
A Bipartite Graph Model and Algorithm for Fine-Grain Parallel
Sparse Matrix Distribution

(Brief Announcement, SPAA 2007)

Erik G. Boman
Discrete Algorithms and Math

Sandia National Labs∗

Albuquerque, NM 87185-1318
egboman@sandia.gov

Abstract

We consider how to distribute sparse matrices among processors to reduce communication cost in
sparse matrix computations, in particular, sparse matrix-vector multiplication. We consider 2d distribu-
tions, where the distribution (partitioning) is not constrained to just rows or columns. The fine-grain model
by Catalyurek and Aykanat [2] is a 2d distribution where nonzeros can be assigned to processors in an
arbitrary, completely general way. The authors use a hypergraph model and suggest an algorithm based on
hypergraph partitioning.

We propose a simpler bipartite graph model that also accurately describes communication volume,
and show that it is the dual of the fine-grain hypergraph. Our model naturally leads to a new algorithm
for fine-grain matrix distribution based on vertex separators, which could potentially be more efficient in
practice than the hypergraph approach. Preliminary numerical results on matrices from different application
areas indicate our new approach is competitive, and significantly better for some matrices from information
retrieval.

Keywords: Load balancing, parallel sparse matrix computations, graph partitioning,hypergraph partitioning, information retrieval.

∗Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the DOE’s National
Nuclear Security Administration under contract number DE-AC-94AL85000.

SAND2007-0165C



1 Introduction

Sparse matrix-vector multiplication is a common
kernel in many computations, e.g., iterative solvers
for linear systems of equations and PageRank com-
putation (power method). An important combina-
torial problem is how to distribute the matrix and
the vectors among processors such as to minimize
the communication cost. We assume distributed-
memory computers, where communication is expen-
sive. Our work also applies to the more general com-
putationy = F (x), wherex is the input vector,y is
the output vector, andF is a reduction operator.

Sparse matrix-vector multiplicationy = Ax is
usually parallelized such that the processor that owns
elementaij computes the contributionaijxj . This
is a local operation ifxj , yi and aij all reside on
the same processor; otherwise communication is re-
quired. In general, the following four steps are per-
formed [1, 4]:

1. Expand: Send entriesxj to processors with a
nonzeroaij for somei.

2. Local multiply: yi+ = aijxj

3. Fold: Send partialy values to relevant proces-
sors.

4. Sum: Sum up the partialy values.

The partitioning problem we address is: Given a
sparse matrixA and an integerk > 1, compute a
parallel distribution overk processors of the nonze-
ros of A and also for the input and output vectors
such that all processors have approximately equally
many nonzeros (load balance), and the communica-
tion volume in sparse matrix-vector multiply is min-
imized.

Typically, matrices are partitioned in a 1d fash-
ion, either by rows or by columns. This partition-
ing problem has been modeled both as graph parti-
tioning in the symmetric case, and as bipartite graph
partitioning [3] in the nonsymmetric and rectangular
case. Hypergraph partitioning [1] has been shown
to accurately model communication volume, and is
therefore often preferred today. A hypergraph is a
generalization of a graph. An hyperedge is a sub-
set of vertices; thus hyperedges connect one or more

vertices, while graph edges always connect two ver-
tices.

Recently, several 2d decompositions have been
proposed [2, 4]. The idea is to reduce the commu-
nication volume further by giving up the simplicity
of the 1d structure. We focus on the fine-grain distri-
bution [2], because it is the most general. We show
that a bipartite graph model also accurately describes
communication in fine-grain distribution. This leads
to a new graph-based algorithm, which may poten-
tially work better in practice.

2 Fine-Grain Models

2.1 The Fine-Grain Hypergraph Model

In fine-grain matrix distribution, each nonzero can be
assigned independently. The hypergraph model [2]
works as follows: Let each nonzero correspond to a
vertex, and let each row and each column represent
a hyperedge. A matrixA with m rows, n colums,
and z nonzeros gives a hypergraph withz vertices
andm + n hyperedges. This hypergraph can then
be partitioned using standard partitioning algorithms
and software, but this does not take into account the
special structure.

2.2 The New Fine-Grain Bipartite Graph
Model

We start with the bipartite graphG = (R,C, E) of
the matrix, whereR andC correspond to rows and
columns, respectively. In 1d distribution, we parti-
tion either the rows (R) or the columns (C). For
fine-grain distribution, we partition bothR, C, and
E into k sets. Note that we explicitly partition the
edgesE, which distinguishes our approach from pre-
vious work. To balance computation and memory,
our primary objective is to balance the edges (matrix
nonzeros). Vertex balance is a secondary objective.

We wish to analyze the communication require-
ments, so suppose that the vertices and edges have al-
ready been partitioned. Cut edges, that is, edges with
endpoints in different partitions, may incur commu-
nication but not necessarily. The edge cut approxi-
mates but does not represent communication volume
[1, 3]. Instead we assign communication cost to ver-
tices. Clearly, a vertex where all incident edges be-

1



long to the same partition incurs no communication
because all operations are local. Conversely, a vertex
with at least one incident edge in a different partition
does incur communication because that is a vector el-
ementxi or yj residing on a different processor than
aij . We therefore have:

Fact 2.1 The communication volume in matrix-
vector multiply is equal to the number of vertices that
have at least one incident edge in a different partition
(boundary vertices).

A crucial point is that by assigning edges to pro-
cessors independently of the vertices, we can reduce
the number of boundary vertices compared to the tra-
ditional 1d distribution, where only vertices are par-
titioned and the edge assignments are induced from
the vertices.

Given a matrix withz nonzeros, the bipartite graph
hasz edges while the fine-grain hypergraph has2z
pins. Thus, algorithm based on the bipartite graph
model may use less memory.

2.3 Equivalence between the Two Models

Since our bipartite graph model is exact, it must
be equivalent to the fine-grain hypergraph model in
some way. In fact, there is a simple and elegant rela-
tion between the two models.

Let the dual of a hypergraphH = (V,E) be an-
other hypergraphH ′ = (V ′, E′), where a vertex in
V corresponds to an edge inE′, and an edge inE
corresponds to a vertex inV ′. Let H be the hyper-
graph for the fine-grain model.

Theorem 2.2 The dual hypergraphH ′ is the bipar-
tite graphG.

Proof: H has a vertex for each nonzero,G has an
edge for ecah nonzero.H contains one hyperedge for
each row (ri) and column (cj), G has one vertex for
each row and column. There is an edge(i, j) ∈ EG

iff hyperedgesri andcj intersect, that is,ri∩ cj 6= ∅.
Hence partitioning the vertices ofH corresponds

to partitioning the edges inG. In our bipartite graph
model, we also explicitly partition the vertices inG,
while the hyperedges inH are only partitioned im-
plicitly in the hypergraph algorithm.

3 A Vertex Separator Algorithm

An edge separator in the fine-grain hypergraph
model corresponds to a vertex separator in the bi-
partite graph. Thus, we can derive a fine-grain de-
composition from a vertex separator for the bipartite
graph.

For simplicity, we consider only bisection. The
general (k-way) problem can be solved using recur-
sive bisection. First compute a small balanced vertex
separatorS for the bipartite graph using any vertex
separator algorithm. This partitions the vertices into
(V0, V1, S). AssignV0 and incident edges to proces-
sor0, and similarly forV1. We have a choice for the
vertices inS; these should be assigned to the same
partition but we can choose either one. We can use
this flexibility to achieve a secondary goal, e.g. load
balance in the vectors (vertices). Since our primary
goal is load balance in the matrix nonzeros, we seek
to balance the edges in the bipartite graph. This can
be done by weighting each vertex by its degree.

4 Experiments

We compare the communication volume for parallel
sparse matrix-vector for a set of sparse matrices from
different application areas (information retrieval, lin-
ear programming, circuit simulation, chemical engi-
neering) that were used in [4]. The first five matrices
are rectangular, and the next five are square but struc-
turally nonsymmetric.

We compare our fine-grain bipartite graph sepa-
rator algorithm versus the fine grain hypergraph al-
gorithm, and include 1d row and column partitions
using hypergraph partitioning as a baseline. Though
NP-hard problems, several good codes for graph and
hypergraph partitioning are available, all based on
the multilevel method. We used PaToH 3.0 as our
hypergraph partitioner, and Chaco 2.0 to find ver-
tex separators. In both cases the imbalance tolerance
was0.05. Only bisection is used as Chaco is limited
to that. (Metis computed poorly balanced separators
and is not shown.)

We see from Table 4 that there is no consistent
winner. The hypergraph (h.g.) fine-grain method
(with PaToH) obtained significantfly lower volume
in four out of ten cases (including one case where

2



Name 1d row 1d col 2d h.g. 2d b.g.
dfl001 1427 630 540 879
cre b 6551 477 468 484
tbdmatlab 4591 6319 4307 3381
nug30 167504 27828 33198 –
tbdlinux 14731 15795 10198 7861
west0381 51 52 37 37
gemat1 1859 37 33 33
memplus 2183 2222 148 190
onetone2 202 280 212 216
lhr34 99 64 64 294

Table 1: Communication volume (k = 2
.

Name rows cols 2d h.g. 2d b.g.
dfl001 6071 12230 0.20 0.34
cre b 9648 77137 3.46 6.45
tbdmatlab 19859 5979 9.89 3.62
nug30 52260 379350 12.8 –
tbdlinux 112757 20167 79.6 12.2
west0381 381 381 0.01 0.01
gemat1 4929 4929 0.14 0.24
memplus 17758 17758 0.67 0.27
onetone2 36057 36057 0.85 0.34
lhr34 35152 35152 3.71 0.30

Table 2: Matrix sizes and partitioning times (sec.).

Chaco failed), while the bipartite (b.p.) approach
(with Chaco) was clearly better in two cases. In-
terestingly, these two matrices were both term-by-
document matrices from information retrieval.

The partitioning times are also difficult to in-
terpret, with each fine-grain method faster about
half of the time. We remark that in some cases,
Chaco stopped the coarsening early due to insuffi-
cient progress, causing a time-consuming coarse par-
tition phase on a large graph.

5 Conclusions

We presented a new interpretation of the bipartite
graph that is useful for sparse matrix partitioning.
Our model is the dual of the hypergraph fine-grain
model. Our vertex separator algorithm is similar in
time and quality to the hypergraph algorithm, but the
results can vary substantially among problems. An
advantage of our bipartite approach is that we explic-
itly obtain distributions for both the matrix and the
vectors, so there is no need for a subsequent “vec-

tor partitioning” phase. In future work we will study
the performance for largerk using recursive bisec-
tion (nested dissection), and also use parallel parti-
tioners like Zoltan. We do not know how sensitive
the results are to different implementations of similar
multilevel partitioning methods. An open question is
to identify matrix classes that are consistently solved
better by one approach.

Acknowledgments

We thank Bruce Hendrickson, John Gilbert, and
Umit Catalyurek for related discussions, and Rob
Bisseling for providing the test matrices.

References

[1] Ü. Çatalÿurek and C. Aykanat. Hypergraph-
partitioning-based decomposition for parallel sparse-
matrix vector multiplication. IEEE Trans. Parallel
Dist. Systems, 10(7):673–693, 1999.

[2] Ü. Çatalÿurek and C. Aykanat. A fine-grain hyper-
graph model for 2d decomposition of sparse matri-
ces. InProc. IPDPS 8th Int’l Workshop on Solving
Irregularly Structured Problems in Parallel (Irregu-
lar 2001), April 2001.

[3] B. Hendrickson and T. G. Kolda. Partitioning rectan-
gular and structurally nonsymmetric sparse matrices
for parallel computation.SIAM Journal on Scientific
Computing, 21(6):2048–2072, 2000.

[4] B. Vastenhouw and R. H. Bisseling. A two-
dimensional data distribution method for parallel
sparse matrix-vector multiplication.SIAM Review,
47(1):67–95, 2005.

3


