Investigation of plasma dynamics in cylindrical, nested, g
and linear wire arrays in the 1-MA Zebra generator

V. V. Ivanov, V. 1. Sotnikov, T. E. Cowan, R. Presura, A. Haboub, P. J. Laca, A. Morozov, l
A. L. Astanovitskiy, S.D. Altemara, C.M. Thomas, V. Nalajala - University of Nevada, Reno

J. Brent, C.A. Coverdale — Sandia National Laboratories, G.S. Sarkisov - Ktech. Corp.

Abstract

Dynamics of the ablation and implosion stages in cylindrical, nested, and linear wire
arrays were investigated in the 1-MA Zebra generator. Plasma bubbles arise in breaks on
the wires in the beginning of implosion. The leading edges of the bubbles carry material
with the speed >250 km/s. In linear wire arrays plasma cascades to the center of the array
from wire to wire. In nested arrays, the implosion begins in the external cylinder. The
plasma bubbles then hit the plasma columns in the internal cylinder and collapse to the
center. The regimes of ablation and implosion in the wire arrays with different mutual
magnetic fields are compared. Two-step implosions were observed in double nested
arrays. Implosion begins on the outer array. Next, the imploding plasma hits the inner
circle and collapses to the center of the array. Rescaling of perturbation was observed in
linear and nested arrays. Triple wire arrays demonstrate shortening of the generated x-ray

pulse, increase of power, and smoothing of plasma instabilities.
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Implosion bubbles indicate breaks in wires and OF NEVADA
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present mass transport in cylindrical wire arrays

Al 8 x 15 pm wire arrays

Bubbles are blown in different time

°
[}
1 mm e ?
Bubbles are blown when
the wire core is broken
\ /
5 I N A
4’ | : ‘ : | | \ :
5 ‘ :l_ N\
1 N
0 1o
2.5E-07 3.0E-07  3.5E-07 4.0E-07 Typical after bubble “fingers”

on the edge of the wire array
Bubbles arise at 20-25ns

before the x-ray pulse

V. Ivanov et al., “Dynamics of mass transport and magnetic fields in low
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Plasma bubbles hit and sweep the precursor
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Current switch back to the initial position of the wire

Al 4 x 20 pm wire arrays

Interferometry

Faraday image Shadowgram

Faraday effect in breaks on the wire.
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Bubbles are smaller and more regular in multi-wire arrays OF NEVADA
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Implosion Dynamics in Linear Wire Arrays
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#650. Al 8x18um  Two-frame shadowgram

Dense plasma is absent in wire breaks
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see also V.V. Kantsyrev et al., [EEE Trans. Plasma Sci., 34, 2295 (2006)



Cascade Implosion in Linear Wire Arrays

*Reno .

Four-frame shadowgram of implosion in Al 8x18 um linear load (2211122)
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Ablating plasma does not move to the axis of the linear array [N
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Instabilities in Linear Arrays

Magnetic Rayleigh-Taylor Instability ch fth
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* - V.I. Sotnikov ef al., Phys. Plasmas 9, 913 (2002)



Implosion of the Array with the Enlarged Central Gap SRNERX
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. X-ray core diagnostics developed by V. Kantsyrev



The intensified CCD shows formation of plasma on the early stage [ENGES
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Optical images of linear arrays I?Eelexrlssors
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X-ray yield is smaller in arrays with the enlarged central gap

Equidistant linear arrays, Al 6x18um
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Nested Wire Array Experiments in the Zebra Generator i
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I 1. Implosion begins on the external cylinder. Bubbles hit wires
of the internal cylinder (the current transfer mode*)
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l 3. The internal cylinder collapse

#746

Al 16/8mm
4+4 x12pm

Al 16/12mm,
8+8 x 10pm

L ,=L,,,=2cm /0\

2.E-07

* - S.V. Lebedev et al., PRL 84, (2000).
S.N. Bland et al., Phys. Plasmas 10, 1100 (2003)




Cascade Implosion in Nested Wire Arrays
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Implosion bubbles from the outer wires initiate hot spots UNIVERSITY
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on the inner wires of the nested array

6-frame X-ray pinhole camera* Bubbles initiate hot spots
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. X-ray core diagnostics developed by V. Kantsyrev
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Nested loads provide good implosion with low azimuthal symmetry
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Triple wire arrays produce a maximum of power and a shortest x-ray pulse [N
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Cascade Implosion in Triple Nested Wire Arrays
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Triple loads demonstrate smoothing of the MHD instability ONERSITY
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Conclusions

Bubbles in the plasma streams present a mechanism of mass transport in low-number wire
arrays. The speed of material >3-107 cm/s was measured in the wire array implosion.

Bubble dynamics in linear wire arrays differ from dynamics in cylindrical arrays.
Implosion begins on the edge wires. Current moves with the leading edges of bubbles.
Implosion cascades from wire to wire. In linear arrays with the enlarged central gap
plasma does not penetrate to the center during ablation stage.

In nested arrays with equal wire length implosion begins on the outer array. The outer
array collides with the inner array. Rescaling of perturbation was observed in linear and
nested arrays. Nested arrays produce shorter and more powerful x-ray pulses compare to
cylindrical wire arrays but with smaller energy. Triple nested arrays produce the shortest
soft x-ray pulse with maximum power.

Bubbles could initiate hot spots on the inner wires in nested and linear arrays.
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