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S-Learning: A Biomimetic Algorithm for
Learning, Memory, and Control in Robots

Brandon Rohrer

Abstract— S-Learning is a sequence-based learning algorithm  typically requires a separate training period for eachainsg
patterned on human motor behavior. Discrete-time and quan-  of the algorithm. Even when this multiple-instance apphoac

tized sensory information is amassed in real-ime to form a dy- g g ccessful, it still does not aid the system in reaching
namic model of the system being controlled and its environment. .
unfamiliar goal states.

No explicit model is provided a priori, nor any hint about what TS s o . . .
the structure of the model might be. As the core of a Brain- The distinguishing characteristic of S-learning is that it
Emulating Cognition and Control Architecture (BECCA), S-  continually records recurring patterns to build a librafy o
Learning provides a mechanism for human-inspired learning, past experiences. This library allows a goal-seeking agent
memory, and control in machines. In a simulation of a point-to- piece the patterns together to form a complete path to

point reaching task, S-Learning demonstrates several attributs . .
of human motor behavior, including learning through explo- a goal. The strength of this approach is that the goal can

ration and task transfer. be any previously-visited state, not just one or a few that
were hard-coded from the start. Thus S-learning provides a
|. INTRODUCTION potential solution to the dynamic TD problem.

The field of “Learning to learn,” also termegkneraliza- .
tion or bias learning, tgkes machine perfor?ﬁg;lce a sterP' Relation to Markov Models
further than many learning algorithms. [1] Generalization A set of sequences of length two is similar to a Markov
algorithms seek to improve system performance not just dﬁOdEL The likelihood of transitioning from state A to st&e
tasks for which the systems explicitly train, but also orfan be inferred from the sequence set and could alternativel
novel, unrelated tasks. For instance, humans are often ae represented in matrix form. Similarly, longer sequences
to learn a task after only one or two exposures due to tfould be represented as higher-order Markov models. It is
ability to generalize from previously learned tasks. Gaher accurate to describe an S-Learning sequence library as a
ization algorithms attempt to imbue automated systems wighorthand way of representing a series of Markov models
this same ability. Common approaches include connectionigf order one to ordetV — 1, where IV is the maximum
networks [2], [3], statistical (including Bayesian, memor Sequence length. The advantage of a sequence library is that
based, and Markovian) methods [4], [5], [6], dimensionalt is concise. A first order Markov model in a system with
reduction [7], and modified reinforcement learning techM possible states can be represented by a M matrix,
niques [8], [9]. A subset of generalization algorithms aré second order Markov model by x M matrix, and an
explicitly biologically-motivated. They mimic the human N —1 order Markov model by &/~ ~! x M matrix. For the
brain, as it serves as an existence proof for solutions &ystem simulated in this paper, in whiéh = 5 and M =
daunting perception and control problems. S-Learnings fal***, this representation quickly becomes computationally

into this category. burdensome. The size of a sequence library encoding similar
) ) _ information is likely to be orders of magnitude smaller,
A. Relation to Temporal-Difference techniques depending upon the sparsity of the Markov models.

S-learning is a variant of temporal-difference (TD) learn-
ing. It is superficially similar to Q-learning, another TD
algorithm, but involvessequences of discrete events (hence A. Architecture
the §. TD algorithms are typically effective at discovering S-Learning is at the core of a biomimetic learning and
optimal sequences of actions in unknown environmentgontrol architecture called BECCA (Brain-Emulating Cogni
However, existing algorithms almost exclusively addrégs t tion and Control Architecture, Fig. 1). BECCA consists of
static TD problem, in which the states that result in reward aan Agent, a Planner, a World, and an S-Learning Engine,
punishment are fixed. This is equivalent to a control systegach of which is briefly described below.
that has a fixed goal that does not vary over time. And Agent. The Agent sets goals for the system. The goals are
while multiple instances of a static TD algorithm, such agxpressed in terms the sensory state information available
Q-learning, can be employed to account for multiple goagtom the World. Goals can be a specific state, set of states,
states, the experience gained while training one does nét portion of a state. Multiple, even conflicting, goals can
transfer to others in a straightforward way. Such an apfroaexist. Goals can change over time, and the Agent can use
) ) ) new state information to decide when and how to change
B. Rohrer is a member of the Intelligent Systems, Robotics, apd C . . .
bernetics Group at Sandia National Laboratories, Albuguer NM, USA. them. The current set of goals is available for use in the
Email: br r ohr e@andi a. gov Planner.

Il. METHOD



Goals Actions

->| Agent > Planner > World R 1) Begin with the most recently observed stage
2) Find the set of all the sequenceg, in the sequence
Q“e'y‘ 1 Report library, «, that begin withg. Call this sety..
S-Learning 3) For eachy in x, find any goal states in the sequence.
. Those containing goal states fortp,, a subset ofy..
Englne X~ comprises possible plans of action.
[ Current state When the S-Learning Engine is queried by the Planner,

- it reports back withy,, which the Planner includes in
Fig. 1. Brain-Emulating Cognition and Control Architect@ECCA), IS Selection process. Other, more sophisticated predicti
featuring S-Learning: a block diagram representation. Bikearning methods based on the sequence library are possible as well.
T eoees e Koy s ok ks e PO IMStance, daisy-chaining sequences together, ogeatin
its world model. trees of possible plans, would allow the Planner to create
novel plans and generate a series of sub-goals.
If the Planner utilizes a sequence from the library to form a

Planner. The Planner determines which (if any) actionsprediction and a plan of execution, then it has an expectatio
to take at any given point in time. It takes in goals from theabout when a goal will be achieved. If a goal not achieved
Agent and current state information to inform its decisionsyhen expected, that sequence of events is appended to the
The Planner queries the S-Learning Engine in order tgbrary, allowing future prediction of the same failure.
predict the results of possible courses of action. Exptoyat  |f a goal is achieved when expected, then the successful
actions are also considered, particularly if the curreatest sequence is compared against the sequence used in predic-
is unfamiliar and the S-Learning Engine cannot predict gon, and their common elements are used to form a new
path to a goal state. After a course of action is determinegequence_ Thisntersection sequence contains information
the Planner issues commands to the World and reports thaggt is relevant to achieving the goal, but tends to omit
actions in the state vector. sources of noise and irrelevant sensory information. To use

World. The World is the external system that is beingan everyday example, humans do not factor in the color
learned and controlled. It is analogous to the Plant iaf a cup when planning to grasp it; in this task, color is
classical control system formulations. The World can eithérrelevant. Likewise, intersection sequences contairy tmé
be simulated or instantiated in hardware, but in either casg@formation that is consistently present during succéssfu
the only information it provides back to the rest of BECCA iSSequence& and leaves out information that is not.
through its sensors. This means that in simulations, BECCA _
does not have access to the World’s internal variables. ~ C. Mimicking biology

S-Learning Engine The S-Learning Engine uses the The structure of the state information and dynamics by
regularly-updated stream of state information to boagpstrawhich it is modified are based loosely on neural processes.
a model of the World. There is no explicit model, assume@he state that is passed from the World to the S-Learning
dynamics, or implied structure. Instead, the S-Learning ErEngine is a vector of ones and zeros, representing an array
gine observes repeated state sequences, particularlg tho$ neurons that are either firing or at rest. Each state is
that result in a goal state. These state sequences are stakgatesented in the sequence library as an array of binary
in a library, which is referenced by the Planner duringiumbers, representing synaptic connections betweenryenso
action planning. The S-Learning Engine also keeps track oeurons and a central neuron or neural circuit that reptesen
the sequences that the Planner selects as action plans. that state. The sequence representation within the library
sequence leads to a goal, as predicted, it is reinforced aiman acknowledgement of the brain’s propensity to store
weighted more heavily in the sequence library. If a sequeneavents sequentially, as mediated by the hippocampus [10]
fails to lead to a predicted goal, its weighting in the ligré&s  and instantiated in thalamocortical circuits. [11], [12tB
decreased. After a number of failed predictions, a sequenaaexpected achievement of a goal state and unexpected
becomes sufficiently weak that it is dropped from the libraryfailure to achieve a goal state are followed by alteration
of synaptic weights, one model of neuroplasticity. Even the
discrete nature of sensory states and actions within BECCA

S-Learning provides a single mechanism for handlingnd S-Learning is motivated by a growing body of evidence
learning, memory, and prediction in BECCA. The learninghat human sensory [13], [14], [15], [16] and motor [17],
and memory behavior of S-Learning emerge from the wap 8], [19], [20], [21], [22] processes are inherently diste,
new states are incorporated into the bootstrapped wortodulated by rhythmic gamma and theta activity in the
model. Initially, the sequence library, has no prior experi- brain. [23], [24], [25], [26], [11]
ences and contains no state sequences. When a goal state is_ _
achieved (presumably though the exploratory efforts of thE- Smulation
Planner) the sequence of events leading up to the goal areS-Learning was applied to a simulation of a human point-
stored in the library. to-point reaching task. The World, consisting of an anatom-

Prediction in S-Learning is straightforward: ically approximate model of a human head, torso, and arm,

B. SLearning Algorithm



TABLE |

hand came within 4 cm of this target, the cycle started over
COMPOSITION OF THE STATE VECTOR IN THE REACHING SIMULATION

again.
2) Subtask B: The second task was identical to the first,

S dalit Number of . . )
ore ngngnr,% {ay'p}é Stagemegn%nts with the_ exception that the targets were both shifted 10 cm
command: shoulder flexion 4 to the right.
Comma”gi Slhbou'dﬁr extension j As currently implemented in MATLAB, BECCA is struc-
command: elbow flexion . . . . .
command- elbow extension 7 tured as an iterative loop. For the first 10,000_|terat|0ntt19f
vision: target x-position 10 BECCA loop, Subtask A was presented. This was followed
vision: target y-position 10 by 5,000 iterations of Subtask B, and then completed with
vision: target radial error 10 another 5,000 iterations of Subtask A.
vision: target angular error 8
vision: target angular error fing 36
position: coarse shoulder 11 Il RESULTS
position: coarse elbow 13 Early attempts to reach the goals consisted primarily of
position: fine shoulder 55 lorat deri d t Aft f
position: fine elbow &5 exploratory wandering (random movements). After a few
velocity: shoulder 6 chance successful sequences were added to the library,
velocity: elbow 6 these served as a basis for better-directed movementsh whic
l Total: l 246 l resulted in more successful sequences. This process gabduc

progressively more direct movement sequences, resulting
in goals being reached more rapidly and more frequently.

including inertial properties, was simulated in MATLAB. (Fig- 3) The number of goals reached in each task per 1000-
(Fig. 2) Control inputs to the arm from the Planner compriseliération block are shown in Fig. 4.

a set of position steps in joint equilibrium position with
minimum-jerk transitions. The sensory information passed
from the World back to BECCA included angular velocity,
coarse and fine angle information for both the shoulder and
elbow joints, coarse vision of the position of the target,
and coarse vision of the position error between the target
and the hand. Each of these sensory modalities was binned
(quantized) and expressed in terms of a vector of binary
states. (Table I.)

10cm

Fig. 3. Typical paths to goal at various stages of learningtial
movements resemble “motor babbling” observed in infants andthgsized
as a primary mechanism for motor learning. Later movements become
more efficient, resulting in shorter paths, smoother movemdetser
submovements, lower actuation torques, and more rapid goavachent.

IV. DISCUSSION

The most striking aspect of Fig. 4 is that time spent learn-
ing one task appears to transfer to the other. The learning
Fig. 2. A graphical representation of the simulated humanopeihg a ~ CUrve in Epoch B is much steeper than in Al, presumably
reaching movement. because some of the experience gained in Al generalized to

B. Similarly, the experience gained during Epoch B appears

The simulated reaching task consisted of two alternate have generalized to A2; the initial performance levels
ing subtasks. Interspersing them allowed evaluation of $a A2 are higher than those at the conclusion of Al. The
Learning’s ability to learn, to generalize that learningao two tasks are distinctly different as far as the algorithm is
new task, and to retain that learning in the face of potentimloncerned; there is no explicit representation that allSws
interference. Learning to make this transfer. Transfer between similar,

1) Qubtask A: The first simulated task consisted of mov-complementary tasks is a feature of human motor learning as
ing the hand to a target position on the “subject’s” midlineyvell. Contrast this with two common approaches to this type
15 cm from the sternum. Once the center of the hand arrived learning task, Q-Learning and connectionist networks,
within 4 cm of this position, a new target was presented owhich typically require either a large amount of re-tragin
the midline, 45 cm from the sternum. After the center of théime when a task is changed or multiple instances of the
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Fig. 4. Goals reached during 1000-iteration blocks. Graydsashow plus
and minus one standard deviation. Typically, one movement wesuéd [8]
per iteration of the BECCA loop. During epoch Al, performaitereased
quickly during the first 6 blocks, slowing after that. Epocts&w an initial
drop in performance as the S-Learning algorithm began legrtiie new [9]
task, but performance increased more rapidly and to a higkel fean in
Al. Epoch A2 showed no great drop in performance due to afeetsfof
B, but rather started out at a higher level of performance thamowed [10]
when Al terminated.
[11]

respective algorithms under a supervisory context-switch
module. S-Learning mimics human performance in that onl
a single, unmodified instance was needed to learn both tasE/
shown here.

S-Learning is an extremely general learning approach.
The same S-Learning and BECCA implementation shom;r%s]
here could have been applied to stabilizing an invertegd4]
pendulum, learning to grasp with a robotic hand, or steer-
ing an unmanned vehicle. As long as the state contai@fs
appropriate sensor information and the system has adequate
actuation, S-Learning can be used to learn it's behaviorest 6]
it in memory, and recall it for use in control. Many other
methods have been used to control two-link robots; it is ngt7]
a difficult control problem. The significance of S-Learning
accomplishing the task is that it did so without knowiag 18]
priori how to interpret any of its sensor data or how to reacL
its goal. (19]

V. CONCLUSION [20]

By basing its function on observed psychophsyiology, S-
Learning is able to recreate some of the salient featur
and strengths of human motor behavior. This paper has
demonstrated a simple simulation of S-learning in point-to
point reaching. However, the general nature of the algarith [22]
suggests that it may also be capable of solving more complex
motor control problems, including grasp, bimanual marspul [23]
tion, visual tracking, balance, and bipedal locomotiortuFe
simulations and hardware implementations of S-Learning4]
will test whether this is the case.

[25]
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