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Abstract— S-Learning is a sequence-based learning algorithm
patterned on human motor behavior. Discrete-time and quan-
tized sensory information is amassed in real-time to form a dy-
namic model of the system being controlled and its environment.
No explicit model is provided a priori, nor any hint about what
the structure of the model might be. As the core of a Brain-
Emulating Cognition and Control Architecture (BECCA), S-
Learning provides a mechanism for human-inspired learning,
memory, and control in machines. In a simulation of a point-to-
point reaching task, S-Learning demonstrates several attributes
of human motor behavior, including learning through explo-
ration and task transfer.

I. INTRODUCTION

The field of “Learning to learn,” also termedgeneraliza-
tion or bias learning, takes machine performance a step
further than many learning algorithms. [1] Generalization
algorithms seek to improve system performance not just on
tasks for which the systems explicitly train, but also on
novel, unrelated tasks. For instance, humans are often able
to learn a task after only one or two exposures due to the
ability to generalize from previously learned tasks. General-
ization algorithms attempt to imbue automated systems with
this same ability. Common approaches include connectionist
networks [2], [3], statistical (including Bayesian, memory-
based, and Markovian) methods [4], [5], [6], dimensional
reduction [7], and modified reinforcement learning tech-
niques [8], [9]. A subset of generalization algorithms are
explicitly biologically-motivated. They mimic the human
brain, as it serves as an existence proof for solutions to
daunting perception and control problems. S-Learning falls
into this category.

A. Relation to Temporal-Difference techniques

S-learning is a variant of temporal-difference (TD) learn-
ing. It is superficially similar to Q-learning, another TD
algorithm, but involvessequences of discrete events (hence
the S). TD algorithms are typically effective at discovering
optimal sequences of actions in unknown environments.
However, existing algorithms almost exclusively address the
static TD problem, in which the states that result in reward or
punishment are fixed. This is equivalent to a control system
that has a fixed goal that does not vary over time. And
while multiple instances of a static TD algorithm, such as
Q-learning, can be employed to account for multiple goal
states, the experience gained while training one does not
transfer to others in a straightforward way. Such an approach
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typically requires a separate training period for each instance
of the algorithm. Even when this multiple-instance approach
is successful, it still does not aid the system in reaching
unfamiliar goal states.

The distinguishing characteristic of S-learning is that it
continually records recurring patterns to build a library of
past experiences. This library allows a goal-seeking agent
to piece the patterns together to form a complete path to
a goal. The strength of this approach is that the goal can
be any previously-visited state, not just one or a few that
were hard-coded from the start. Thus S-learning provides a
potential solution to the dynamic TD problem.

B. Relation to Markov Models

A set of sequences of length two is similar to a Markov
model. The likelihood of transitioning from state A to stateB
can be inferred from the sequence set and could alternatively
be represented in matrix form. Similarly, longer sequences
could be represented as higher-order Markov models. It is
accurate to describe an S-Learning sequence library as a
shorthand way of representing a series of Markov models
of order one to orderN − 1, where N is the maximum
sequence length. The advantage of a sequence library is that
it is concise. A first order Markov model in a system with
M possible states can be represented by aM × M matrix,
a second order Markov model by aM2

×M matrix, and an
N −1 order Markov model by aMN−1

×M matrix. For the
system simulated in this paper, in whichN = 5 and M =

2
234, this representation quickly becomes computationally

burdensome. The size of a sequence library encoding similar
information is likely to be orders of magnitude smaller,
depending upon the sparsity of the Markov models.

II. METHOD

A. Architecture

S-Learning is at the core of a biomimetic learning and
control architecture called BECCA (Brain-Emulating Cogni-
tion and Control Architecture, Fig. 1). BECCA consists of
an Agent, a Planner, a World, and an S-Learning Engine,
each of which is briefly described below.

Agent. The Agent sets goals for the system. The goals are
expressed in terms the sensory state information available
from the World. Goals can be a specific state, set of states,
or portion of a state. Multiple, even conflicting, goals can
exist. Goals can change over time, and the Agent can use
new state information to decide when and how to change
them. The current set of goals is available for use in the
Planner.
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Fig. 1. Brain-Emulating Cognition and Control Architecture(BECCA),
featuring S-Learning: a block diagram representation. TheS-Learning
algorithm is used as an engine to bootstrap a model of the World. This
model is referenced by the Planner and uses new state information to refine
its world model.

Planner. The Planner determines which (if any) actions
to take at any given point in time. It takes in goals from the
Agent and current state information to inform its decisions.
The Planner queries the S-Learning Engine in order to
predict the results of possible courses of action. Exploratory
actions are also considered, particularly if the current state
is unfamiliar and the S-Learning Engine cannot predict a
path to a goal state. After a course of action is determined,
the Planner issues commands to the World and reports those
actions in the state vector.

World. The World is the external system that is being
learned and controlled. It is analogous to the Plant in
classical control system formulations. The World can either
be simulated or instantiated in hardware, but in either case,
the only information it provides back to the rest of BECCA is
through its sensors. This means that in simulations, BECCA
does not have access to the World’s internal variables.

S-Learning Engine The S-Learning Engine uses the
regularly-updated stream of state information to bootstrap
a model of the World. There is no explicit model, assumed
dynamics, or implied structure. Instead, the S-Learning En-
gine observes repeated state sequences, particularly those
that result in a goal state. These state sequences are stored
in a library, which is referenced by the Planner during
action planning. The S-Learning Engine also keeps track of
the sequences that the Planner selects as action plans. If a
sequence leads to a goal, as predicted, it is reinforced and
weighted more heavily in the sequence library. If a sequence
fails to lead to a predicted goal, its weighting in the library is
decreased. After a number of failed predictions, a sequence
becomes sufficiently weak that it is dropped from the library.

B. S-Learning Algorithm

S-Learning provides a single mechanism for handling
learning, memory, and prediction in BECCA. The learning
and memory behavior of S-Learning emerge from the way
new states are incorporated into the bootstrapped world
model. Initially, the sequence library,κ, has no prior experi-
ences and contains no state sequences. When a goal state is
achieved (presumably though the exploratory efforts of the
Planner) the sequence of events leading up to the goal are
stored in the library.

Prediction in S-Learning is straightforward:

1) Begin with the most recently observed stateν0.
2) Find the set of all the sequences,χ, in the sequence

library, κ, that begin withν0. Call this setχπ.
3) For eachχ in χπ find any goal states in the sequence.

Those containing goal states form,χ̂π, a subset ofχπ.
χ̂π comprises possible plans of action.

When the S-Learning Engine is queried by the Planner,
it reports back withχ̂π, which the Planner includes in
its selection process. Other, more sophisticated prediction
methods based on the sequence library are possible as well.
For instance, daisy-chaining sequences together, creating
trees of possible plans, would allow the Planner to create
novel plans and generate a series of sub-goals.

If the Planner utilizes a sequence from the library to form a
prediction and a plan of execution, then it has an expectation
about when a goal will be achieved. If a goal not achieved
when expected, that sequence of events is appended to the
library, allowing future prediction of the same failure.

If a goal is achieved when expected, then the successful
sequence is compared against the sequence used in predic-
tion, and their common elements are used to form a new
sequence. Thisintersection sequence contains information
that is relevant to achieving the goal, but tends to omit
sources of noise and irrelevant sensory information. To use
an everyday example, humans do not factor in the color
of a cup when planning to grasp it; in this task, color is
irrelevant. Likewise, intersection sequences contain only the
information that is consistently present during successful
sequences, and leaves out information that is not.

C. Mimicking biology

The structure of the state information and dynamics by
which it is modified are based loosely on neural processes.
The state that is passed from the World to the S-Learning
Engine is a vector of ones and zeros, representing an array
of neurons that are either firing or at rest. Each state is
represented in the sequence library as an array of binary
numbers, representing synaptic connections between sensory
neurons and a central neuron or neural circuit that represents
that state. The sequence representation within the library
is an acknowledgement of the brain’s propensity to store
events sequentially, as mediated by the hippocampus [10]
and instantiated in thalamocortical circuits. [11], [12] Both
unexpected achievement of a goal state and unexpected
failure to achieve a goal state are followed by alteration
of synaptic weights, one model of neuroplasticity. Even the
discrete nature of sensory states and actions within BECCA
and S-Learning is motivated by a growing body of evidence
that human sensory [13], [14], [15], [16] and motor [17],
[18], [19], [20], [21], [22] processes are inherently discrete,
modulated by rhythmic gamma and theta activity in the
brain. [23], [24], [25], [26], [11]

D. Simulation

S-Learning was applied to a simulation of a human point-
to-point reaching task. The World, consisting of an anatom-
ically approximate model of a human head, torso, and arm,



TABLE I

COMPOSITION OF THE STATE VECTOR IN THE REACHING SIMULATION.

Sensory modality Number of
or command type state elements

command: shoulder flexion 4
command: shoulder extension 4
command: elbow flexion 4
command: elbow extension 4
vision: target x-position 10
vision: target y-position 10
vision: target radial error 10
vision: target angular error 8
vision: target angular error fine 36
position: coarse shoulder 11
position: coarse elbow 13
position: fine shoulder 55
position: fine elbow 65
velocity: shoulder 6
velocity: elbow 6

Total: 246

including inertial properties, was simulated in MATLAB.
(Fig. 2) Control inputs to the arm from the Planner comprised
a set of position steps in joint equilibrium position with
minimum-jerk transitions. The sensory information passed
from the World back to BECCA included angular velocity,
coarse and fine angle information for both the shoulder and
elbow joints, coarse vision of the position of the target,
and coarse vision of the position error between the target
and the hand. Each of these sensory modalities was binned
(quantized) and expressed in terms of a vector of binary
states. (Table I.)

Fig. 2. A graphical representation of the simulated human performing a
reaching movement.

The simulated reaching task consisted of two alternat-
ing subtasks. Interspersing them allowed evaluation of S-
Learning’s ability to learn, to generalize that learning toa
new task, and to retain that learning in the face of potential
interference.

1) Subtask A: The first simulated task consisted of mov-
ing the hand to a target position on the “subject’s” midline,
15 cm from the sternum. Once the center of the hand arrived
within 4 cm of this position, a new target was presented on
the midline, 45 cm from the sternum. After the center of the

hand came within 4 cm of this target, the cycle started over
again.

2) Subtask B: The second task was identical to the first,
with the exception that the targets were both shifted 10 cm
to the right.

As currently implemented in MATLAB, BECCA is struc-
tured as an iterative loop. For the first 10,000 iterations ofthe
BECCA loop, Subtask A was presented. This was followed
by 5,000 iterations of Subtask B, and then completed with
another 5,000 iterations of Subtask A.

III. RESULTS

Early attempts to reach the goals consisted primarily of
exploratory wandering (random movements). After a few
chance successful sequences were added to the library,
these served as a basis for better-directed movements, which
resulted in more successful sequences. This process produced
progressively more direct movement sequences, resulting
in goals being reached more rapidly and more frequently.
(Fig. 3) The number of goals reached in each task per 1000-
iteration block are shown in Fig. 4.

10 cm

Fig. 3. Typical paths to goal at various stages of learning. Initial
movements resemble “motor babbling” observed in infants and hypothesized
as a primary mechanism for motor learning. Later movements become
more efficient, resulting in shorter paths, smoother movements,fewer
submovements, lower actuation torques, and more rapid goal achievement.

IV. DISCUSSION

The most striking aspect of Fig. 4 is that time spent learn-
ing one task appears to transfer to the other. The learning
curve in Epoch B is much steeper than in A1, presumably
because some of the experience gained in A1 generalized to
B. Similarly, the experience gained during Epoch B appears
to have generalized to A2; the initial performance levels
in A2 are higher than those at the conclusion of A1. The
two tasks are distinctly different as far as the algorithm is
concerned; there is no explicit representation that allowsS-
Learning to make this transfer. Transfer between similar,
complementary tasks is a feature of human motor learning as
well. Contrast this with two common approaches to this type
of learning task, Q-Learning and connectionist networks,
which typically require either a large amount of re-training
time when a task is changed or multiple instances of the
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Fig. 4. Goals reached during 1000-iteration blocks. Grey bands show plus
and minus one standard deviation. Typically, one movement was executed
per iteration of the BECCA loop. During epoch A1, performanceincreased
quickly during the first 6 blocks, slowing after that. Epoch Bsaw an initial
drop in performance as the S-Learning algorithm began learning the new
task, but performance increased more rapidly and to a higher level than in
A1. Epoch A2 showed no great drop in performance due to aftereffects of
B, but rather started out at a higher level of performance thanit showed
when A1 terminated.

respective algorithms under a supervisory context-switching
module. S-Learning mimics human performance in that only
a single, unmodified instance was needed to learn both tasks
shown here.

S-Learning is an extremely general learning approach.
The same S-Learning and BECCA implementation shown
here could have been applied to stabilizing an inverted
pendulum, learning to grasp with a robotic hand, or steer-
ing an unmanned vehicle. As long as the state contains
appropriate sensor information and the system has adequate
actuation, S-Learning can be used to learn it’s behavior, store
it in memory, and recall it for use in control. Many other
methods have been used to control two-link robots; it is not
a difficult control problem. The significance of S-Learning
accomplishing the task is that it did so without knowinga
priori how to interpret any of its sensor data or how to reach
its goal.

V. CONCLUSION

By basing its function on observed psychophsyiology, S-
Learning is able to recreate some of the salient features
and strengths of human motor behavior. This paper has
demonstrated a simple simulation of S-learning in point-to-
point reaching. However, the general nature of the algorithm
suggests that it may also be capable of solving more complex
motor control problems, including grasp, bimanual manipula-
tion, visual tracking, balance, and bipedal locomotion. Future
simulations and hardware implementations of S-Learning
will test whether this is the case.

VI. ACKNOWLEDGMENTS

The generous technical and programmatic support of
Kristopher Klingler, Fred Rothganger, Larry Shipers, and
Patrick Xavier are gratefully acknowledged.

REFERENCES

[1] S. Thrun and L. Pratt,Learning to Learn. Kluwer Academic
Publishers, 1998, ch. Learning to Learn: Introduction and Overview,
pp. 3–18.

[2] L. Pratt and B. Jennings, “A survey of connectionist network reuse
through transfer,”Connection Science, vol. 8, no. 2, 1996.

[3] R. Caruana,Learning to Learn. Kluwer Academic Publishers, 1998,
ch. Multitask learning, pp. 95–134.

[4] J. Baxter,Learning to Learn. Kluwer Academic Publishers, 1998,
ch. Theoretical models of learning to learn, pp. 71–94.

[5] D. Shepard, “A two-dimensional interpolation function for irregularly
spaced data,” in23rd National Conference ACM, 1968.

[6] J. Tenenbaum,Advances in Neural Information Processing Systems
11. Cambridge, MA: MIT Press, 1999, ch. Bayesian modeling of
human concept learning.

[7] N. Intrator and S. Edelman, “Making a low-dimensional representation
suitable for diverse tasks,”Connection Science, vol. 8, no. 2, 1996.

[8] J. Schmidhuber, J. Zhao, and N. Schraudolph,Learning to Learn.
Kluwer Academic Publishers, 1998, ch. Reinforcement learning with
self-modifying policies, pp. 293–310.

[9] R. Maclin and J. Shavlik,Learning to Learn. Kluwer Academic
Publishers, 1998, ch. Creating advice-taking reinforcement learners,
pp. 311–347.

[10] W. Levy, A. Sanyal, P. Rodriguez, D. Sullivan, and X. Wu,“The
formation of neural codes in the hippocampus: trace conditioning as a
prototypical paradigm for studying the random recording hypothesis,”
Biological Cybernetics, vol. 92, pp. 409–426, 2005.

[11] A. Rodriguez, J. Whitson, and R. Granger, “Derivation and analysis
of basic computational operations of thalamocortical circuits,” J Cog
Neuroscience, vol. 16, no. 5, pp. 856–877, 2004.

[12] R. Granger, S. Petrovic, A. Felch, J. Kerr, M. Johnson, C. Wuerth, and
J. Benvenuto, “Engines of the brain: the computational “instruction
set” of perception and cognition,” 2005. [Online]. Available:
http://www.ics.uci.edu/ granger/enginesRHG.pdf

[13] W. James,The Principles of Psychology. New York: Dover Publica-
tions, 1890.

[14] D. Purves, J. A. Paydarfar, and T. J. Andrews, “The wagonwheel
illusion in movies and reality,”Proceedings of the National Academy
of Sciences USA, vol. 93, pp. 3693–3697, 1996.

[15] M. Gho and F. J. Varela, “A quantitative assessment of thedependency
of the visual temporal frame upon the cortical rhythm,”J Physiol.
Paris, vol. 83, pp. 95–101, 1988.

[16] R. VanRullen and C. Koch, “Is perception discrete or continuous?”
Trends in Cognitive Sciences, vol. 7, pp. 207–213, 2003.

[17] A. B. Vallbo and J. Wessberg, “Organization of motor output in slow
finger movements in man,”Journal of Physiology, vol. 469, pp. 673–
691, 1993.

[18] R. S. Woodworth, “The accuracy of voluntary movement,”Psychology
Review Monogr Suppl, 1899.

[19] C. von Hofsten, “Structuring of early reaching movements: A longitu-
dinal study,”Journal of Motor Behavior, vol. 23, no. 4, pp. 280–292,
1991.

[20] H. I. Krebs, M. L. Aisen, B. T. Volpe, and N. Hogan, “Quantization of
continuous arm movements in humans with brain injury,”Proceedings
of the National Academy of Science, vol. 96, pp. 4645–9, April 1999,
neurobiology.

[21] B. Rohrer, S. Fasoli, H. Krebs, B. Volpe, W. Frontera, J.Stein, and
N. Hogan, “Submovements grow larger, fewer, and more blended
during stroke recovery,”Motor Control, vol. 8, no. 4, pp. 472–483,
2004.

[22] T. E. Milner, “A model for the generation of movements requiring
endpoint precision,”Neuroscience, vol. 49, pp. 365–374, 1992.

[23] J. Wessberg and N. Kakuda, “Single motor unit activity inrelation to
pulsatile motor output in human finger movements,”The Journal of
Physiology, vol. 517, pp. 273–285, 1999.

[24] J. McAuley, J. Rothwell, and C. Marsden, “Human anticipatory eye
movements may reflect rhythmic central nervous activity,”Neuro-
science, vol. 94, no. 2, pp. 339–350, 1999.

[25] J. Gross, L. Timmermann, J. Kujala, M. Dirks, F. Schmitz, R. Salmelin,
and A. Schnitzler, “The neural basis of intermittent motor control in
humans,”Proceedings of the National Academy of Science, vol. 99,
no. 4, pp. 2299–2302, February 2002.

[26] W. Singer, “Neuronal synchrony: a versatile code for the definition of
relations?”Neuron, vol. 24, pp. 49–65, 1999.


