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Abstract
Dynamics of the ablation and implosion stages in cylindrical, nested, and linear wire 

arrays were investigated in the 1-MA Zebra generator. Plasma bubbles arise in breaks on 
the wires in the beginning of implosion. The leading edges of the bubbles carry material 
with the speed >250 km/s. In linear wire arrays plasma cascades to the center of the array 
from wire to wire. In nested arrays, the implosion begins in the external cylinder. The 
plasma bubbles then hit the plasma columns in the internal cylinder and collapse to the 
center. The regimes of ablation and implosion in the wire arrays with different mutual 
magnetic fields are compared. Two-step implosions were observed in double nested 
arrays. Implosion begins on the outer array. Next, the imploding plasma hits the inner 
circle and collapses to the center of the array. Rescaling of perturbation was observed in 
linear and nested arrays. Triple wire arrays demonstrate shortening of the generated x-ray 
pulse, increase of power, and smoothing of plasma instabilities.
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Implosion bubbles indicate breaks in wires and 
present mass transport in cylindrical wire arrays
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V. Ivanov et al., “Dynamics of mass transport and magnetic fields in low 
wire number array z-pinches”, Phys. Rev. Lett. 97, 125001 (2006)



Plasma bubbles hit and sweep the precursor
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Current switch back to the initial position of the wire

Al 4 x 20 µm wire arrays
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Implosion Dynamics in Linear Wire Arrays
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Instabilities in Linear Arrays
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Implosion of the Array with the Enlarged Central Gap

Al (22322) 6x20 µm 
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* - X-ray core diagnostics developed by V. Kantsyrev
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X-ray yield is smaller in arrays with the enlarged central gap
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Nested Wire Array Experiments in the Zebra Generator
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Cascade Implosion in Nested Wire Arrays
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Nested loads provide good implosion with low azimuthal symmetry
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Triple wire arrays produce a maximum of power and a shortest x-ray pulse
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Cascade Implosion in Triple Nested Wire Arrays
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Triple loads demonstrate smoothing of the MHD instability
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Measurements of Soft X-ray Power 
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Conclusions

• Bubbles in the plasma streams present a mechanism of mass transport in low-number wire 
arrays. The speed of material ≥3·107 cm/s was measured in the wire array implosion. 

• Bubble dynamics in linear wire arrays differ from dynamics in cylindrical arrays. 
Implosion begins on the edge wires. Current moves with the leading edges of bubbles. 
Implosion cascades from wire to wire. In linear arrays with the enlarged central gap 
plasma does not penetrate to the center during ablation stage. 

• In nested arrays with equal wire length implosion begins on the outer array. The outer 
array collides with the inner array. Rescaling of perturbation was observed in linear and 
nested arrays. Nested arrays produce shorter and more powerful x-ray pulses compare to 
cylindrical wire arrays but with smaller energy. Triple nested arrays produce the shortest 
soft x-ray pulse with maximum power. 

• Bubbles could initiate hot spots on the inner wires in nested and linear arrays. 
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