
Using Intrelab to Quickly Prototype
Interface Algorithms

Paul Kuberry

Sandia National Laboratories

Trilinos User Group, CSRI 90
October 29, 2014

SAND2014-16182PE
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,

a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

,
P. Kuberry Quickly Prototyping With Intrelab 1

SAND2014-19921C

Domain Layout

,
P. Kuberry Quickly Prototyping With Intrelab 2

Domain Layout

,
P. Kuberry Quickly Prototyping With Intrelab 2

Linear Elasticity on Ω

Governing Equations

ρ
∂2η
∂t2 −∇ · σ(η) = f in Ω

We get a variational form by multiplying by a test function,
integrating over Ω, and discretizing in time by the central difference
scheme (explicit) and in space with P1 finite elements,

∫
Ω
ρ

(ηn+1
h

−2ηn
h+ηn−1

h
)

∆t2 · ξh + σ(ηn
h) : ∇ξh dx =

∫
Ω

f · ξh dx ∀ξh ∈ V h ⊂ H1(Ω)

To create a light framework for implementing interface algorithms
we at least will require

Basis functions (Values, Gradients, Divergence)
Jacobians and their determinants
Quadrature rules

,
P. Kuberry Quickly Prototyping With Intrelab 3

Workflow

driver.m

solveSolid generateComputationalMesh RectGrid

assembly getDOFmap

intrepid getNumCubaturePoints

intrepid getCubature

generateProbSpecificDatasolvePDE ...

[mesh] = RectGrid(xmin, xmax, ymin, ymax, nxint, nyint, ‘Triangle’);
intrepid getNumCubaturePoints(‘Triangle’, cubDegree);
intrepid getCubature(cubPoints, cubWeights, ‘Triangle’, cubDegree);

,
P. Kuberry Quickly Prototyping With Intrelab 4

generateProbSpecificData

intrepid setJacobian

intrepid setJacobianInvs

intrepid setJacobianDets

% evaluate cell Jacobians
cellJacobians = zeros(spaceDim, spaceDim, numCubPoints, numCells);
intrepid setJacobian(cellJacobians, cubPoints, ...

cellNodes, ‘Triangle’);
% evaluate inverses of cell Jacobians
cellJacobianInvs = zeros(spaceDim, spaceDim, numCubPoints, numCells);
intrepid setJacobianInv(cellJacobianInvs, cellJacobians);
% evaluate determinants of cell Jacobians
cellJacobianDets = zeros(numCubPoints, numCells);
intrepid setJacobianDet(cellJacobianDets, cellJacobians);

,
P. Kuberry Quickly Prototyping With Intrelab 5

generateProbSpecificData (Reference Cell Evaluations)

% evaluate basis (value, gradient)
val at cub points = zeros(numCubPoints, numFields);
grad at cub points = zeros(spaceDim, numCubPoints, numFields);
intrepid getBasisValues(val at cub points, cubPoints, ...

‘OPERATOR VALUE’, ‘Triangle’, 1);
intrepid getBasisValues(grad at cub points, cubPoints, ...

‘OPERATOR GRAD’, ‘Triangle’, 1);

% compute cell measures
weighted measure = zeros(numCubPoints, numCells);
intrepid computeCellMeasure(weighted measure, ...

cellJacobianDets, cubWeights);

% compute cell volumes
cell volumes = sum(weighted measure,1);

,
P. Kuberry Quickly Prototyping With Intrelab 6

generateProbSpecificData (Transform Values)

∫
Phys(T)

φj · φi dx =
∫
Ref (T)

φ̂j · φ̂i det(J)dx̂

% transform values
transformed val at cub points = ...

zeros(numCubPoints, numFields, numCells);
intrepid HGRADtransformVALUE(transformed val at cub points, ...

val at cub points);

% combine transformed values with measures
weighted transformed val at cub points = ...

zeros(numCubPoints, numFields, numCells);
intrepid multiplyMeasure(weighted transformed val at cub points, ...

weighted measure, transformed val at cub points);

,
P. Kuberry Quickly Prototyping With Intrelab 7

generateProbSpecificData (Transform Gradient Values)

∫
Phys(T)

∇φj : ∇φi dx =
∫
Ref (T)

J−T ∇̂φ̂j : J−T ∇̂φ̂i det(J)dx̂

% transform gradients
transformed grad at cub points = zeros(spaceDim, numCubPoints, ...

numFields, numCells);
intrepid HGRADtransformGRAD(transformed grad at cub points, ...

cellJacobianInvs, grad at cub points);

% combine transformed gradients with measures
weighted transformed grad at cub points = zeros(spaceDim, ...

numCubPoints, numFields, numCells);
intrepid multiplyMeasure(weighted transformed grad at cub points, ...

weighted measure, transformed grad at cub points);

,
P. Kuberry Quickly Prototyping With Intrelab 8

generateProbSpecificData (Mass Matrix)

∫
Phys(T)

φj · φi dx =
∫
Ref (T)

φ̂j · φ̂i det(J)dx̂

% integrate mass matrix
cell mass matrices = zeros(numFields, numFields, numCells);
intrepid integrate(cell mass matrices, ...

transformed val at cub points, ...
weighted transformed val at cub points, ‘COMP BLAS’);

% build global mass matrix
cell mass matrices reshape = ...

reshape(cell mass matrices, 1, numel(cell mass matrices));
mass mat = sparse(iIdxVertices,jIdxVertices,

repmat(cell mass matrices reshape’,2,1));

,
P. Kuberry Quickly Prototyping With Intrelab 9

generateProbSpecificData (Stiffness Matrix)

∫
Phys(T)

∇φj : ∇φi dx =
∫
Ref (T)

J−T ∇̂φ̂j : J−T ∇̂φ̂i det(J)dx̂

% integrate stiffness matrix
cell deformation matrices = zeros(numFields, numFields, numCells);
intrepid integrate(cell deformation matrices, ...

transformed grad at cub points, ...
weighted transformed grad at cub points, ‘COMP BLAS’);

% build global stiffness matrix
cell deformation matrices reshape = ...

reshape(cell deformation matrices, 1, ...
numel(cell deformation matrices));

deformation mat = sparse(iIdxVertices,jIdxVertices, ...
repmat(cell deformation matrices reshape’,2,1));

,
P. Kuberry Quickly Prototyping With Intrelab 10

Rewriting the weak form of the problem

We now have our Mass Matrix (M) and our Stiffness Matrix (K) and we
can rewrite

∫
Ω
ρ

(ηn+1
h

−2ηn
h+ηn−1

h
)

∆t2 · ξh + σ(ηn
h) : ∇ξh dx =

∫
Ω

f · ξh dx ∀ξh ∈ V h ⊂ H1(Ω)

as

ρ
∆t2 M~ηn+1 = ρ

∆t2 M(2~ηn − ~ηn−1)− K~ηn + M~f
n

We use a diagonal mass matrix (nodal quadrature), and therefore we can
take care of boundary conditions by using this relation for all
non-Dirichlet boundary nodes, and use the prescribed value at Dirichlet
boundary nodes.

,
P. Kuberry Quickly Prototyping With Intrelab 11

driver.m

solveSolid

solvePDE

solvePDE

Calculate initial conditions

exchange interface information

Loop over time steps using relation

ρ
∆t2 M~ηn+1 = ρ

∆t2 M(2~ηn − ~ηn−1)− K~ηn + M~f
n

End with computeError if there is a known solution

,
P. Kuberry Quickly Prototyping With Intrelab 12

computeError

% set up more accurate numerical integration
cubDegree = 6;

Then, get

cubature points and weights

Jacobians, Jacobian inverses, and determinants of Jacobians

values and gradients on reference cells

transformed values and gradients

combined transformed values and gradients with measures

...

,
P. Kuberry Quickly Prototyping With Intrelab 13

Computional Meshes

We can now handle chevron and diagonal interfaces

,
P. Kuberry Quickly Prototyping With Intrelab 14

Convergence Rates

(Using P1 Elements)

LEFT mesh | L2 error L2 ratio L2 rate | H1 error H1 ratio H1 rate

0016x0010 | 4.45e-02 - - | 1.62e+00 - -

0024x0015 | 2.51e-02 0.56 1.42 | 1.10e+00 0.68 0.96

0032x0020 | 1.64e-02 0.65 1.48 | 8.17e-01 0.74 1.04

0048x0030 | 9.18e-03 0.56 1.43 | 5.54e-01 0.68 0.96

0064x0040 | 5.56e-03 0.61 1.74 | 4.05e-01 0.73 1.09

0096x0060 | 2.99e-03 0.54 1.53 | 2.70e-01 0.67 0.99

0144x0090 | 1.44e-03 0.48 1.80 | 1.76e-01 0.65 1.06

0208x0130 | 5.94e-04 0.41 2.40 | 1.17e-01 0.66 1.11

RIGHT mesh | L2 error L2 ratio L2 rate | H1 error H1 ratio H1 rate

0014x0016 | 8.97e-02 - - | 3.87e+00 - -

0021x0024 | 4.28e-02 0.48 1.83 | 2.46e+00 0.64 1.11

0028x0032 | 2.68e-02 0.63 1.63 | 1.87e+00 0.76 0.95

0042x0048 | 1.27e-02 0.47 1.85 | 1.23e+00 0.66 1.04

0056x0064 | 7.73e-03 0.61 1.72 | 9.31e-01 0.76 0.96

0084x0096 | 3.83e-03 0.50 1.73 | 6.18e-01 0.66 1.01

0126x0144 | 1.71e-03 0.45 2.00 | 4.09e-01 0.66 1.02

0182x0208 | 6.99e-04 0.41 2.42 | 2.79e-01 0.68 1.03

FULL mesh | L2 error L2 ratio L2 rate | H1 error H1 ratio H1 rate

0030x0016 | 7.51e-02 - - | 3.62e+00 - -

0045x0024 | 3.40e-02 0.45 1.95 | 2.35e+00 0.65 1.07

0060x0032 | 1.93e-02 0.57 1.98 | 1.75e+00 0.74 1.03

0090x0048 | 8.61e-03 0.45 1.99 | 1.16e+00 0.66 1.02

0120x0064 | 4.86e-03 0.56 1.99 | 8.65e-01 0.75 1.01

0180x0096 | 2.17e-03 0.45 1.99 | 5.76e-01 0.67 1.00

0270x0144 | 9.72e-04 0.45 1.98 | 3.84e-01 0.67 1.00

0390x0208 | 4.73e-04 0.49 1.96 | 2.66e-01 0.69 1.00

,
P. Kuberry Quickly Prototyping With Intrelab 15

