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Robust distribution network reconfiguration
Changhyeok Lee, Cong Liu, Member, IEEE, Sanjay Mehrotra, Zhaohong Bie, Senior member, IEEE

Abstract—We propose a two-stage robust optimization model
for the distribution network reconfiguration problem with load
uncertainty. The first-stage decision is to configure the radial
distribution network; the second-stage decision is to find the
optimal A/C power flow of the reconfigured network for given
demand realization. We solve the two-stage robust model by
using a column-and-constraint generation algorithm, where the
master problem and subproblem are formulated as mixed-integer
second-order cone programs. Computational results for 16, 33, 70
and 94-bus test cases are reported. We find that the configuration
from the robust model does not compromise much the power loss
under the nominal load scenario compared to the configuration
from the deterministic model, yet it provides the reliability of the
distribution system for all scenarios in the uncertainty set.

Index Terms—distribution network, reconfiguration, minimum
loss, robust optimization, mixed-integer second-order cone pro-
gram (MISOCP)

NOMENCLATURE

A. Sets and parameters

N Set of buses.
Ns Set of substations; a subset of N .
N(i) Set of buses connected to bus i.
L Set of lines.
Al Indicator parameter for the initial network con-

figuration; equals 1, if line l was initially
connected, and 0, if line l was initially dis-
connected.

Cdisconnect
l Cost to disconnect line l.

Cconnect
l Cost to connect line l.

C Parameter to convert power loss to cost.
SWmax Maximum number of lines to reconfigure.
PD
i Forecast real power demand at bus i.
QD

i Forecast reactive power demand at bus i.
Gl Conductance of line l.
Bl Susceptance of line l.
Pmax,i Maximum real power allowed at substation bus

i.
Qmax,i Maximum reactive power allowed at substation

bus i.
Vmax,i Maximum voltage allowed at bus i.
Vmin,i Minimum voltage allowed at bus i.
Imax,l Maximum current flow allowed on line l.
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B. Variables

αl Binary variable for network configuration;
equals 1, if line l is connected, and 0, if line l
is disconnected.

βij Binary variable; equals 1, if bus j is the parent
of bus i, and 0, otherwise.

pi Real power injection at bus i, forcibly set to 0,
if bus i is not a substation bus.

qi Reactive power injection at bus i, forcibly set
to 0, if bus i is not a substation bus.

pij Real power flow from bus i to bus j.
qij Reactive power flow from bus i to bus j.
rl Variable introduced in the convex relaxation of

A/C power flow equations; corresponding to
vivj cos(θi−θj), where vi, vj are voltages and
θi, θj are voltage angles of the two terminal
buses i, j of line l.

tl Variable introduced in the convex relaxation of
A/C power flow equations; corresponding to
vivj sin(θi − θj).

ui Variable introduced in the convex relaxation of
A/C power flow equations; corresponding to
v2i /
√
2.

uli, u
l
j Auxiliary variables introduced in the convex

relaxation of A/C power flow equations; equals
ui, uj , respectively, if line l is connected, and
0, otherwise.

I. INTRODUCTION

The distribution network reconfiguration problem is to con-
figure the distribution network topology in order to improve
the efficiency and stability of the network by changing the
status of lines. The distribution network is composed of buses,
where the power is injected (substation buses) or consumed;
and lines or switches, which connect the buses. The distribu-
tion network has a meshed structure but is normally operated
as radial (i.e. with no loop) so as to make the protection
coordination easier (upstream to downstream) and to make
the distribution design easier.

We consider the distribution network reconfiguration prob-
lem, for which we decide the radial configuration on the given
meshed distribution network to minimize the switching cost
and power losses while satisfying operational and physical
constraints of the distribution system. In the perspective of
mathematical programming, such a problem is a mixed-binary
nonlinear optimization problem, as the optimal power flow
problem is essentially nonconvex.

Most of the studies on distribution network reconfiguration
focus on finding good feasible solutions using heuristics [1]–
[9], as the problem remains difficult due to its discreteness and
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nonlinearity. Besides heuristic algorithms to generate feasi-
ble solutions, many global-optimization strategies (simulation
annealing, genetic algorithms, particle swarms, etc.) are also
employed for the distribution network reconfiguration problem
[10]–[23]. Recently, several authors have applied a mathemat-
ical programming approach to the distribution network recon-
figuration problem [19], [24]–[27]. Especially reference [27]
formulate the problem as a mixed-integer second-order cone
program (MISOCP), for which the global optimal solution
up to the desired accuracy can be found by using available
commercial solvers. The convexity of the optimal power flow
of the radial network is important because it is guaranteed
to find the global optimal solution, and also we can further
develop models that are more advanced.

In this paper, we consider the distribution network re-
configuration problem with uncertain demands, where the
uncertainty of the demand arises from the daily fluctuations
of the loads. We propose a two-stage robust optimization
model for the distribution network reconfiguration problem
with uncertain loads. In our two-stage robust optimization
model, the network reconfiguration is the first-stage decision;
and the optimal power flow becomes the second-stage decision
which is made after the realization of the uncertain demand.
The uncertainty set of the loads can be constructed as a set of
possible load scenarios for a given planning horizon. We use
the column-and-constraint generation algorithm [28] to solve
the proposed two-stage robust problem. The solution of the
robust distribution network reconfiguration problem, if exists,
can be used for the planning horizon instead of changing the
configuration frequently for the time-varying loads.

This chapter is organized as follows: in Section II, we
formulate the deterministic and robust distribution network
reconfiguration models. Section III describes the algorithm to
solve the robust distribution network reconfiguration models.
Section IV shows our computational results for a few test
distribution networks. Section V concludes with a discussion.

II. ROBUST DISTRIBUTION NETWORK RECONFIGURATION
MODEL

In this section, we describe deterministic and robust dis-
tribution network reconfiguration models. First, we review a
deterministic distribution network reconfiguration model with
point forecast loads.

A. Deterministic distribution network reconfiguration model

Suppose we have a distribution network with |N | buses and
|L| lines. The distribution network reconfiguration problem
is to find a radial network configuration that minimizes the
switching cost and power losses. Reference [27] shows that
the A/C optimal power flow can be recovered from its convex
relaxation when there is no loop in the distribution network
configuration and formulates the distribution network recon-

figuration problem as the following MISOCP:

min
α,β,

p,q,r,t,u

∑
l∈L

[
Cdisconnect

l Al(1− αl) + Cconnect
l (1−Al)αl

]
+ C

∑
i∈N

(
pi − PD

i

)
(1a)

s.t. αl = βij + βji, ∀l ∈ L (1b)∑
j∈N(i)

βij = 1, ∀i ∈ Ns (1c)

∑
j∈N(i)

βij = 0, ∀i ∈ N\Ns (1d)

∑
l∈L

[Al(1− αl) + (1−Al)αl] ≤ 2 · SWmax (1e)

0 ≤ αl ≤ 1, βij , βji ∈ {0, 1}, ∀l ∈ L (1f)

pi −
∑

j∈N(i)

pij = PD
i , ∀i ∈ N (1g)

qi −
∑

j∈N(i)

qij = QD
i , ∀i ∈ N (1h)

pi ≤ Pmax,i, ∀i ∈ Ns (1i)
qi ≤ Qmax,i, ∀i ∈ Ns (1j)

pij =
√
2Glu

l
i −Glrl −Bltl, ∀l ∈ L (1k)

pji =
√
2Glu

l
j −Glrl +Bltl, ∀l ∈ L (1l)

qij = −
√
2Blu

l
i +Blrl −Gltl, ∀l ∈ L (1m)

qji = −
√
2Blu

l
j +Blrl +Gltl, ∀l ∈ L (1n)

0 ≤ uli ≤
V 2

max,i√
2
αl, ∀l ∈ L (1o)

0 ≤ ulj ≤
V 2

max,j√
2
αl, ∀l ∈ L (1p)

0 ≤ ui − uli ≤
V 2

max,i√
2

(1− αl), ∀l ∈ L (1q)

0 ≤ uj − ulj ≤
V 2

max,j√
2

(1− αl), ∀l ∈ L (1r)

uli + ulj −
√
2rl ≤

I2max,l√
2(G2

l +B2
l )
, ∀l ∈ L (1s)

r2l + t2l ≤ 2uliu
l
j , ∀l ∈ L (1t)

pi ≥ 0, ∀i ∈ N (1u)
0 ≤ rl ≤ Vmax,iVmax,j , ∀l ∈ L (1v)
− Vmax,iVmax,j ≤ tl ≤ Vmax,iVmax,j , ∀l ∈ L (1w)
V 2

min,i√
2
≤ ui ≤

V 2
max,i√
2
, ∀i ∈ N (1x)

uli, u
l
j ≥ 0, ∀l ∈ L (1y)

There are two types of decision variables: α,β that are
related to the network configuration, and p, q, r, t,u that are
related to the optimal power flow of the distribution system.
Let us describe the constraints in the above optimization
problem: (1b–1d) ensure the configured network is radial,
and (1e) sets the maximum number of switches to change
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their status from the initial network configuration A. Note
that index ij or ji refers to the line l of which the two
terminal buses are bus i and bus j. (1g–1h) stands for the
power balance of each bus. (1i–1j) enforces the capacity
limits of the substations. (1k–1n) and (1t) come from the power
flow equations and their convex relaxation. (1o–1r) links the
network configuration variable αl to the auxiliary variables
uli, u

l
j so that pij , pji, qij , qji can be set to 0 when αl is 0.

(1s) sets the current flow limit on each line, and (1x) sets the
voltage limit at each bus.

For a clear presentation in the subsequent discussion, we re-
cast the above distribution network reconfiguration problem in
the following compact form:

min
x,y

c>x+ b>y − e>d0 (2a)

s.t. x ∈ X (2b)
Ax+By ≥ f (2c)
Fy = d0 (2d)

‖Gly‖ ≤ g>l y, ∀l = 1, · · · ,m (2e)

The vector x denotes the variables α,β regarding the distri-
bution network configuration. The vector y represents the rest
of the continuous variables related to optimal power flow of
the distribution network. The vector d0 is the forecast loads.
The term c>x represents the switching cost and b>y−e>d0
represents the cost associated with the power losses. X is
the feasible set of radial distribution network configurations
described by (1b–1f). (2d) summarizes the power balance
equations (1g–1h), (2e) represents second-order-cone con-
straints (1t), and (2c) denotes all the other optimal power flow
constraints that are linear.

B. Two-stage robust distribution network reconfiguration
model

We assume that the network configuration decision is made
prior to the realization of loads. For each realization of
uncertain loads, we can compute the power losses for the given
radial network configuration by solving the optimal power flow
problem. We make the first-stage network configuration which
minimizes the worst-case second-stage power loss. This can
be formulated as the following two-stage robust model:

min
x
c>x+ max

d∈D
L (x,d) (3a)

s.t. x ∈ X (3b)
Y(x,d) 6= ∅, ∀d ∈ D (3c)

where
L (x,d) := min

y∈Y(x,d)
b>y − e>d (4)

and

Y(x,d) :=

y
∣∣∣∣∣∣∣
By ≥ f −Ax
Fy = d

‖Gly‖ ≤ g>l y, ∀l = 1, · · · ,m

 (5)

Here, D is the uncertainty set of the loads. We assume that the
uncertainty set of the loads is a polyhedron. The polyhedral as-
sumption guarantees the finite convergence of the column-and-
constraint generation algorithm that solves the proposed model

[28], since the polyhedron has a finite number of extreme
points. We further assume that we can characterize all the
extreme points of the polyhedral uncertainty set using binary
variables and linear constraints as in [29]. This assumption
allows us to convert the bilinear subproblem into a mixed-
integer linear program (MILP) as shown in the next section.

The innermost problem solves the optimal power flow of
a given radial network configuration x with a given load
scenario d, which replaces the forecast load d0 to obtain
the cost of power losses L (x,d). In the midlevel, the load
scenario that maximizes the minimum cost of power losses
L (x,d) for the given network configuration is obtained.
In the outermost level, the robust program finds a network
configuration that minimizes the sum of switching cost and
worst-case cost of power losses.

If a distribution network configuration x ∈ X satisfies (3c)
(that is, given such a configuration, if the distribution network
is feasible for any possible demand scenario d ∈ D), then
we say the network configuration x is robustly feasible. If
no robustly feasible configuration x exists (in other words,
there is no configuration under which the distribution network
is feasible for all possible demand scenario d ∈ D), then
the robust program is infeasible. It is possible for the robust
program to be infeasible, if the uncertainty set is too large
and so there cannot be a configuration that is feasible for all
possible scenarios in the uncertainty set. For such case, one can
make the uncertainty set smaller, for example, by considering
a shorter planning horizon. When there is no solution for
the robust distribution network model, the distribution system
should change the configuration more frequently to adapt to
the rapidly changing load.

III. SOLUTION METHODS FOR TWO-STAGE ROBUST
DISTRIBUTION NETWORK RECONFIGURATION MODEL

In order to solve the two-stage robust distribution network
reconfiguration model, we use the column-and-constraint gen-
eration algorithm that is introduced in reference [28]. The
distinctive feature of the proposed two-stage robust distribution
network reconfiguration model is that the innermost problem
is a second-order cone program. However, the column-and-
constraint generation algorithm presented in [28] can be nat-
urally extended for the robust distribution network reconfig-
uration model. We outline the application of the algorithm
as follows. The column-and-constraint generation algorithm
attempts to solve the following extensive formulation of (3):

min
x,y(d),L

c>x+ L (6a)

s.t. x ∈ X (6b)

L ≥ b>y(d)− e>d, ∀d ∈ D (6c)
y(d) ∈ Y (x,d) , ∀d ∈ D (6d)
L ≥ 0 (6e)

The above problem has an infinite number of variables and
constraints corresponding to each demand scenario d.

1) Master problem: Uncountably many number of con-
straints (6c) and (6d), indexed by the uncertainty set D, make
it impossible to solve (6) directly. The following reduced
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problem, in which D is replaced by its finite subset, provides
a lower bound for (3):

min
x,y(i),L

c>x+ L (7a)

s.t. x ∈ X (7b)

L ≥ b>y(i) − e>d(i), ∀i = 1, · · · , k (7c)

y(i) ∈ Y
(
x,d(i)

)
, ∀i = 1, · · · , k (7d)

L ≥ 0 (7e)

where d(i) ∈ D, i = 0, · · · , k. We call (7) the master problem
of the robust distribution network reconfiguration model. The
master problem is an MISOCP with binary variables in x and
|L| · k number of second-order cone constraints in (7d).

2) Subproblem: The next key step in the column-and-
constraint generation algorithm is to generate the worst-case
scenario for the master problem and to obtain an upper bound
for (3). We achieve these goals by solving the following sepa-
ration problem for the given distribution network configuration
x∗:

L(x∗) := max
d∈D

min
y
b>y − e>d (8a)

s.t. By ≥ f −Ax∗ (π) (8b)
Fy = d (λ) (8c)

‖Gly‖ ≤ g>l y, ∀l (σl, µl) (8d)

Given the radial network configuration x∗, the above sep-
aration problem finds the worst-case load scenario d and
corresponding optimal power flow y. The optimal objective
value of the separation problem L(x∗) can be used to compute
an upper bound for (3) because it is the worst-case power
losses for a given network configuration x∗.

We dualize the inner conic program to convert the subprob-
lem into a monolithic form.

max
d,π,λ,σ,µ

(f −Ax∗)> π + d>λ− e>d (9a)

s.t. B>π + F>λ+
∑
l

(
G>σl + gµl

)
= b (9b)

‖σl‖ ≤ µl, ∀l (9c)
π,µ ≥ 0, λ,σ : free, d ∈ D (9d)

The objective function is linear except for the bilinear term
d>λ, and the constraints are linear and second-order cone
constraints. Assuming that the uncertainty set D is polyhedral
and that its extreme points can be described by a set of
binary variables and linear constraints, we can transform the
bilinear term d>λ with a bilinear term between the continuous
variable λ and binary variables. This will allow us to linearize
the bilinear term by introducing big-M constraints. Then, the
subproblem is equivalent to an MISOCP.

3) Feasibility subproblem: For a given distribution network
configuration x∗, the subproblem (9) would not be well-
defined if there exists a scenario d such that the innermost
optimal power flow problem (4) is infeasible. For such a case,
the subproblem (9) is unbounded. Hence, before solving the
subproblem (9), we must check whether the given configura-
tion x∗ is robustly feasible. We can check the robust feasibility

• initialization LB ← 0, UB ← ∞, k ← 0. Set
tolerance level ε.

• Solve the master problem to get optimal solution x∗

and L∗. LB ← max{LB, c>x+ L∗}.
• While UB − LB < ε

– Given x∗, solve the feasibility subproblem to
get optimal objective e (x∗), corresponding to
worst-case load scenario d∗.

– If e (x∗) > 0

∗ d(k+1) ← d∗, create variables y(k+1) and
add corresponding constraints (6d) to the
reduced master problem.

– Else
∗ Given x∗, solve the subproblem to get op-

timal objective L (x∗) > 0, correspond-
ing to worst-case load scenario d∗. UB ←
min{UB, c>x+ L (x∗)}.

∗ d(k+1) ← d∗, create variables y(k+1) and
add corresponding constraints (6c) and (6d)
to the reduced master problem.

– k ← k + 1 and solve the master problem
to get optimal solution x∗ and L∗. LB ←
max{LB, c>x+ L∗}.

Fig. 1. Column-and-constraint generation algorithm for robust distribution
network reconfiguration

of the given configuration x∗ by solving the following feasi-
bility subproblem:

e (x∗) := max
d∈D

min
y,s,t

s+ t (10a)

subject to By ≥ f −Ax∗ (π) (10b)
Fy = d+ (s− t)1 (λ) (10c)

‖Gly‖ ≤ g>l y, ∀l (σl, µl) (10d)
s, t ≥ 0 (10e)

The feasibility subproblem adds non-negative slack and sur-
plus variable s and t to the power balance equation (10c), and
these variables are adjusted according to the infeasibility of
the optimal power flow problem. If e (x∗) > 0, there exists a
load scenario d∗ ∈ D where there is no feasible distribution.
On the other hand, if e (x∗) = 0, then under the given network
configuration x∗, there is a feasible distribution for each load
scenario in the uncertainty set.

4) Column-and-constraint generation algorithm: Overall
procedures to solve the two-stage robust distribution network
reconfiguration problem are summarized in Figure 1.

IV. COMPUTATIONAL EXPERIMENTS

We consider four test cases from the literature: 16-bus [2],
33-bus [3], 70-bus [30], and 94-bus [15] distribution network
for our computational experiments (see Figure 2 for 94-bus
system). A basic information of each the distribution network



5

is given in Table I. In our case study, the switching costs are
ignored.

TABLE I
SUMMARY OF TEST CASES

16-bus 33-bus 70-bus 94-bus

No. of substations 3 1 2 11
No. of lines 16 37 79 96

No. of lines to disconnect 3 5 11 13

All the algorithms are implemented in AMPL and solved
with CPLEX 12.5. The test environment is a laptop with a
2.53-GHz Duo CPU and 8 GB of RAM.
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Fig. 4. Three-feeder distribution system for example 1.

TABLE I
INPUT DATA FOR EXAMPLE 1

urations of switches in various states so that the value of the
objective function is successively reduced.

V. APPLICATION EXAMPLES

The proposed method was implemented using MATLAB and
run on a Pentium II-266-MHz computer. Two illustrative exam-
ples are discussed.
Example 1: The first example is a three-feeder distribution

system [1], as shown in Fig. 4. Table I shows the input data for
this example. The system consists of three feeders, 13 normally
closed switches, and three normally open switches. The system
load is assumed to be constant and MVA. MIHDE
is applied by setting the parameters , ,

, , , , and .
Table II summarizes the computational results obtained by ap-
plying the proposed method (MIHDE). Computational results
obtained by applying SA [7] are also listed in the table for
comparison. SA is applied by setting the initial temperature

, final temperature , cooling rate ,
andmaximum iteration . Obviously, results obtained

TABLE II
NUMERICAL RESULTS OF EXAMPLE 1

Fig. 5. Distribution system of Taiwan Power Company for example 2.

from these twomethods are nearly the same, except that the pro-
posed method required slightly less computation time than the
SA method does.
Example 2: The second example is a practical distribution

network of the Taiwan Power Company (TPC). Its conductors
mainly employ overhead lines ACSR 477 KCM and under-
ground copper conductor 500 KCM. Fig. 5 shows the system
and Table III shows related data. The system is 3-phase and
11.4 kV. It consists of 11 feeders, 83 normally closed switches,
and 13 normally open switches. Three-phase balance and
constant load are assumed. The parameters for the improved
MIHDE application are , ,

, , , , and . The
voltage constraints are kV
and kV. The initial voltage
at buses 4 through 10, 71, 72, and 83 is below . After
network reconfiguration, these bus voltages satisfy the voltage
constraints. Table IV shows the computational results. Before
network reconfiguration, feeder A has a heavy load and the

Fig. 2. 94-bus distribution network [15]

A. Characteristics of robust distribution network reconfigura-
tion

We consider the following budget uncertainty set for the
loads:

D =


P

∣∣∣∣∣∣∣∣∣∣∣∣∣

Pmin
i ≤ Pi ≤ Pmax

i ,∀i ∈ N∑
i∈N

⌈(
PD
i − Pi

PD
i − Pmin

i

)+
⌉

+
∑
i∈N

⌈(
Pi − PD

i

Pmax
i − PD

i

)+
⌉
≤ B


. (11)

We assume the real loads can vary between the lower and
upper limit Pmin

i and Pmax
i . We further assume that the overall

variation is controlled by a user-defined budget parameter B.
For simplicity, we assume that the uncertain reactive loads
will be proportional to the uncertain real loads where the
ratio is presumed to be fixed. However, one can assume an
independent uncertainty set for the reactive loads as well.
To make the problem more tractable, we aggregate the load

buses to make a zone. We assume that the load variation (in
percentage) of each bus within the same zone is identical. This
approximation reduces the number of binary variables in the
subproblem and the solution time. We assume the lower and
upper limit parameters of the uncertainty set to be ± 5% of
the nominal value. For all cases, we aggregate load buses into
9 zones and assume the budget parameter B to be 8.

The solution of the robust distribution network reconfigura-
tion problem is compared with the solution of the deterministic
model in Table II. For 16-bus test case, the topology of the
network is rather simple, and the configuration decision from
the robust model is identical to the one from the deterministic
model. But, for the other test cases, we observe that the the two
configurations are similar in terms of the total power losses
under the forecast scenario; namely, nominal power losses in
Table II. However, the solution from the deterministic model
is not robust, as there exists at least one demand scenario
within the uncertainty set under which the delivery of power
is not possible without violating the physical and operational
constraints of the network. On the other hand, the robust model
finds the configuration that is robustly feasible.

In all of our test cases, the algorithm terminates in two
iterations: we solve the deterministic reconfiguration problem
with the forecast load to generate an initial configuration
decision; we then solve the feasibility and optimality subprob-
lems to generate the worst-case scenarios; and the algorithm
terminates after we solve the master problem again with the
added worst-case scenarios.

TABLE II
COMPARISON OF DETERMINISTIC AND ROBUST MODELS

Deterministic Robust model

16-bus

Configuration 7, 8, 16 7, 8, 16
Nominal power losses (kW) 466 466

Maximum power losses (kW) 517.8 517.8
CPU Time (s) 0.8 17.8

Number of iteration - 1

33-bus

7, 9, 14, 7, 11, 14,
Configuration 29, 32 29, 32

Nominal power losses (kW) 129.9 131.6
Maximum power losses (kW) infeasible 145.3

CPU Time (s) 3.9 209.3
Number of iteration - 2

70-bus

14, 30, 39, 14, 30, 39,
46, 51, 66, 46, 51, 66,
71, 75, 76, 70, 71, 76,

Configuration 77, 79 77, 78
Nominal power losses (kW) 204.1 207.7

Maximum power losses (kW) infeasible 224.5
CPU Time (s) 13.3 123.1

Number of iteration - 2

94-bus

7, 13, 33, 7, 13, 34,
37, 40, 63, 39, 42, 61,
72, 82, 84, 72, 82, 84,
86, 89, 90 86, 89, 90

Configuration 92 92
Nominal power losses (kW) 471.9 472.7

Maximum power losses (kW) infeasible 521.1
CPU Time (s) 3 160.1

Number of iteration - 2
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B. Sensitivity with respect to the uncertainty set

The users can adjust the uncertainty set (11) by changing
the value of the demand variation limit P i

max, P
i
min and the

budget of the uncertainty parameter B. Table III shows
the sensitivity of the minimum worst-case power losses of
the robust distribution network reconfiguration problem with
respect to the different variation limits of the uncertainty set
of the 94-bus test case with B = 8. We can see that the worst-
case power losses increases as the size of the uncertainty set
gets bigger. When the uncertainty set allows a variation of
more than 7% from the forecast demand, the robust program is
infeasible and there is no radial configuration that is feasible in
all possible scenarios. This implies that with the current design
of the distribution network and operational requirements, it
is impossible to meet all possible demand scenarios within
the prescribed uncertainty set. Table IV shows the worst-case
power losses of the robust distribution network reconfiguration
with the uncertainty sets with different values of the budget
parameter B while the maximum demand fluctuation levels
are set at ± 5%, where we observe the similar pattern as in
the previous table.

TABLE III
COMPARISON OF ROBUST MODELS WITH DIFFERENT VARIATION LIMITS

OF THE UNCERTAINTY SETS WITH B = 8

Variation limits 1% 2% 3% 4% 5% 6%

Maximum power loss (kW) 480 490 502 507 523 534
Number of iteration 1 1 1 1 2 2

TABLE IV
COMPARISON OF ROBUST MODELS WITH DIFFERENT BUDGET OF

UNCERTAINTY SET PARAMETER WITH ± 5% LIMIT

Budget parameter B 2 4 6 8

Maximum power loss (kW) 481 493 510 523
Number of iteration 2 2 2 2

V. CONCLUSION

We propose the use of the two-stage robust optimization
for the distribution network reconfiguration problem with the
uncertain loads. The robust model is solved by using the
column-and-constraint generation algorithm, in which the mas-
ter problem and subproblem are transformed into an equivalent
MISOCP and can be solved by using available commercial
software. In our case study, we found that the solution from
the deterministic distribution network reconfiguration model
is not necessarily robustly feasible. We also found that the
robust distribution network model can generate the network
configuration solution that is robust with regard to all possible
scenarios considered in the uncertainty set and yet does not
compromise much in terms of the power losses under the
forecast demand scenario.
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