally excluding these three problems. Comparing “Avg1”, the average number of iterations used
by our implementation (14.00 iters) is better than those used by MOSEK (18.46 iters). By excluding the
problems for which MOSEK requires more than 50 iterations to solve (“Avg2”), the performance of both
solvers becomes comparable, though our implementation (12.69 iters) still performs slightly better than
MOSEK (13.07 iters). Note that for problems antenna-antenna2, firfilter-fir convex, and
wbv-lowpass2, MOSEK terminates with NEAR OPTIMAL status.

The average number of directions used by our implementation is 1.93, i.e., the corrector direction was
not used in about 7% of the iterations. It implies that the average proportion of the computations for the
theoretical direction is not significant. We observe that for about 11% problems, the value of the potential
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function cannot be decreased monotonically. In fact, it increased in 5.85% iterations. We also note that
the average proportion of the effort used to evaluate the potential function is 3.1%, suggesting that the
computational demands for evaluating the potential function is not significant.

Figure 5 shows the performance profiles for feasible problems comparing the iteration performances of
our implementation and MOSEK.

3.2 Computational results on infeasible problems

We now discuss the performance of our implementation for solving QCQP and CP infeasible problems.
With the lack of an infeasible test set in the public domain, we create infeasible test problems by adding
invalid objective constraints to the feasible problems.

Let x∗ be an optimal solution of the convex program. We created a corresponding infeasible problem
that has the form:

min c(x) (23)

s.t. ai(x) ≥ 0, i = 1, . . . , m̂,

ai(x) = 0, i = m̂+ 1, . . . ,m,

c(x) ≤ c(x∗)− c∗,
x̂ ≥ 0, and x̃ is free,

where c∗ is a positive constant. We chose

c∗ :=

{
2|c(x∗)|, if |c(x∗)| ≥ 100,
100, if |c(x∗)| < 100.

Hence, the problems are made significantly infeasible.
Using this construction we create 127 infeasible QCQP problems from Maros and Mézáros’s QP test

set [83], 11 QCQP infeasible problems from Vanderbei’s AMPL nonlinear Cute and Non-Cute set [3],
35 CP infeasible problems from Vanderbei’s AMPL nonlinear Cute and Non-Cute set [3], and 11 CP
infeasible problems from Leyffer’s mixed-integer nonlinear test set [9] without integrality requirements.

We focus on the number of iterations needed to detect infeasibility by both solvers. Table 9 contains
the computational results for solving 127 QCQP infeasible problems created from Maros and Mézáros’s
QP test set. For 38 problems MOSEK fails to detect infeasibility within 400 iterations. For problems
iQQ-qscagr25 and iQQ-qstandat, MOSEK terminates with UNKNOWN status. We compute the av-
erage iterations in “Avg1” by excluding these 38 examples. Comparing “Avg1”, our implementation (28.15
iters) requires approximately 30% fewer iterations than MOSEK (42.20 iters). This is because MOSEK re-
quires more than 60 iterations to detect the infeasibility in 12 problems. We further exclude these 12 prob-
lems and recompute the average iterations in “Avg2”. Comparing “Avg2”, the performance of our imple-
mentation (28.15 iters) is comparable to that of MOSEK (27.39 iters). However, our implementation is able
to correctly detect infeasibility for each problem within 50 interior point iterations.

Table 10 has the computational results for solving the 11 QCQP infeasible problems created from Van-
derbei’s AMPL nonlinear test set. We provide the average statistics by excluding problem ipolak4, which
MOSEK fails to solve within 400 iterations. Though the comparison shows that our implementation (24.60
iters) requires approximately 20% more iterations than MOSEK (20.30 iters), our implementation correctly
solves all these infeasible problems.

Table 11 has the computational results for solving 46 CP infeasible problems created from Vanderbei’s
AMPL nonlinear Cute and Non-Cute set, and Leyffer’s mixed-integer nonlinear test set. For problems
idallasl, idallasm, and idallass, MOSEK receives function evaluate error from AMPL. Our imple-
mentation receives the same error while solving problem idallasl. In seven problems MOSEK fails to

11



declare the infeasible status within 400 iterations. We compute the average statistics “Avg2” by excluding
these 10 problems. Comparing “Avg1”, MOSEK (66.33 iters) requires significantly more iterations than our
implementation (19.44 iters). This happens because MOSEK requires more than 60 iterations to detect in-
feasibility in 13 problems whereas our implementation needs this in only one problem. We further exclude
these 10 problems and recompute the average statistics in “Avg2”. Comparing “Avg2”, our implementa-
tion (16.04 iters) requires 60% more iteration than MOSEK (11.74 iters). This is because MOSEK is able
to detect infeasibility during the preprocessing phase in 11 cases; on the other hand, our implementation-
preprocessor does not detect any infeasibility. This highlights the importance of advanced preprocessing
implementations.

Note that for problem antenna-iantenna2, our implementation requires 186 iterations to solve,
which is significantly larger than the average iterations (28.07 iters). With fixed step factor parameter settings
(θl, θu) = (0.9, 0.9), our implementation can solve this problem in 46 iterations.

Observe that the average number of directions used for this problem is around 1.39, which is significantly
smaller than that used for solving the feasible problems. Similarly, the value of the potential function cannot
be decreased monotonically for 33.33% of the problems, which is also significantly larger than that used for
solving the feasible problems. This suggests the importance of using the theoretical direction and potential
function to decide the usefulness of a direction.

Figure 6 shows the performance profiles for the infeasible problems comparing the iteration perfor-
mances of our implementation and MOSEK. Note that problems which our implementation or MOSEK fail to
solve or solve during the preprocessing phase are not included in this figure.

3.3 Computational comparison with general nonlinear solvers

In this section we compare our implementation with general nonlinear solver Knitro and Ipopt on CP
feasible and infeasible problems. The computational results on QP and QCQP problems are not provided
because these problems are stored in MOSEK QPS format, which Ipopt and Knitro do not support. Note
that Knitro provides three different algorithms for solving the nonlinear problems. In our comparison, we
choose the direct primal-dual IPM. For Ipopt, we use the MA57 library for the sparse symmetric indefinite
matrix factorization, which is the same in our implementation. Default parameter settings are used for both
solvers except that the iteration limit is set to 400.

We first focus on the computational results for solving the CP feasible problems. The last two columns of
Table 8 contain the number of iterations used by Ipopt and Knitro. Considering the average number of it-
erations used for solving these problems, our implementation (12.77 iters) ranked first, Knitro (18.95 iters)
ranked second, whereas Ipopt (27.84 iters) ranked last. For problems dallasm and polak3, both
Knitro and Ipopt received a function evaluation error from AMPL. Ipopt failed to solve dallass to
optimality in 400 iterations. Observe that Ipopt requires more than 50 iterations for three problems and
Knitro requires more than 50 iterations for five problems, whereas our implementation solves all feasible
CP problems within 50 iterations.

Now we focus on the CP infeasible problems. Computational results from Ipopt and Knitro are
reported in the last two columns of Table 11. Knitro failed to solve 13 problems within 400 iterations,
whereas Ipopt fails in three problems. Knitro received an AMPL function evaluation error in three prob-
lems and Ipopt received the same error in four problems. Note that both Knitro and Ipopt terminate
with a near optimal status in one problem. In three problems Ipopt reported error in feasibility restoration
phase. Overall, Ipopt successfully detects the infeasibility in 35 problems and Knitro in 29 problems.
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4 A cutting surface algorithm for semi-infinite convex programming

Summary. In [88] we present and analyze a central cutting surface algorithm for general semi-infinite
convex optimization problems. The proposed method is applicable to problems with non-differentiable
semi-infinite constraints indexed by an infinite-dimensional index set. Examples comparing the cutting
surface algorithm to the central cutting plane algorithm of Kortanek and No demonstrate the potential of our
algorithm even in the solution of traditional semi-infinite convex programming problems, whose constraints
are differentiable, and are indexed by an index set. The central cutting surface algorithm is adapted to solve
a family of DRO problems that are considerably more general than the ones proposed to date. We describe
the cutting surface algorithm in some details as it may form a basis for algorithmic development in our
proposed research.

Let us consider a general semi-infinite convex optimization problem of the following form:

minimize x0

subject to g(x, t) ≤ 0 ∀ t ∈ T
x ∈ X

(SICP)

with respect to the decision variables x (whose first coordinate is denoted by x0), where the sets X and T ,
and the function/set g : X × T 7→ R satisfy suitable boundedness and slater assumptions. Our algorithm is
motivated by the “central cutting plane” algorithm of [74] for convex problems, which in turn is an extension
of Gribik’s algorithm [63]. Gribik’s algorithm has been the prototype of several cutting plane algorithms in
the field, and has been improved in various ways, such as in the “accelerated central cutting plane” method
of [35]. Our algorithm can also be viewed as a modification of a traditional convex constraint generation
method, in which the restricted master problem attempts to drive its optimal solutions towards the center of
the current outer approximation of the feasible set. The traditional constraint generation method is a special
case of our algorithm with all centering parameters set to zero.

4.1 A central cutting surface algorithm for semi-infinite convex programming

The pseudo-code of our cutting surface algorithm is given in Algorithm Central cutting surface algorithm,
which computes an ε-optimal solution to (SICP). Throughout the algorithm, y(k−1) is the best ε-feasible
solution found so far (or the initial vector y(0)), and its first coordinate, y(k−1)

0 , is an upper bound on the
objective function value of the best ε-feasible point. The initial value of y(0)

0 is an arbitrary upper bound U
on this optimum and the other components of y(0) may be initialized arbitrarily.

In Step 2 of the algorithm we attempt to improve on the current upper bound by as much as possible and
identify a “central” point x(k) that satisfies all the added inequalities with a large slack. The algorithm stops
in Step 3 when no such improvement is possible.

In each iteration k, either a new cut is added in Step 5 that cuts off the last infeasible x(k) (a feasibility
cut), or it is found that x(k) is an ε-feasible solution, and the best found ε-feasible solution y(k) is updated
in Step 6 (an optimality cut). In either case, some inactive cuts are dropped in the optional Step 7. The
parameter β adjusts how aggressively cuts are dropped; setting β = ∞ is equivalent to skipping this step
altogether.

In Step 5 of every iteration k a centering parameter s(k) needs to be chosen. To ensure convergence of
the method, it is sufficient that this parameter is bounded away from zero, and that it is bounded from above:
smin ≤ s(k) ≤ B for every k, with some smin > 0. It is without loss of generality that we use the same
upper bound as we used for the subgradient norms. Another strategy that ensures convergence is to find a
subgradient d ∈ ∂xg(x(k), t(k)) and set s(k) = α‖d‖ with an arbitrary α ∈ (0, 1], which will give positive
values for the centering parameter, but is not necessarily bounded away from zero. Below we prove that the
central cutting surface algorithm converges in all of these cases.
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Central cutting surface algorithm

Parameters: a strict upper bound U on the optimal objective function value of (SICP); a bound B > 0
for which the boundedness assumption on the feasible set holds; a tolerance ε ≥ 0 for which slater
assumption holds; and an arbitrary β > 1 specifying how aggressively cuts are dropped.

Step 1. (Initialization.) Set k = 1, y(0) = (U, 0, . . . , 0) ∈ Rn, and J (0) = ∅.

Step 2. (Solve master problem.) Determine the optimal solution (x(k), σ(k)) of the optimization problem

maximize σ

subject to x0 + σ ≤ y(k−1)
0

g(x, t(j)) + σs(j) ≤ 0 ∀ j ∈ J (k−1)

x ∈ X.

(24)

Step 3. (Optimal solution?) If σ(k) = 0, stop and return y(k−1).

Step 4. (Feasible solution?) Find a t(k) ∈ T satisfying g(x(k), t(k)) > 0 if possible.
If no such t(k) is found, go to Step 6.

Step 5. (Feasibility cut.) Set J (k) = J (k−1) ∪ {k} and y(k) = y(k−1); choose a centering parameter smin ≤
s(k) ≤ B. (See the text for different strategies.)
Go to Step 7.

Step 6. (Optimality cut; update best known ε-feasible solution.) Set J (k) = J (k−1) and y(k) = x(k).

Step 7. (Drop cuts.) Let D = {j |σ(j) ≥ βσ(k) and g(x(k)) + σ(k)s(j) < 0}, and set J (k) = J (k) \D.

Step 8. Increase k by one, and go to Step 2.
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5 Modeling transmission line constraints in two-stage robust unit commit-
ment problem

Summary. Integration of renewable energy sources and demand response poses new challenges to system
operators as they increase the uncertainty of the power supply and demand. Unit commitment is a central
scheduling decision for the system operators in both regulated and de-regulated markets. The unit com-
mitment model determines the schedule and generation level of each generator on the grid to minimize the
system-wide operating cost while meeting the demand and satisfying various physical and contingency con-
straints of the power system. The unit commitment problem has been studied extensively in the literature.
(See reference [95] for a survey of unit commitment problems.) Power system operators face new challenges
with regard to the unit commitment problem as the uncertainty of supply and demand has increased and will
continue to do so in the future. With efforts to integrate more renewable resources, such as wind and solar
energy, into the power grid, the variability of the electricity supply is expected to increase. Also, it may be
more difficult to predict the electricity demand accurately in the future as more consumers participate in the
demand response program and more plug-in electric vehicles are introduced in the market.

A viable approach to deal with the uncertainty of the supply and demand is stochastic programming.
Within this framework, one describes the uncertainty using a (joint) probability distribution, and then min-
imizes the sum of unit commitment cost and expected dispatch cost or considers chance constraints for the
reliability criteria. Stochastic unit commitment problems in various settings are extensively studied in the
literature. (See [48, 94, 105, 110, 113, 117] and references therein.) One of the challenges in stochastic unit
commitment is that it may not be easy to obtain an accurate probabilistic description of the uncertain supply
and demand. Moreover, one needs to generate a large number of samples to estimate the expectation, which
can be a daunting task for a large-size power system.

The two-stage robust unit commitment problems have a master-and-subproblem structure, and refer-
ences [33, 70, 97], and [70] use the Benders decomposition approach to take advantage of their structure.
Zhao and Zeng [116] develop a column-and-constraint generation algorithm for the problems and show its
computational efficiency over the Benders decomposition framework. (See reference [115] for the details of
the column-and-constraint generation algorithm.)

The subproblem of the robust models is to find the worst-case scenario and corresponding recourse dis-
patch decision, and it is a form of separable bilinear program, which isNP-hard, in general. Bertsimas et al.
[33] find the local optimal solution of the subproblem using an outer-approximation algorithm. This method
can support general polyhedral uncertainty sets. Other authors [70, 116] transform the separable bilinear
subproblem into an equivalent mixed-integer linear program (MILP) using the big-M constraints after they
represent the extreme points of the uncertainty set using a set of binary variables. Several authors [70, 97]
solve the MILP subproblem without dual variables of hard constraints such as ramping and transmission
line constraints (TLCs) or solve the bilinear version of the subproblem approximately through the mountain
climbing procedure of Konno [73]. This approach provides a lower bound of the master problem. Statistical
upper bounds of the master problem are obtained as well, using a Monte Carlo simulation. Zhao and Zeng
[116] find the optimal solution of the MILP subproblem for a medium-sized unit commitment problem with-
out TLCs. TLCs in the unit commitment problem increase the size of the problem substantially and hence
make the robust counterpart difficult to solve. Zhao and Zeng [116] do not consider the TLCs in their robust
unit commitment models. Although Bertsimas et al. [33] conduct numerical studies on the real-world-size
problem, they include four representative transmission lines in their model. Other authors [70, 97] consider
full TLCs, but relax them to obtain only a lower bound for the original formulation and find a statistical
upper bound through a Monte Carlo simulation which may be lower than the true upper bound.
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5.1 Robust unit commitment models

Deterministic unit commitment model. We formulate deterministic and robust unit commitment models.
First, we review a deterministic unit commitment model with forecast demand and wind power generation
based on a linear optimal power flow model with load-shift-factor (LSF) representation. We consider a
closed power system that consists of thermal generators and wind power stations. Under the assumptions
that 1) the optimal power flow is approximated by the lossless linear optimal power flow model, 2) the
convex production cost is approximated by a piecewise linear function, and 3) the load and wind power
generation are known in advance, we formulate a deterministic unit commitment problem as a MILP:

min
x,y,p

c>x+ b>y (25a)

s.t. x ∈ X (25b)

Fx+Gy +Hp ≥ g (25c)

E (p− d0 +w0) = 0 (25d)

fmin ≤ L (p− d0 +w0) ≤ fmax. (25e)

The objective c>x includes the start-up, shutdown and maintenance costs of the generators and b>y sums
up the production cost. (25c) includes constraints related to ramping limits, reserve requirements, reserve
capacity, power output capacity, and piecewise linear representation of production cost function as well as
non-negativity of such variables. (25d) represents the system balance constraints. The load-shift-factor ma-
trix L represents the sensitivity of power flow with respect to nodal power injection, and (25e) denotes the
TLCs.

Uncertainty set of the net demand. We consider two uncertain factors in the unit commitment model:
load and wind power generation. We assume that the uncertain load and wind power generation lie in a
polyhedral uncertainty set. We further assume that the uncertainty set D is bounded and all the extreme
points of the uncertainty set can be parameterized by a set of binary variables and linear constraints:

D̂ = {Uz + u | V z = v, z binary} , (26)

where D̂ is the set of all extreme points ofD, andU ,V ,u, and v are some constant matrix and vector param-
eters. For example, the extreme points of a box uncertainty setD = {(d,w) | dmin ≤ d ≤ dmax,wmin ≤ w
≤ wmax } can be represented as

D̂ =


(dmin + diag (dmax − dmin) zd,

wmin + diag (wmax −wmin) zw)

| zd, zw binary

 . (27)

Here, U = diag
([

(dmax − dmin)>, (wmax −wmin)>
])

and u = [d>min,w
>
min]>. V and v take zero.

Minimax-cost-based robust model The unit commitment decision is made before the uncertain wind power
generation and load scenario resolves, while the dispatch is a recourse decision. This leads to the following
two-stage robust unit commitment model with minimax criteria:

min
x
c>x+ max

d∈D
Q (x,d) (28a)

s.t. x ∈ X (28b)

Y(x,d) 6= ∅, ∀d ∈ D (28c)
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where
Q (x,d) := min

(y,p)∈Y(x,d)
b>y, (29)

and

Y(x,d) :=

(y,p)

∣∣∣∣∣∣∣
Gy +Hp ≥ g − Fx

Ep = Ed

fmin ≤ L (p− d) ≤ fmax

 . (30)

The minimax-cost-based robust model finds the unit commitment decision that minimizes the sum of gener-
ator operating cost and the worst-case dispatch cost. The unit commitment decision is also required to meet
the reliability condition (28c) that the dispatch problem is feasible for any scenario in the uncertainty set. If
a unit commitment solution satisfies (28c), we say that the unit commitment is robustly feasible.

We compared the deterministic unit commitment model with the forecast load and wind power genera-
tion and the robust unit commitment model with the above box uncertainty set for 24 hour planning horizon.
The solution of the robust unit commitment model has 78 more unit-hours committed and results in about
11% higher fixed unit commitment cost compared to one of the deterministic model. In the solution of the
robust unit commitment model, more units were committed every hour and two of the cheap units are re-
placed by more expensive units during the night where there are relatively higher penetration level of wind
power generation. The nominal objective for the robust unit commitment model, total operation cost with
the solution of the robust unit commitment model under forecast load and wind power generation scenario, is
only about 0.8% higher than the optimal objective value of the deterministic model. However, if the solution
from the deterministic model is employed, there exists a load and wind power generation scenario within
the uncertainty set that the dispatch is not feasible with respect to security constraints. The worst-case wind
power generation scenario found in the robust unit commitment model is illustrated in Figure 7.

6 Robust distribution network reconfiguration

Summary. We now describe our research on the distribution network reconfiguration problem with uncer-
tain demands, where the uncertainty of the demand arises from the daily fluctuations of the loads [79]. The
distribution network reconfiguration problem is to configure the distribution network topology in order to
improve the efficiency and stability of the network by changing the status of lines. The distribution network
is composed of buses, where the power is injected (substation buses) or consumed; and lines or switches,
which connect the buses. The distribution network has a meshed structure but is normally operated as ra-
dial (i.e. with no loop) so as to make the protection coordination easier (upstream to downstream) and to
make the distribution design easier. We studied a two-stage robust optimization model for the distribution
network reconfiguration problem with uncertain loads. In our two-stage robust optimization model, the
network reconfiguration is the first-stage decision; and the optimal power flow becomes the second-stage
decision which is made after the realization of the uncertain demand. The uncertainty set of the loads can
be constructed as a set of possible load scenarios for a given planning horizon.
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6.1 Two-stage robust distribution network reconfiguration model

Let us consider a deterministic distribution network reconfiguration problem in the following form:

min
x,y

c>x+ b>y − e>d0 (31a)

s.t. x ∈ X (31b)

Ax+By ≥ f (31c)

Fy = d0 (31d)

‖Gly‖ ≤ g>l y, ∀l = 1, · · · ,m (31e)

The vector x denotes the variables α,β regarding the distribution network configuration. The vector y
represents the rest of the continuous variables related to optimal power flow of the distribution network. The
vector d0 is the forecast loads. The term c>x represents the switching cost and b>y − e>d0 represents
the cost associated with the power losses. X is the feasible set of radial distribution network configurations.
(31d) summarizes the power balance equations, (31e) represents second-order-cone constraints, and (31c)
denotes all the other optimal power flow constraints that are linear.

We assume that the network configuration decision is made prior to the realization of loads. For each
realization of uncertain loads, we can compute the power losses for the given radial network configuration
by solving the optimal power flow problem. We make the first-stage network configuration which minimizes
the worst-case second-stage power loss. This can be formulated as the following two-stage robust model:

min
x
c>x+ max

d∈D
L (x,d) (32a)

s.t. x ∈ X (32b)

Y(x,d) 6= ∅, ∀d ∈ D (32c)

where
L (x,d) := min

y∈Y(x,d)
b>y − e>d (33)

and

Y(x,d) :=

y
∣∣∣∣∣∣∣
By ≥ f −Ax
Fy = d

‖Gly‖ ≤ g>l y, ∀l = 1, · · · ,m

 (34)

Here, D is the uncertainty set of the loads. We assume that the uncertainty set of the loads is a polyhedron.
The polyhedral assumption guarantees the finite convergence of the column-and-constraint generation algo-
rithm that solves the proposed model [115], since the polyhedron has a finite number of extreme points. We
further assume that we can characterize all the extreme points of the polyhedral uncertainty set using binary
variables and linear constraints as in [77]. This assumption allows us to convert the bilinear subproblem into
a mixed-integer linear program (MILP) as shown in the next section.

The innermost problem solves the optimal power flow of a given radial network configuration x with
a given load scenario d, which replaces the forecast load d0 to obtain the cost of power losses L (x,d).
In the midlevel, the load scenario that maximizes the minimum cost of power losses L (x,d) for the given
network configuration is obtained. In the outermost level, the robust program finds a network configuration
that minimizes the sum of switching cost and worst-case cost of power losses. If a distribution network
configuration x ∈ X satisfies (32c) (that is, given such a configuration, if the distribution network is feasible
for any possible demand scenario d ∈ D), then we say the network configuration x is robustly feasible. If no
robustly feasible configurationx exists (in other words, there is no configuration under which the distribution
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network is feasible for all possible demand scenario d ∈ D), then the robust program is infeasible. It is
possible for the robust program to be infeasible, if the uncertainty set is too large and so there cannot be a
configuration that is feasible for all possible scenarios in the uncertainty set. For such case, one can make the
uncertainty set smaller, for example, by considering a shorter planning horizon. When there is no solution
for the robust distribution network model, the distribution system would need to change the configuration
more frequently to adapt to the rapidly changing load.

6.2 Solution Characteristics

We considered four test cases from the literature: 16-bus [46], 33-bus [24], 70-bus [49], and 94-bus[104]
distribution network for our computational experiments (see Figure 8 for 94-bus system). A basic informa-
tion of each the distribution network is given in Table 12. In our case study, the switching costs are ignored.
We consider the following budget uncertainty set for the loads:

D =

{
P

∣∣∣∣∣Pmin
i ≤ Pi ≤ Pmax

i , ∀i ∈ N
∑
i∈N

⌈(
PDi − Pi
PDi − Pmin

i

)+
⌉

+
∑
i∈N

⌈(
Pi − PDi

Pmax
i − PDi

)+
⌉
≤ B

}
.

(35)
We assume the real loads can vary between the lower and upper limit Pmin

i and Pmax
i . We further assumed

that the overall variation is controlled by a user-defined budget parameterB. For simplicity, we assumed that
the uncertain reactive loads will be proportional to the uncertain real loads where the ratio is presumed to be
fixed. However, one can assume an independent uncertainty set for the reactive loads as well. To make the
problem more tractable, we aggregated the load buses to make a zone. We assumed that the load variation
(in percentage) of each bus within the same zone is identical. This approximation reduces the number of
binary variables in the subproblem and the solution time. We assumed the lower and upper limit parameters
of the uncertainty set to be ± 5% of the nominal value. For all cases, we aggregate load buses into 9 zones
and assume the budget parameter B to be 8.

The solution of the robust distribution network reconfiguration problem is now compared with the solu-
tion of the deterministic model in Table 13. For 16-bus test case, the topology of the network is rather simple,
and the configuration decision from the robust model is identical to the one from the deterministic model.
But, for the other test cases, we observed that the two configurations are similar in terms of the total power
losses under the forecast scenario; namely, nominal power losses in Table 13. However, the solution from
the deterministic model is not robust, as there exists at least one demand scenario within the uncertainty set
under which the delivery of power is not possible without violating the physical and operational constraints
of the network. On the other hand, the robust model finds the configuration that is robustly feasible. The
users can adjust the uncertainty set (35) by changing the value of the demand variation limit P imax, P

i
min and

the budget of the uncertainty parameter B. Table 14 shows the sensitivity of the minimum worst-case power
losses of the robust distribution network reconfiguration problem with respect to the different variation lim-
its of the uncertainty set of the 94-bus test case with B = 8. We can see that the worst-case power losses
increases as the size of the uncertainty set gets bigger. When the uncertainty set allows a variation of more
than 7% from the forecast demand, the robust program is infeasible and there is no radial configuration that
is feasible in all possible scenarios. This implies that with the current design of the distribution network
and operational requirements, it is impossible to meet all possible demand scenarios within the prescribed
uncertainty set. Table 15 shows the worst-case power losses of the robust distribution network reconfigura-
tion with the uncertainty sets with different values of the budget parameter B while the maximum demand
fluctuation levels are set at ± 5%, where we observe the similar pattern.
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A Appendix

A.1 Scenario generation for stochastic optimization problems via the sparse grid method

# nodes MC QMC (Sobol) QMC (lattice) SG (GKP) Patterson-type SG

201 0.5861458741 0.6057992465 0.60960463896 0.6069012301 0.6069097420
20401 0.6059951776 0.605986365 0.60693318101 0.6069098645 0.6069098767

200000 0.606784018 0.6069097597 0.60691252536
1000000 0.6069217022 0.6069097569 0.60691066152

Table 1: Results from a 100-dimensional exponential utility maximization example using Beta distributions.

# nodes MC QMC (Sobol) QMC (lattice) SG (GKP) Patterson-type SG

341 0.4020710589 0.4027479863 0.40507651399 0.4007432411 0.4031483327
58331 0.4031793283 0.4031448802 0.40316298189 0.4028398967 0.4031484071

250000 0.4031696956 0.4031478092 0.40315112035
500000 0.4031910684 0.4031483028 0.40315062416

Table 2: Results from the 160-dimensional exponential utility maximization example using Beta distribu-
tions.

# nodes MC QMC (Sobol) QMC (lattice) SG (GKP) Patterson-type SG

341 -1.3863232853 -1.3821077423 -1.3805140863 -1.3835622039 -1.3816379583
58331 -1.3817632120 -1.3816406975 -1.3816300171 -1.3800861876 -1.3816379399

250000 -1.3816977241 -1.3816382958 -1.3816362062
500000 -1.3816363645 -1.3816379652 -1.3816368776

Table 3: Results from the 160-dimensional power utility maximization example using Beta distributions.
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A.2 Generating moment matching scenarios using optimization techniques
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Figure 2: Performance of four cubature formulas using the four-dimensional parametric families of functions
with uniform density. Horizontal axis: number of points used in the formulas; the points correspond to
increasing degree of exactness of the CG-MC and CG-QMC formulas from 2 to 10. CG-MC implemented
the column generation algorithm where the pricing problem in semi-infinite linear programming was solved
using a Monte Carlo algorithm. CG-QMC implemented the column generation algorithm where the pricing
problem in semi-infinite linear programming was solved using a Quasi-Monte Carlo (Sobol) algorithm.
Vertical axis: base-10 logarithm of the median relative errors from 200 experiments. The gray shaded
bands around the median relative errors are 0.95-level confidence intervals around the median. Note the
differences on the vertical axes, and that on some of the figures the CG-MC and CG-QMC results are
practically indistinguishable.
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Figure 3: Performance of four cubature formulas using the four-dimensional parametric families of functions
with normal density. Horizontal axis: number of points used in the formulas; the points correspond to
increasing degree of exactness of the CG-MC and CG-QMC formulas from 2 to 10. CG-MC implemented
the column generation algorithm where the pricing problem in semi-infinite linear programming was solved
using a Monte Carlo algorithm. CG-QMC implemented the column generation algorithm where the pricing
problem in semi-infinite linear programming was solved using a Quasi-Monte Carlo (Sobol) algorithm.
Vertical axis: base-10 logarithm of the median relative errors from 200 experiments. The gray shaded bands
around the median relative errors are 0.95-level confidence intervals on the median.
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Figure 4: Performance of four cubature formulas using the 100-dimensional parametric families g1–g5.
Horizontal axis: number of points used in the formulas; the points correspond to increasing degree of
exactness of the CG-MC and CG-QMC formulas from 2 to 6. Vertical axis: base-10 logarithm of the
median relative errors from 200 experiments. The gray shaded bands around the median relative errors are
0.95-level confidence intervals on the median.

d K MC QMC CG-MC CG-QMC

2 28 0.1994 0.1817 0.0683 0.0102
3 84 0.1139 0.1130 0.0037 0.0726
4 210 0.0661 0.0626 0.0057 0.0015
5 462 0.0457 0.0319 0.0010 0.0019
6 924 0.0299 0.0189 0.0070 0.0028
7 1716 0.0245 0.0078 0.0044 0.0037

Table 4: Relative errors of the approximate solutions to the Utility maximization model, as a function of the
degree of exactness d. The number of scenarios K =

(
d+6

6

)
is also shown.
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A.3 Solution of Monotone Complementarity and General Convex Programming Problems
Using a Modified Potential Reduction Interior Point Method
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(a) Maros and Mézáros’s QP feasible problems
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(b) Mittelmann’s QCQP feasible problems
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(c) Vanderbei’s QCQP feasible problems

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.4

0.5

0.6

0.7

0.8

0.9

1
Performance Profile − Iterations

τ

P
ro

ba
bi

lit
y

 

 

Mosek
iOptimize

(d) General CP feasible problems

Figure 5: Performance profiles of our implementation (iOptimize) and MOSEK on feasible problems
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Problem MOSEK Our Implementation

airport 26 28
polak4 10 13
makela1 8 8
makela2 7 7
makela3 6 8
gigomez1 8 9
hanging 13 10
madsschj 10 11
rosenmmx 9 8
optreward 10 10
optprloc 18 16

Avg 11.36 11.64

Table 7: Comparison with MOSEK on Cute QCQP test problems
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Problem MOSEK Our Implementation Ipopt Knitro

bigbank 20 21 24 19
gridnete 9 7 5 4
gridnetf 16 13 27 17
gridneth 8 6 6 3
gridneti 10 8 7 6
dallasl 74 33 249 245
dallasm 128 31 ‡ ‡
dallass † 31 † 135
polak1 6 5 4 2
polak2 6 5 4 1
polak3 10 8 ‡ ‡
polak5 6 5 24 12
smbank 14 27 12 11
cantilvr 12 12 5 3
cb2 8 8 4 3
cb3 7 7 4 4
chaconn1 8 8 4 3
chaconn2 7 7 4 4
dipigri 14 10 6 2
gpp 12 10 22 11
hong 13 15 11 7
loadbal 22 21 13 7
svanberg 14 14 30 16

antenna\antenna2 21§ 16 178 58
antenna\antenna vareps 19 18 106 61
braess\trafequil 15 16 18 22
braess\trafequil2 11 13 26 13
braess\trafequilsf 14 15 18 24
braess\trafequil2sf 12 12 25 12
elena\chemeq 23 20 37 16
elena\s383 85 21 18 8
firfilter\fir convex 33§ 13 27 11
markowitz\growthopt 8 7 8 7
wbv\antenna2 15 13 31 16
wbv\lowpass2 30§ 22 31 66

batch 13 12 13 16
stockcycle 11 10 23 12
synthes1 6 6 6 6
synthes2 8 8 10 7
synthes3 8 8 9 8
trimloss2 10 10 13 7
trimloss4 11 12 16 8
trimloss5 13 13 20 10
trimloss6 12 12 23 11
trimloss7 13 13 35 14
trimloss12 19 17 41 22

Avg1 18.46 14.00 – –
Avg2 13.07 12.69 – –
1 †: Max number of iterations reached.
2 §: Near optimal solution found.
3 ‡: Function evaluate error from AMPL.

Table 8: Comparison with MOSEK, Ipopt, and Knitro on CP test problems
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Problem MOSEK Our Implementation

iairport 10 19
ipolak4 † 25
imakela1 28 32
imakela2 29 32
imakela3 8 14
igigomez1 26 26
ihanging 32 30
imadsschj 24 17
irosenmmx 27 35
ioptreward 11 20
ioptprloc 8 21

Avg 20.30 24.60
1 †: Max number of iterations reached.

Table 10: Comparison with MOSEK on Cute QCQP infeasible test problems
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Problem MOSEK Our Implementation Ipopt Knitro

ibigbank 196 27 48 42
igridnete 134 14 21 †
igridnetf † 36 42 †
igridneth 202 23 25 18
igridneti † 40 40 133§
idallasl ‡ ‡ 50§ ‡
idallasm ‡ 47 ‡ 0
idallass ‡ 45 ‡ 0
ipolak1 50 16 ‡ ‡
ipolak2 7 13 ‡ ‡
ipolak3 178 27 � †
ipolak5 7 13 37 †
ismbank 165 31 34 37
icantilvr 0 12 25 0
icb2 196 32 � 18
icb3 196 31 † 8
ichaconn1 196 32 � 6
ichaconn2 196 31 10 17
idipigri 157 32 188 †
igpp † 38 65 †
ihong 11 22 16 †
iloadbal 123 14 22 †
isvanberg † 27 48 53

antenna\iantenna2 † 186 † 156
antenna\iantenna vareps † 47 † †
braess\itrafequil 43 38 36 126
braess\itrafequil2 7 9 82 50
braess\itrafequilsf 47 46 34 103
braess\itrafequil2sf † 9 54 91
elena\ichemeq 14 14 102 16
elena\is383 7 14 67 †
firfilter\ifir convex 0 13 99 0
markowitz\igrowthopt 15 16 22 †
wbv\iantenna2 0 17 32 0
wbv\ilowpass2 0 13 32 0

ibatch 0 22 32 158
istockcycle 117 35 72 †
isynthes1 9 25 35 35
isynthes2 62 23 48 46
isynthes3 53 40 94 †
itrimloss2 0 15 52 0
itrimloss4 0 16 40 0
itrimloss5 0 15 60 0
itrimloss6 0 15 55 0
itrimloss7 0 16 61 0
itrimloss12 0 16 73 0

Avg1 66.33 19.44 – –
Avg2 11.74 16.04 – –
1 †: Max number of iterations reached.
2 ‡: Function evaluate error from AMPL.
3 §: Solver terminates with a near optimal status.
4 �: Ipopt fails in restoration phase.

Table 11: Comparison with MOSEK, Ipopt, and Knitro on CP infeasible test problems31
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(a) Mittelmann’s QCQP infeasible problems
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(b) Vanderbei’s QCQP infeasible problems
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Figure 6: Performance profiles of our implementation (iOptimize) and MOSEK on infeasible problems
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A.4 Modeling Transmission Line Constraints in Two-stage Robust Unit Commitment Prob-
lem

 

Figure 7: Example of the worst-case scenario.
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A.5 Robust distribution network reconfiguration

SU AND LEE: NETWORK RECONFIGURATION OF DISTRIBUTION SYSTEMS USING DIFFERENTIAL EVOLUTION 1025

Fig. 4. Three-feeder distribution system for example 1.

TABLE I
INPUT DATA FOR EXAMPLE 1

urations of switches in various states so that the value of the
objective function is successively reduced.

V. APPLICATION EXAMPLES

The proposed method was implemented using MATLAB and
run on a Pentium II-266-MHz computer. Two illustrative exam-
ples are discussed.
Example 1: The first example is a three-feeder distribution

system [1], as shown in Fig. 4. Table I shows the input data for
this example. The system consists of three feeders, 13 normally
closed switches, and three normally open switches. The system
load is assumed to be constant and MVA. MIHDE
is applied by setting the parameters , ,

, , , , and .
Table II summarizes the computational results obtained by ap-
plying the proposed method (MIHDE). Computational results
obtained by applying SA [7] are also listed in the table for
comparison. SA is applied by setting the initial temperature

, final temperature , cooling rate ,
andmaximum iteration . Obviously, results obtained

TABLE II
NUMERICAL RESULTS OF EXAMPLE 1

Fig. 5. Distribution system of Taiwan Power Company for example 2.

from these twomethods are nearly the same, except that the pro-
posed method required slightly less computation time than the
SA method does.
Example 2: The second example is a practical distribution

network of the Taiwan Power Company (TPC). Its conductors
mainly employ overhead lines ACSR 477 KCM and under-
ground copper conductor 500 KCM. Fig. 5 shows the system
and Table III shows related data. The system is 3-phase and
11.4 kV. It consists of 11 feeders, 83 normally closed switches,
and 13 normally open switches. Three-phase balance and
constant load are assumed. The parameters for the improved
MIHDE application are , ,

, , , , and . The
voltage constraints are kV
and kV. The initial voltage
at buses 4 through 10, 71, 72, and 83 is below . After
network reconfiguration, these bus voltages satisfy the voltage
constraints. Table IV shows the computational results. Before
network reconfiguration, feeder A has a heavy load and the

Figure 8: 94-bus distribution network [104]
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Table 12: Summary of test cases

16-bus 33-bus 70-bus 94-bus

No. of substations 3 1 2 11
No. of lines 16 37 79 96

No. of lines to disconnect 3 5 11 13

Table 13: Comparison of deterministic and robust models

Deterministic Robust model

16-bus

Configuration 7, 8, 16 7, 8, 16
Nominal power losses (kW) 466 466

Maximum power losses (kW) 517.8 517.8
CPU Time (s) 0.8 17.8

Number of iteration - 1

33-bus

7, 9, 14, 7, 11, 14,
Configuration 29, 32 29, 32

Nominal power losses (kW) 129.9 131.6
Maximum power losses (kW) infeasible 145.3

CPU Time (s) 3.9 209.3
Number of iteration - 2

70-bus

14, 30, 39, 14, 30, 39,
46, 51, 66, 46, 51, 66,
71, 75, 76, 70, 71, 76,

Configuration 77, 79 77, 78
Nominal power losses (kW) 204.1 207.7

Maximum power losses (kW) infeasible 224.5
CPU Time (s) 13.3 123.1

Number of iteration - 2

94-bus

7, 13, 33, 7, 13, 34,
37, 40, 63, 39, 42, 61,
72, 82, 84, 72, 82, 84,
86, 89, 90 86, 89, 90

Configuration 92 92
Nominal power losses (kW) 471.9 472.7

Maximum power losses (kW) infeasible 521.1
CPU Time (s) 3 160.1

Number of iteration - 2

Table 14: Comparison of robust models with different variation limits of the uncertainty sets with B = 8

Variation limits 1% 2% 3% 4% 5% 6%

Maximum power loss (kW) 480 490 502 507 523 534
Number of iteration 1 1 1 1 2 2

Table 15: Comparison of robust models with different budget of uncertainty set parameter with ± 5% limit

Budget parameter B 2 4 6 8

Maximum power loss (kW) 481 493 510 523
Number of iteration 2 2 2 2
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[23] E. Balas, S. Ceria, and G. Cornuéjols. A lift-and-project cutting plane algorithm for mixed 0-1 programs.
Mathematical Programming, 58:295–324, 1993.

36



[24] M. Baran and F. Wu. Network reconfiguration in distribution systems for loss reduction and load balancing.
IEEE Transactions on Power Delivery, 4(2):1401–1407, 1989.

[25] A. Ben-Tal and A. Nemirovski. Robust optimization - methodology and applications. Mathematical Program-
ming, 92(3):453–480, 2002.

[26] A. Ben-Tal and A. Nemirovski. Selected topics in robust convex optimization. Mathematical Programming,
112(1):125–158, 2008.

[27] A. Ben-Tal, B. Golany, A. Nemirovski, and J.-Ph. Vial. Supplier-retailer flexible commitments contracts: A
robust optimization approach. Manufacturing & Service Operations Management, 2003.

[28] A. Ben-Tal, S. Boyd, and A. Nemirovski. Extending scope of robust optimization: Comprehensive robust
counterparts of uncertain problems. Mathematical Programming, 107(1-2):63–89, 2006.

[29] D. Bertsimas and D. Pachamanova. Robust multiperiod portfolio management in the presence of transaction
costs. Computers & Operations Research, 35(1):3–17, 2008.

[30] D. Bertsimas and M. Sim. Tractable approximations to robust conic optimization problems. Mathematical
Programming, 107(1-2):5–36, 2006.

[31] D. Bertsimas and A. Thiele. A robust optimization approach to inventory theory. Operations Research, 54(1):
150–168, 2006.

[32] D. Bertsimas, O. Nohadani, and K. M. Teo. Robust optimization in electromagnetic scattering problems. Jour-
nal of Applied Physics, 101(7):–, 2007.

[33] D. Bertsimas, E. Litvinov, X. A. Sun, J. Zhao, and T. Zheng. Adaptive robust optimization for the security
constrained unit commitment problem. IEEE Transactions on Power Systems, 28(1):52–63, 2013.

[34] Dimitris Bertsimas and Melvyn Sim. Robust conic optimization. Mathematical Programming, 2004.
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