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Abstract

Traditionally, the fields of information re-
trieval (IR) and computational linguistics 
(CL) have crossed paths only to a limited 
extent. One of the reasons that this is the 
case is that speed of processing is often 
critical to information retrieval, and some 
of what CL might have to offer IR – for 
example an enrichment of linguistic struc-
ture – would, if implemented at run-time,
slow down the retrieval of documents to 
an unacceptable degree. In this paper, we 
set out a method for how richer linguistic 
analysis (including generative analysis of 
a type which could be output by a compu-
tationally-implemented phrase-structure 
grammar) can be incorporated into IR to 
yield demonstrable benefits in preci-
sion/recall. This is done in such a way 
that there is no decrease in the speed of 
retrieval at run-time. The way is paved for 
many different subfields within CL (mor-
phology and syntax for example) to begin 
to contribute more to IR.

1 Introduction

In this paper, we consider three different methods 
for increasing the linguistic sophistication of in-
formation retrieval (IR) in ways which would per-
haps be thought of more as the domain of 
computational linguistics (CL). Our objective is to 

determine which of these methods improves per-
formance, and to what extent. The paper is orga-
nized as follows. Section 2 describes the
background to our work. Section 3 describes the 
framework we use for IR (or more specifically 
cross-language information retrieval). In section 4,
we present our results. Finally, we conclude on our 
findings in section 5.

2 Background

Although there are important differences between 
the goals of IR and CL, the former being driven 
largely by the need to provide a way for users to 
locate relevant documents, and the latter tradition-
ally having a theoretical emphasis, it is perhaps 
surprising that CL has not contributed more to IR 
than it has. This state of affairs was the background 
to the workshop at ACL 2006, ‘How Can Compu-
tational Linguistics Improve Information Retriev-
al?’ (ACL 2006).

Perhaps the most significant reason that the re-
luctance of the IR community to take up what CL 
has to offer is that parsing – an important part of 
the domain of CL – tends to be slow (see form ex-
ample Wu et al. 2005). In IR, where the speed with 
which documents are returned to the user is a criti-
cal consideration, any form of parsing beyond light 
stemming tends to lead to unacceptable degrada-
tion of performance.

In this paper, we focus on what parsing can offer 
to cross-language information retrieval (CLIR) in 
particular, and we show that there are ways of ob-
taining the benefits of parsing without suffering the 
loss of performance.
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3 The IR framework

The framework that we use for IR is multilingual 
Latent Semantic Indexing (LSI) as described by
Berry et al. (1994:21, and used by Landauer and 
Littman (1990) and Young (1994). A number of 
different approaches to CLIR have been proposed; 
generally, they rely either on the use of a parallel 
corpus for training, or translation of the IR query. 
It should be noted that the same techniques that we 
will propose here might also be applicable within 
IR frameworks other than LSI.

In the standard multilingual LSI framework, a
document-by-term matrix is formed from a parallel 
aligned corpus. If there are p languages, m docu-
ments (each of which is translated into each of the 
p languages), and n distinct linguistic terms across 
all languages, then the document-by-term matrix is 
of dimensions m by n (not m  p by n). Each cell in 
the matrix represents a weighted frequency of a 
particular term t (in any language) in a particular 
document k. The weighting scheme we used was a 
standard log-entropy scheme in which the 
weighted frequency W is given by:

W = log2 (F + 1)  (1 + Ht / log2 (N))

where F is the raw frequency of t in k, Ht is the 
standard ‘p log p’ measure of the entropy of the 
term across all documents, and N is the number of 
documents in the corpus. The last term in the ex-
pression above, log2 (N), is the maximum entropy 
that any term can have in the corpus, and therefore 
(1 + Ht / log2 (N)) is 1 for the most distinctive 
terms in the corpus, 0 for those which are least dis-
tinctive. The log-entropy weighting scheme has 
been shown to outperform other schemes such as 
tf-idf in LSI-based retrieval (see for example Du-
mais 1991).

The sparse document-by-term matrix is subject-
ed to singular value decomposition (SVD), and a 
reduced non-sparse matrix is output. Generally, we 
used the output corresponding to the top 300 singu-
lar values in our experiments.

To evaluate the similarity of unseen queries or 
documents (those not in the training set) to one 
another, these documents are tokenized, the 
weighted frequencies are calculated in the same 
way as they were for the training set, and the re-
sults are multiplied by the matrices output by the 
SVD to project the unseen queries/documents into 

a ‘semantic space’, assigning (in our case) 300-
dimensional vectors to each document. The simi-
larity of one document to another is generally 
measured by calculating the cosine between the 
respective vectors, and that is our approach here.

For training, we used a parallel corpus built up 
from translations of the Bible which are freely 
available on the World Wide Web, as proposed by 
Chew et al. (2006). The multilingual aligned text 
we used for the work described in this paper was 
downloaded from the ‘Unbound Bible’ website 
(Biola University, 2005-2006), which publishes 
Unicode files in a tab-delimited format easily load-
ed into a database. The format also facilitates en-
suring the alignment of text across languages by 
chapter and verse.

The primary languages we used for this work 
were as follows:
Language Abbrevation used below
Arabic AR
English EN
French FR
Koine Greek KG
Russian RU
Spanish ES

Table 1. Languages

Importantly for our purposes, the Koine Greek 
version (the Byzantine/Majority Text 2000) is 
available in both unparsed and parsed formats; the 
unparsed format simply includes the Koine Greek 
text, just as the text is included for other languages. 
The parsed version, on the other hand, lists each 
Koine Greek wordform along with fairly detailed 
morphological information (with roots and inflec-
tional endings separately specified); an example 
verse is shown in Table 2. To be clear, this mor-
phological tokenization is not something that we 
compute using a technique from CL; in fact, it is 
the output of the manual labor of Biblical scholars 
(for example, the first element of each tokeniza-
tion, which begins with a ‘G’, represents the nu-
merical reference for the Greek root from Strong’s 
concordance)1. Since we are clearly not bringing 

                                                       
1 One of the advantages of using the Bible as a parallel corpus 
not mentioned in previous literature on the subject (Resnik et 
al 1999, Chew et al 2006) is that the Bible has been subject to 
extensive linguistic research for theological purposes. The 
benefit of this research to computational linguists, even where 
the objectives are non-theological, has in our opinion been 
somewhat overlooked.



our own CL techniques to bear on the information 
retrieval problem, we still need to clarify how we 
will show that CL can be useful in IR. We will re-
turn to this below.

We aligned all five parallel translations plus the 
parsed version by verse, and, since there are some 
minor differences in versification between transla-
tions, the data was cleaned to ensure proper align-
ment to the extent possible. After cleaning and 
alignment, our parallel corpus consisted of 31,226 
text chunks (in most cases, the same as the original 
verses), aligned across all translations except for 
New Testament Greek, which covers only the 
7,953 verses in the New Testament.

The ‘unseen’ documents we used as a test set 
were translations of the 114 suras of the Qu’ran 
into Arabic, English, French, Russian and Spanish
(all the languages in Table 1 except Koine Greek). 

Since we were interested in the performance of a 
framework with input from CL relative to that of a 
framework without such input, the subject matter 
of the textual data used in the test set was unim-
portant. What mattered was that the same test set 
was used both with and without the CL input, and 
that the test set was sufficiently large to give statis-
tically significant results. Although 114 documents 
is a relatively small number, it should be borne in 
mind that with all possible pairings of 5 languages 
(Arabic-English, Arabic-French, English-French, 
and so on), we actually ran 2,850 (114  5  5) 
queries for each set of results. Each ‘query’ was 
one of the 114 documents, in one of the 5 lan-
guages; for each of these there were five sets of 
retrieval results (one set from each language). To 
assess the aggregate performance of the frame-
work, we used two measures: average precision at 
0 (the maximum precision at any level of recall), 
and average precision at 1 document. Both 
measures were based on the ranking of the actual 
translation of the query in the retrieved results 
(which we know a priori). In our case, precision at 
1 document is 1 if the translation was retrieved 
first, and 0 otherwise; and since we consider there 
to be only one relevant document, precision at 0 is 
the inverse of the ranking of the translation in the 
results. Given the number of tests we ran, we 
achieved statistically significant results (the levels 
of confidence are shown where applicable).

4 Results and Discussion

Four different tests were performed. In the first 
case, to provide a benchmark, we measured aver-
age precision at 0 and at 1 document without any 
form of parsing. This involved including all avail-
able parallel versions (including those in the five 
languages shown in Table 1, but excluding the 
parsed version of Koine Greek). The results are 
presented below by language pair in Tables 3 and 4
(in each case here and below, the language of the 
source document is shown at left, and the target 
language is shown at the top). The overall average 
precision at 1 document is 0.813, and overall aver-
age precision at 0 is 0.872.

Word-
form

Gloss Morphological 
Tokenization

ουτως thus G3779 ADV
γαρ for G1063 CONJ
ηγαπησεν loved G25 G5656 V-AAI-3S
ο the G3588 T-NSM
θεος God G2316 N-NSM
τον the G3588 T-ASM
κοσμον world G2889 N-ASM
ωστε that G5620 CONJ
τον the G3588 T-ASM
υιον son G5207 N-ASM
αυτου of him G846 P-GSM
τον the G3588 T-ASM
μονογενη only-born G3439 A-ASM
εδωκεν (he) gave G1325 G5656 V-AAI-3S
ινα so that G2443 CONJ
πας all G3956 A-NSM
ο the G3588 T-NSM
πιστευων believing G4100 G5723 V-PAP-

NSM
εις in G1519 PREP
αυτον him G846 P-ASM
μη not G3361 PRT-N
αποληται perish G622 G5643 V-2AMS-3S
αλλ but G235 CONJ
εχη have G2192 G5725 V-PAS-3S
ζωην life G2222 N-ASF
αιωνιον eternal G166 A-ASF
Table 2. Example of Tokenization in Parsed 
Greek



AR EN ES FR RU
AR 1.000 0.623 0.570 0.596 0.526

EN 0.798 1.000 0.965 0.991 0.886

ES 0.553 0.939 1.000 0.965 0.702

FR 0.605 0.982 0.939 1.000 0.868

RU 0.579 0.746 0.754 0.746 1.000

Table 3. Precision at 1 document: benchmark

AR EN ES FR RU
AR 1.000 0.729 0.707 0.724 0.658

EN 0.853 1.000 0.981 0.996 0.932

ES 0.681 0.958 1.000 0.982 0.815

FR 0.700 0.991 0.962 1.000 0.921

RU 0.686 0.834 0.842 0.833 1.000

Table 4. Precision at 0: benchmark

Before we go on to describe the remaining three 
tests, some comments should be made about the 
standard multilingual LSI framework. First, it does 
not ‘know’ which terms come from which lan-
guage, because the document-by-term matrix is 
formed from the combination of text in all lan-
guages; the vector for each verse lists the frequen-
cies of all terms in any language in that verse. Of 
course, in our example there is a clue in that the 
alphabets of Arabic, Russian, Koine Greek, and the 
remaining languages respectively come from dis-
tinct Unicode codepages. However, this is largely 
irrelevant here, as the SVD is ultimately performed 
on a matrix in which the row and column indices 
are numeric, not character-based (each number 
stands for a distinct term or text chunk). Further-
more, it is clear that different languages may use 
different numbers of terms to express the same 
concepts, and this is reflected in the various statis-
tics for the different translations of the Bible as 
shown in Table 5.

Translation Types Tokens
English (King James) 12,335 789,744
Spanish (Reina Valera 1909) 28,456 704,004
Russian (Synodal 1876) 47,226 560,524
Arabic (Smith Van Dyke) 55,300 440,435
French (Darby) 20,428 812,947

Table 5. Type/token statistics for translations of 
the Bible into 5 languages

As a result, standard LSI (and specifically the 
log-entropy weighting scheme) will overweight 
terms in some languages and underweight terms in 
others. This is the primary explanation for the rela-

tively wide differences in precision shown in Ta-
bles 3 and 4; generally, the more morphologically 
complex a language is, the less well standard 
cross-language LSI (as we have implemented it) 
performs. We have attempted a number of modifi-
cations to the standard weighting scheme to correct 
for this, but so far we have not found an alternative 
which outperforms standard log-entropy.

This brings us to the second point about stand-
ard multilingual LSI. As already stated, some lan-
guages are more morphologically complex than 
others. The most common concession to linguistics 
made by vector-based approaches to IR is to im-
plement some form of stemming (but not full pars-
ing), and this has been shown to lead to a definite 
improvement in precision (see for example Larkey 
et al 2002). Generally, documents from both the 
training set and the test set are subjected to stem-
ming. As already stated, the reason that most IR 
systems do not progress beyond a higher level of 
linguistic sophistication than stemming is that any-
thing more is too slow in practice.

One final point about standard multilingual LSI 
is that each document (or text chunk) used in train-
ing is more or less independent of every other. This 
explains why it is possible to use an incomplete 
parallel text (such as the Greek one we use, which 
covers only the New Testament) without fear of 
significantly impairing the overall precision; we 
have confirmed that this is the case in other tests 
not discussed further here. There is, however, a 
disadvantage to this independence, which is that 
the relationships between related (for example, 
adjacent) text chunks are not used in any way by 
LSI.

In short, there is much linguistic richness in text 
which perhaps most approaches to IR fail to ex-
ploit. This is true in particular for parallel aligned 
text and CLIR. Furthermore, we have listed just 
three such unused structural relationships in the 
text we use for training, without even touching on 
the many aspects of semantic or syntactic structure 
which could also be formalized and used. The 
challenge, then, is to exploit this richness within an 
IR framework without compromising the frame-
work’s performance. As we shall show, CL can 
measure up to this challenge.

For the second test, to determine the effect of 
morphological parsing of one language upon preci-
sion, we added parsed Greek to the training set. 
Each morphological element was treated as a sepa-



rate ‘term’ for IR purposes. To take an example 
from Table 2, every time ‘αποληται’ occurs in a 
verse, the terms ‘G622’, ‘G5643’ ‘V’, ‘2AMS’, 
and ‘3S’ will also occur. Each of these terms repre-
sents a separate morphological property of 
‘αποληται’. In effect, this allows LSI to make the 
association between different wordforms of a 
common lexeme, or even (for example) different 
cases where the third person singular occurs.

One might wonder, with the additional infor-
mation which must now be processed, how it can 
be claimed that IR is still as efficient. The reason is 
that, since our test languages do not include Koine 
Greek, the size of the matrix output by SVD and 
used subsequently is exactly the same as it was for 
the first test (to be precise, 300 dimensions 
160,396 terms for Arabic, English, French, Russian 
and Spanish). The effect of the parsed Koine Greek 
is simply to make changes to the values in the cells 
for the 160,396 terms, as Koine Greek terms can 
be discarded after computing the SVD if they are 
not needed for testing. It is true that there is some 
additional processing on the front-end, but this 
processing has to take place only once to produce 
the SVD output, and has no effect on run-time. 
Since the SVD output is no larger than in the pre-
vious test, the requirements for run-time pro-
cessing (the processing which is used ultimately to 
compute the similarities of unseen documents and 
queries) are unchanged from before. Note in par-
ticular that the parsing needs to take place only for 
the training data; there is no requirement for pars-
ing of the unseen test documents.

The addition of parsed Greek raised overall pre-
cision at 1 document from 0.813 to 0.820, and 
overall precision at 0 from 0.871 to 0.874 - rela-
tively modest increases, but nonetheless significant 
(p  0.034). The greatest boost in precision was for 
Russian (Arabic-Russian +0.044, English-Russian 
+0.053, Russian-English +0.026; overall, averag-
ing +0.016)2. Again, the increases for Russian are 
significant given the size of the test set (p  0.003). 
The overall results by language pair are shown in 
Tables 6 and 7. 

                                                       
2 For some language pairs, there were small decreases in pre-
cision, but these were more than offset by increases for other 
pairs.

AR EN ES FR RU
AR 1.000 0.623 0.509 0.614 0.570

EN 0.781 1.000 0.965 0.991 0.939

ES 0.588 0.930 1.000 0.965 0.702

FR 0.623 0.991 0.947 1.000 0.851

RU 0.596 0.772 0.772 0.763 1.000

Table 6. Precision at 1 document with mor-
phology

AR EN ES FR RU
AR 1.000 0.719 0.679 0.722 0.688

EN 0.839 1.000 0.981 0.996 0.960

ES 0.705 0.954 1.000 0.982 0.809

FR 0.706 0.996 0.966 1.000 0.914

RU 0.700 0.848 0.851 0.846 1.000

Table 7. Precision at 0 with morphology

We think that Greek parsing helped Russian in 
particular because of the similarities between Rus-
sian and Koine Greek morphology, for example in 
the nominal case system. Given these results, there 
appears to be prima facie evidence that precision 
would be raised still further by the addition to the 
training data of, for example, parsed Russian and 
Arabic – and there are many morphological parsers 
which could perform the necessary pre-processing.
However, testing this was beyond the scope of this 
experiment.

With this in perspective, we can now explain 
why, although we are using pre-parsed text, we can 
make the claim that CL can benefit IR. Granted, 
we did not have to implement a CL grammar to 
achieve improvements in precision, but it is easy to 
see that CL systems can produce output such as the 
Greek morphological tokenization shown in Table 
2 above. Furthermore, there are CL systems which 
produce much richer analyses than the ones we use 
here. For example, a single phrase-structure gram-
mar (PSG) can parse text, deducing morphological, 
syntactic, and even phonological structure. In PSG, 
the output is typically a parse tree in which each 
node represents some linguistic entity, either sub-
word (such as the morphological elements above) 
or super-word (such as a phrase or sentence). 
Analogously to the morphological elements from 
Koine Greek, these phrase-structure elements can 
be treated as terms in the document-by-term ma-
trix.

For the third test, we wanted to investigate the 
effect of including ‘discourse’ structure in training. 



The Bible text we used consists of 66 books; in 
some cases there is debate among theologians 
about authorship, and it is perhaps a simplistic as-
sumption that each book has a single author, but 
there is wider theological agreement that each 
book has definite distinctive themes. Thus, it does 
not seem unreasonable to assume that all verses 
within a book are part of a common discourse 
structure. Similarly, the boundaries between chap-
ters tend to fall in places corresponding to thematic 
transitions. For IR purposes, therefore, we need to 
associate verses by use of a new set of terms, each 
of which, linguistically speaking, represents a dis-
tinct ‘element of discourse’, or – to put it in 
phrase-structure terms – a high-level node in the 
parse tree. Since standard LSI treats each text 
chunk separately, any thematic associations be-
tween text chunks are lost, but the addition of these 
terms allows LSI to make associations that it 
would otherwise be unable to make.

For the third test, therefore, we included two ex-
tra terms per verse, one to denote the book of the 
Bible that the verse came from, and another to de-
note the chapter. The results of this test are shown 
in Tables 8 and 9.

AR EN ES FR RU
AR 1.000 0.623 0.509 0.614 0.570

EN 0.781 1.000 0.965 0.991 0.939

ES 0.588 0.930 1.000 0.965 0.702

FR 0.623 0.991 0.947 1.000 0.851

RU 0.596 0.772 0.772 0.763 1.000

Table 8. Precision at 1 document with mor-
phology and discourse structure

AR EN ES FR RU
AR 1.000 0.719 0.679 0.722 0.688

EN 0.839 1.000 0.981 0.996 0.960

ES 0.705 0.954 1.000 0.982 0.809

FR 0.706 0.996 0.966 1.000 0.914

RU 0.700 0.848 0.851 0.846 1.000

Table 9. Precision at 0 with morphology and 
discourse structure

For sure, there are likely to be more sophisticat-
ed approaches to discourse analysis than the simple 
one we have employed, and doubtless the results of 
using these approaches would produce superior 
results. The point is, however, that even the simple 
approach that we took improves IR precision; how 

much more then would a more sophisticated ap-
proach contribute?

The final test involved exploiting the multilin-
gual structure of the parallel text, taking into ac-
count the fact that the contribution of terms to each 
verse is not equal for all languages. Just as in the 
previous test we included a small number of addi-
tional terms to represent linguistic metadata – spe-
cifically, that relating to the discourse structure –
we now include a few more additional terms, one 
to represent each distinct language used in training. 
As already mentioned, standard multilingual LSI 
cannot know how many terms each language con-
tributes to each verse. For a linguist, however, this 
is straightforward to determine. For example, the 
language of a term could be output by a parsing 
algorithm, and there are also methods in IR for
deducing the language of text – an example is the 
SILC system developed at RALI, University of 
Montreal3. Parsing would be essential if the lan-
guage of the training text were unknown, but with 
our training data, the parsing stage can be bypassed 
altogether since we know the language of each text 
chunk in the parallel aligned corpus.

A slight variation was made to the standard log-
entropy weighting scheme just for the new terms 
added in this test. For these terms, the weighted 
frequency was given by:

W = F  (1 + Ht / log2 (N))

In other words, log2(F) is replaced by F. The ra-
tionale for log2(F) in the standard weighting 
scheme is the well-known principle that linguistic 
tokens generally follow a Zipf distribution, where 
ranked frequency is inversely proportional to 
log(frequency). The effect of using log(frequency) 
is to dampen down highly frequent terms. Howev-
er, this is inappropriate in the case of the new ‘lan-
guage’ terms. For example, if a particular text 
chunk contains 10 English tokens and 5 Arabic 
tokens, it should be the case that each English to-
ken holds 5/10 (not log25 / log210) as much ‘in-
formation’ (in the information theoretic sense) as 
each Arabic token, on average. (Strictly speaking, 
incidentally, the same modification should be 
made for the ‘discourse’ terms in the previous test, 
although in practice it is immaterial whether stand-
ard or modified weighting is used in that case, 

                                                       
3 http://rali.iro.umontreal.ca/

http://rali.iro.umontreal.ca/


since there is only ever one of each type of term 
per text chunk, and, if F=1, log2(F+1) = F. This 
will be true for any linguistic structure which spans 
across text chunks.)

The results of the final test are shown in Tables
10 and 11.

AR EN ES FR RU
AR 1.000 0.623 0.509 0.614 0.570

EN 0.781 1.000 0.965 0.991 0.939

ES 0.588 0.930 1.000 0.965 0.702

FR 0.623 0.991 0.947 1.000 0.851

RU 0.596 0.772 0.772 0.763 1.000

Table 10. Precision at 1 document with mor-
phology, discourse structure, and cues for lan-
guage

AR EN ES FR RU
AR 1.000 0.719 0.679 0.722 0.688

EN 0.839 1.000 0.981 0.996 0.960

ES 0.705 0.954 1.000 0.982 0.809

FR 0.706 0.996 0.966 1.000 0.914

RU 0.700 0.848 0.851 0.846 1.000

Table 11. Precision at 0 with morphology, dis-
course structure, and cues for language

5 Conclusion

In this paper, we have shown that, with each addi-
tion of three different types of linguistic metadata 
to the training data used for multilingual LSI, there 
is a small, but definite and significant, increase in 
two separate measures of precision. Linguistic 
metadata is essentially the linguist’s stock-in-trade; 
one of the useful functions of generative grammar 
is to assign hierarchical structure (or metadata) to 
unparsed linguistic strings. Clearly, computational 
linguistics has a special role to play here, as it of-
fers many ways to automate the assignment of such 
hierarchical structure –something which is beyond 
the reach of most standard IR systems.

Although our work did not include the imple-
mentation of a computational grammar, it is quite 
possible to see how data analogous to our pre-
parsed training data could have been output by 
such a grammar. Moreover, since all three cases 
where we added structural information resulted in 
improved precision in the IR tests, there is certain-
ly prima facie evidence that ‘more of the same’ 
would result in further increases in precision. The 
structural information we added was morphologi-

cal or related to discourse, but in reality any type 
of structure that CL deals with (particularly those 
that have some connection to the text’s meaning, 
so possibly not phonetic or phonological structure) 
could be used in such a system – syntax, seman-
tics, and so on. We also added sub-word (morpho-
logical) structure only for one language, Koine 
Greek, whereas similar structure could have been 
added for all training languages, given sufficient 
time.

It should also be emphasized that there is no rea-
son that linguistic metadata for different languages, 
or different types of structure, must be produced 
within a single framework (for example, a single 
phrase-structure grammar). The Koine Greek mor-
phological structure follows the Strong’s system, 
but if Russian morphological structure were added, 
it would not necessarily have to follow a system 
based on the foundational concepts of morphology. 
After all, the five languages we used for testing
differ from one another considerably in morpho-
logical structure, and even without any parsing LSI 
is able to find cross-language correlations. (Essen-
tially, each translation ‘parses’ every other transla-
tion.) The only requirement is that the additional 
structural information should clarify, not obfus-
cate, the semantic relationships between words and 
text chunks.

To conclude, there is good reason to suppose 
that computational linguistics has an important role 
to play in information retrieval, and that there are 
many ways this role could be played. The evidence 
we have presented in this paper shows that with 
each successive addition to the training data of lin-
guistic metadata – of the type that computational 
linguistics is well-equipped to produce – there is a 
small but significant increase in precision when the 
training data is used for cross-language infor-
mation retrieval. Since the role for CL can be con-
fined to the preparation of training data but still 
result in a benefit to the test results, we have 
shown that it is possible to achieve improvement in 
IR precision without in any way compromising IR 
performance at run-time, when speed matters most.

Acknowledgement

Sandia is a multiprogram laboratory operated by 
Sandia Corporation, a Lockheed Martin Company, 
for the United States Department of Energy’s Na-



tional Nuclear Security Administration under con-
tract DE-AC04-94AL85000.

References 

Association for Computational Linguistics. 2006. How 
Can Computational Linguistics Improve Information 
Retrieval?: Proceedings of the Workshop. Sydney: 
Association for Computational Linguistics. 

Ricardo Baeza-Yates and Berthier Ribeiro-Neto. 1999. 
Modern Information Retrieval. New York: ACM 
Press.

Michael Berry, Theresa Do, Gavin O’Brien, Vijay 
Krishna, and Sowmimi Varadhan. 1996. 
SVDPACKC (Version 1.0) User’s Guide. Knoxville, 
TN: University of Tennessee.

Biola University. 2005-2006. The Unbound Bible. Ac-
cessed at http://www.unboundbible.com/ on Jan. 5, 
2007.

Peter Chew, Stephen Verzi, Travis Bauer and Jonathan 
McClain. 2006. Evaluation of the Bible as a Re-
source for Cross-Language Information Retrieval. In 
Proceedings of the Workshop on Multilingual Lan-
guage Resources and Interoperability, 68-74. Syd-
ney: Association for Computational Linguistics.

Susan Dumais. 1991. Improving the Retrieval of Infor-
mation from External Sources. Behavior Research 
Methods, Instruments, and Computers 23(2):229-
236.

Julio Gonzalo. 2001. Language Resources in Cross-
Language Text Retrieval: a CLEF Perspective. In 
Carol Peters (ed.). Cross-Language Information Re-
trieval and Evaluation: Workshop of the Cross-
Language Evaluation Forum, CLEF 2000: 36-47. 
Berlin: Springer-Verlag. 

Leah Larkey, Lisa Ballesteros, and Margaret Connell. 
2002. Improving stemming for Arabic information 
retrieval: light stemming and co-occurrence analysis. 
In Proceedings of the 25th Annual International 
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, 275-282. Tampere: 
ACM.

Dragos Munteanu and Daniel Marcu. 2006. Improving 
Machine Translation Performance by Exploiting 
Non-Parallel Corpora. Computational Linguistics
31(4):477-504.

Jian-Yun Nie and Fuman Jin. 2002. A Multilingual Ap-
proach to Multilingual Information Retrieval. Pro-
ceedings of the Cross-Language Evaluation Forum, 
101-110. Berlin: Springer-Verlag.

Jian-Yun Nie, Michel Simard, Pierre Isabelle, and Rich-
ard Durand. 1999. Cross-Language Retrieval based 
on Parallel Texts and Automatic Mining of Parallel 
Texts from the Web. Proceedings of the 22nd Annual 
International ACM SIGIR Conference on Research 
and Development in Information Retrieval, 74-81, 
August 15-19, 1999, Berkeley, CA. 

Carol Peters (ed.). 2001. Cross-Language Information 
Retrieval and Evaluation: Workshop of the Cross-
Language Evaluation Forum, CLEF 2000. Berlin: 
Springer-Verlag.

Philip Resnik, Mari Broman Olsen, and Mona Diab. 
1999. The Bible as a Parallel Corpus: Annotating the 
"Book of 2000 Tongues". Computers and the Hu-
manities, 33: 129-153. 

http://www.unboundbible.com/

