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Abstract

We consider how to distribute sparse matrices among processors to reduce communication cost in
sparse matrix computations, in particular, sparse matrix-vector multiplication. We consider 2d distribu-
tions, where the distribution (partitioning) is not constrained to just rows or columns. The fine-grain model
by Catalyurek and Aykanat [2] is a 2d distribution where nonzeros can be assigned to processors in an
arbitrary, completely general way. The authors use a hypergraph model and suggest an algorithm based on
hypergraph partitioning.

We propose a simpler bipartite graph model that also accurately describes communication volume,
and show that it is the dual of the fine-grain hypergraph. Our model naturally leads to a new algorithm
for fine-grain matrix distribution based on vertex separators, which could potentially be more efficient in
practice than the hypergraph approach. Preliminary numerical results on matrices from different application
areas indicate our new approach is competitive, and significantly better for some matrices from information
retrieval.
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1 Introduction vertices, while graph edges always connect two ver-
tices.

Sparse matrix-vector multiplication is a common Recently, several 2d decompositions have been
kernel in many computations, e.g., iterative solvegsoposed [2, 4]. The idea is to reduce the commu-
for linear systems of equations and PageRank cofieation volume further by giving up the simplicity
putation (power method). An important combinasf the 1d structure. We focus on the fine-grain distri-
torial problem is how to distribute the matrix an@ution [2], because it is the most general. We show
the vectors among processors such as to minimigat a bipartite graph model also accurately describes
the communication cost. We assume distribute€bmmunication in fine-grain distribution. This leads
memory computers, where communication is expeti-a new graph-based algorithm, which may poten-
sive. Our work also applies to the more general comially work better in practice.
putationy = F'(z), wherex is the input vectory is
the output vector, and' is a reduction operator. . .

Sparse matrix-vector multiplication = Ax is 2 Fine-Grain Models

usually parallelized such that the processor that owns : .
elementa;; computes the contribution;;z;. This -1 The Fine-Grain Hypergraph Model

is a local operation ifr;, y; anda;; all reside on |n fine-grain matrix distribution, each nonzero can be
the same processor; otherwise communication is ggsigned independently. The hypergraph model [2]
quired. In general, the following four steps are peforks as follows: Let each nonzero correspond to a
formed [1, 4]: vertex, and let each row and each column represent
a hyperedge. A matri¥d with m rows, n colums,
and z nonzeros gives a hypergraph withvertices
andm + n hyperedges. This hypergraph can then
be partitioned using standard partitioning algorithms
and software, but this does not take into account the

1. Expand: Send entrieg:; to processors with a
nonzeraa;; for some.

2. Local multiply: y;+ = a;jz;

3. Fold: Send partialy values to relevant procesSPecial structure.
sors.

2.2 The New Fine-Grain Bipartite Graph
4. Sum: Sum up the partiaj values. Model

The partitioning problem we address is: GivenWe start with the bipartite grapf = (R, C, E) of
sparse matrix4d and an integek > 1, compute a the matrix, whereR andC' correspond to rows and
parallel distribution ovek processors of the nonzecolumns, respectively. In 1d distribution, we parti-
ros of A and also for the input and output vectorson either the rows R) or the columns (). For
such that all processors have approximately equdilye-grain distribution, we partition botR, C, and
many nonzeros (load balance), and the communidainto £ sets. Note that we explicitly partition the
tion volume in sparse matrix-vector multiply is minedgest, which distinguishes our approach from pre-
imized. vious work. To balance computation and memory,

Typically, matrices are partitioned in a 1d fashsur primary objective is to balance the edges (matrix
ion, either by rows or by columns. This partitionnonzeros). Vertex balance is a secondary objective.
ing problem has been modeled both as graph partiWWe wish to analyze the communication require-
tioning in the symmetric case, and as bipartite grapients, so suppose that the vertices and edges have al-
partitioning [3] in the nonsymmetric and rectangulaeady been partitioned. Cut edges, that is, edges with
case. Hypergraph partitioning [1] has been showndpoints in different partitions, may incur commu-
to accurately model communication volume, and mgcation but not necessarily. The edge cut approxi-
therefore often preferred today. A hypergraph ismaates but does not represent communication volume
generalization of a graph. An hyperedge is a suli; 3]. Instead we assign communication cost to ver-
set of vertices; thus hyperedges connect one or mtices. Clearly, a vertex where all incident edges be-



long to the same partition incurs no communicatiad A Vertex Separator Algorithm

because all operations are local. Conversely, a vertex

with at least one incident edge in a different partitiohn edge separator in the fine-grain hypergraph

does incur communication because that is a vectormledel corresponds to a vertex separator in the bi-

ementz; or y; residing on a different processor thapartite graph. Thus, we can derive a fine-grain de-

a;j. We therefore have: composition from a vertex separator for the bipartite
graph.

Fact 2.1 The communication volume in matrix- For simplicity, we consider only bisection. The

vector multiply is equal to the number of vertices thgeneral g-way) problem can be solved using recur-

have at least one incident edge in a different partiticsive bisection. First compute a small balanced vertex

(boundary vertices). separatotS for the bipartite graph using any vertex
separator algorithm. This partitions the vertices into

A crucial point is that by assigning edges to prd¥o, V1,5). AssignVy and incident edges to proces-
cessors independently of the vertices, we can red§€&0, and similarly forV;. We have a choice for the
the number of boundary vertices compared to the tkgrtices inS; these should be assigned to the same
ditional 1d distribution, where only vertices are papartition but we can choose either one. We can use
titioned and the edge assignments are induced fré$ flexibility to achieve a secondary goal, e.g. load
the vertices. balance in the vectors (vertices). Since our primary

Given a matrix with: nonzeros, the bipartite grapl&loal is load balance in the matrix nonzeros, we seek
hasz edges while the fine-grain hypergraph feas to balance the edges in the bipartite graph. This can
pins. Thus, algorithm based on the bipartite grap§ done by weighting each vertex by its degree.
model may use less memory.

, 4 Experiments
2.3 Equivalence between the Two Models

Since our bipartite graph model is exact, it mudye compare the communication volume for. parallel
be equivalent to the fine-grain hypergraph model sparse matrix-vector for a set of sparse matrices from

some way. In fact, there is a simple and elegant r(__\ic‘ij'{fferent application areas (information retrieval, lin-
tion between the t’wo models ear programming, circuit simulation, chemical engi-

Let the dual of a hypergrapH = (V, E) be an- neering) that were used in [4]. The first five matrices
other hypergrapti/’ = (V', E') where a vertex in &€ rectangular, and the next five are square but struc-
V corresponds to an edge itf, and an edge i turally nonsymmetric.

corresponds to a vertex ifi’. Let  be the hyper- W& compare our fine-grain bipartite graph sepa-
graph for the fine-grain model. rator algorithm versus the fine grain hypergraph al-

gorithm, and include 1d row and column partitions
Theorem 2.2 The dual hypergrapti’ is the bipar- Using hypergraph partitioning as a baseline. Though
tite graphG. NP-hard problems, several good codes for graph and

hypergraph partitioning are available, all based on
Proof: H has a vertex for each nonzer@, has an the multilevel method. We used PaToH 3.0 as our
edge for ecah nonzerdl contains one hyperedge fohypergraph partitioner, and Chaco 2.0 to find ver-
each row {;) and column ¢;), G has one vertex for tex separators. In both cases the imbalance tolerance
each row and column. There is an edggj) € E¢ was0.05. Only bisection is used as Chaco is limited
iff hyperedges-; andc; intersect, thatis;; Nc; # 0. to that. (Metis computed poorly balanced separators

Hence partitioning the vertices @f corresponds and is not shown.)

to partitioning the edges i@'. In our bipartite graph We see from Table 4 that there is no consistent
model, we also explicitly partition the vertices@ winner. The hypergraph (h.g.) fine-grain method
while the hyperedges i&/ are only partitioned im- (with PaToH) obtained significantfly lower volume
plicitly in the hypergraph algorithm. in four out of ten cases (including one case where



Name ldrow | 1dcol| 2d h.g.| 2d b.g. tor partitioning” phase. In future work we will study
dﬂogl égg 23(; igg i;i the performance for larger using recursive bisec-
cre] . . . .
tion (nest [ tion), and al rallel parti-
tbdmatlab) 4591 ) 6319 4307 3381 tigne(rselsik?adz?nlst‘:lﬁc \(/)Ve)’d?) r?lo{':1 lfr?oL\jvsicl)ov(?/1 2e(relsi$ise
nug30 167504 | 27828 | 33198 - ) . . .
tbdlinux 14731 | 15795| 10198 7861 the results are to different implementations of similar
west0381 51 52 37 37 multilevel partitioning methods. An open question is
gematl 1859 37 33 33 to identify matrix classes that are consistently solved
memplus 2183 | 2222 148 190 better by one approach.
onetone2 202 280 212 216
Ihr34 99 64 64 294 Acknowledgments
Table 1: Communication volumé (= 2 . .
( We thank Bruce Hendrickson, John Gilbert, and

Umit Catalyurek for related discussions, and Rob

Name rows cols | 2d h.g.| 2d b.g.
dflool 6071| 12230| 0.20| 034
creb 9648 | 77137| 3.46| 6.45
tbdmatlab| 19859| 5979| 9.89| 3.62
nug30 52260 | 379350, 12.8 -
todlinux | 112757| 20167| 79.6| 122| [
west0381| 381 381| 001| 001
gematl 4929| 4929| 0.14| 024
memplus | 17758| 17758| 0.67| 0.27
onetone2 | 36057 | 36057 0.85 0.34 [2]
Ihr34 35152| 35152| 3.71| 0.30

Table 2: Matrix sizes and partitioning times (sec.).

Chaco failed), while the bipartite (b.p.) approadh;
(with Chaco) was clearly better in two cases. In-
terestingly, these two matrices were both term-by-
document matrices from information retrieval.

The partitioning times are also difficult to inq{4]
terpret, with each fine-grain method faster about
half of the time. We remark that in some cases,
Chaco stopped the coarsening early due to insuffi-
cient progress, causing a time-consuming coarse par-
tition phase on a large graph.

5 Conclusions

We presented a new interpretation of the bipartite
graph that is useful for sparse matrix partitioning.
Our model is the dual of the hypergraph fine-grain
model. Our vertex separator algorithm is similar in
time and quality to the hypergraph algorithm, but the
results can vary substantially among problems. An
advantage of our bipartite approach is that we explic-
itly obtain distributions for both the matrix and the
vectors, so there is no need for a subsequent “vec-
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Bisseling for providing the test matrices.
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