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Simple fluid-solid dynamical system
— Piston moves vertically in cylinder
— Viscous liquid & gas fill open space
— Spring is stronger than gravity
— Cylinder is vertically vibrated
Vibration makes piston move down
— ldentify rectification mechanisms
— Upper & lower gas regions are key
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{Upper & IowerJ fl>[Strong system] fl>[ Large force J
gas regions resonance on piston
Three steps are needed to produce rectified piston motion
1. Upper and lower gas regions must both be present
— Lower region is from trapped gas or rectified bubble motion
— Regions make a gas spring, giving a new degree of freedom
2. Large resonance must be excited for piston-gas system

— Seems counterintuitive since damping is very large
— Viscous liquid must be forced through narrow gaps

3. Nonlinear effects produce large net force on piston
— Quadratic terms become large at resonance

Investigate Step 2: large resonance despite large damping
— First step, rectified bubble motion, already investigated
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Replace piston-gas system with piston-bellows system

* Upper & lower bellows mimic upper & lower gas regions
— Pressure-volume dependence like gas but well defined
— Dynamics like gas but without complicated free surfaces

* Upper and lower bellows oscillate vertically like piston
Understand behavior of this simplified dynamical system
 Ultimately extend analysis to corresponding experiment
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All motions are analyzed in housing frame of reference

— Housing motion gives oscillating gravity in housing frame
Liquid obeys incompressible Navier-Stokes equations
— Hydrostatic pressure is removed but gives buoyancy forces
Piston and bellows obey Newton’s 2"d Law (F = ma)
— Piston has spring force, bellows are springs themselves
— Liquid forces are integrals of stress tensor over bodies
Incompressibility constrains two bellows to move as one

— Constraint eliminates unknown time-varying pressure offset
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In quasi-steady regime, liquid forces have simple forms

 Damping forces: proportional to object velocities

- Added-mass forces: proportional to object accelerations
Found from steady Stokes equations and first correction
 Damping coefficients involve integrals of dissipation

« Added masses involve integrals of kinetic energy

System described by 2x2-matrix ODE for driven oscillator
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Poiseuille Couette

At first glance, system appears to be highly overdamped
— Thin gaps have large flow speeds, dissipation, kinetic energy
— Liquid damping & added mass are large and oppose motion
But damping and added-mass matrices are nearly singular
— Singularity corresponds to pure Couette flow in each gap
— Couette pressure difference is much smaller than Poiseuille
Piston and bellows move so as to produce Couette flow
— Piston/bellows velocity ratio is inverse of their area ratio
Couette mode is lightly damped and can have a resonance
— Couette drag is much smaller than Poiseuille drag
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Damping and added-mass matrices behave as expected
— Quasi-steady regime: almost independent of frequency
— Damping opposing Poiseuille flow is large: ~107 dyn/(cm/s)
— Nearly singular form with bellows-piston area ratio: 1.04

Near-singular form of matrices allows Couette mode
— Damping opposing Couette mode is small: ~103 dyn/(cm/s)
— Oscillates like piston mass against bellows spring: ~80 Hz
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Couette mode has large resonance at expected frequency
— Resonant frequency is ~80 Hz, FWHM is ~ 8 Hz
— For g, = g, = 981 cm/s?, peak amplitude |Z;| is ~0.06 cm
— Amplitude is significant fraction of gap length even for small
Quasi-steady Couette mode is an excellent approximation
— Frequency dependence of matrices is relatively unimportant
— Coupled (2x2) and decoupled (Couette) are almost identical
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Goal is to explain vibration-induced rectified piston motion

1.
2.

Create two gas regions: downward rectified bubble motion
Large resonance: Couette mode has extremely low damping

* Piston speed = bellows speed x bellows area / piston area

3.

Rectified force: average of nonlinear terms near resonance

Steps 1-2 have been analyzed; Step 3 is focus of future work
— Desire ODE dynamical model informed by computation
— Ultimately compare model and experimental results



