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Investigate scale effects when the elastic medium is a dry soap froth and R, = Rg

Experiments at the University of Marne-la-Vallee
Model rigid spheres as drops with large surface tension

Surface Evolver simulations
Weaire-Phelan and random monodisperse foams
Rr =Ry, 2Rg

Model rigid spheres



Foam and particles

Gillette shaving cream
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Gas volume fraction 92%
Bubble size 20 um

Talc platelets 10 um
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Foam and hydrophilic particles mixed by whipping
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Particles strongly increase the complex shear modulus
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Foam with particles
G*=G'+iG”

Foam without particles
at low strain amplitude
G*, =G +iG’,



G’(0)/G’(®) and G(0)/G'(d)

Smaller particles magnify the effect

Effective Medium Theory:
Garboczi & Thorpe 1986;
Torquato 2002
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Particle volume fraction in the foam ®

G* scales with particle volume fraction in agreement with
the rigidity percolation model in the superelastic limit.



Rigidity percolation threshold
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Surface Evolver

An interactive program for modeling liquid surfaces shaped by various forces (surface tension)
and constraints (spatial periodicity and cell volumes). The surface evolves toward minimal energy
by simulating the process of evolution by mean curvature.

Developed by Ken Brakke, Mathematics Department, Susquehanna University

Free download

K.A. Brakke (1992) Exp Math 1, 141.




Random Foams

Kraynik, Reinelt & van Swol (2003) Phys Rev E 67, 031403;

(2004) Phys Rev Lett 93, 208301; (2005) Colloids Surfaces A 263 11-17.

Monodisperse Polydisperse Bidisperse

Spatially periodic structure
1728 cells

Cell volumes vary by three orders of magnitude



Shear Modulus of Random Foam
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Plateau’s Laws for Equilibrium Structure

Ideal soap froth: 2D surfaces (with uniform surface tension ) define trivalent polyhedral cells.

1) Each film has constant mean curvature: (R1'1+ R2'1)
2) Three films meet at 120° angles at cell edges
3) Four edges meet at tetrahedral angles: acos(-1/3) = 109.47°

J.A.F. Plateau (1873) “Statique Experimentale et Theorique
des Liquides Soumis aux Seules Forces Moleculaires,”
Gauthier-Villard, Paris.

Courtesy of Weaire and Hutzler

Excess film tension T: 2Toc =0 + G

G T=1 T>1 T 00

The foam films “slip” along the particle surface.



Weaire-Phelan foam with high-tension drops: Vp = Vg

Filmtension: 2To =0+ Gp
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Evaluating the Foam Stress




Random monodisperse foam with high-tension drops: Vp = Vj




Random monodisperse foam with high-tension drops: Vp =8 Vg
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Random monodisperse foam with high-tension drops
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Random monodisperse foam with rigid spheres
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Force-free particles

The surface tension and pressure on the
spheres contributes to the foam stress.
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Concluding Remarks

Smaller particles increase stiffness, in agreement with the experiments.

The model under predicts the experiments
Slip ?
Wet foam vs. dry foam ?
Plateau borders and liquid bridges

Inter-particle forces ?




Weaire-Phelan Foam — the best monodisperse foam (lowest surface area)

D. Weaire & R. Phelan (1994) Phil Mag Lett 69, 107.

Cubic Symmetry
A15

six 14-hedra (0-12-2)
two dodecahedra (0-12-0)

Tetrahedrally Closest Packed (TCP) Structure
or Frank-Kasper Structure



