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ABSTRACT 

The Web contains a wealth of information that captures the 

evolution of groups of individuals.  Mining this information can 

help us better understand human dynamics and build better data 

mining algorithms.  Due to the complexity and richness of this 

data, it is difficult to find general analysis techniques for 

understanding the underlying dynamics. This paper discusses how 

data compression algorithms can be brought to bear on this 

problem and introduces a new measure called Complexity 

Difference (CD).  CD can be used to detect inflection points in 

complex, human generated time series data without requiring 

costly feature extraction. It is rooted in Kolmogorov Complexity 

and related to Normalized Compression Distance.  This paper will 

review the applicability of compression techniques to data mining.  

It will then describe Complexity Difference and show its 

application to several data sets. The first is a series of edit 

histories from individual Wikipedia pages.  The second is the 

21M PubMed titles provided for the WebSci14 data challenge. In 

both cases, we show that data compression without feature 

extraction can be applied to find points in time where the group 

dynamics change. 

Categories and Subject Descriptors 

I.2.7 [Artificial Intelligence]: Natural Language Processing – 

language parsing and understanding, text analysis. H.3.1 

[Information Storage and Retrieval]: Content Analysis and 

Indexing – linguistic processing 

General Terms 

Algorithms, Measurement, Human Factors, Languages, Theory 

Keywords 
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1. INTRODUCTION 
When looking at a time series of human generated data, a natural 

question to ask is whether there are key points in time when there 

are shifts.  This kind of inference is different and more complex 

than questions about the content of the data itself.  For example, 

questions such as “when was the first time that some specific 

topic was mentioned,” are more easily answered because they are 

about the content of the data itself.  But sometimes we’d like to 

ask if there are unusual periods of time, and use this as a basis for 

further analysis.  We may not know a priori what features would 

be useful in making that determination.  

In this paper, we will present a new algorithm called Complexity 

Difference (CD) that can be applied to complex time series data to 

address this problem.  The algorithm is related to Kolmogorov 

Complexity and Normalized Compression Distance (NCD).  NCD 

is a method for comparing two items using data compression [6].  

The advantage of such techniques is that they work without 

requiring individual feature extraction.   

We will start with a brief review of Kolmogorov Complexity and 

Normalized Compression Distance. Then we’ll define Complexity 

Difference and apply it to several data sets. 

2. BACKGROUND 

2.1 Inferring Information about Groups 

Using Web Data 
 Information on the Web is often used as a means of acquiring a 

deeper understanding of the people and organizations that create 

and consume web content.  For example, a current active area of 

research is inferring information about populations of people from 

social media.  Additionally, the Wikipedia edit history has been 

studied as a means of thinking about group dynamics [14]. 

Much of this analysis relies on feature extraction and prior 

knowledge of critical elements.  While these methods can be very 

powerful, they are also specific—when the genre or type of 

question being asked changes, the technique breaks down.  By 

avoiding user specified features, complexity analysis is a more 

robust operation.  For any individual problem, complexity 

analysis may be weaker than the optimal feature based algorithm, 

but across the range of all possible problems, complexity will give 

useful results without manual tweaking and manipulation. 

Additionally, traditional methods, such as machine-learning, that 

require these specified features make it difficult to ask general 

questions, such as “find an important point in time” when that 

point in time may come from one of many different possible 

feature sets.  However it is possible to get access to this kind of 

information through the use of complexity analysis, as discussed 

in the next section. 

2.2 Compression 

2.2.1 Kolmogorov Complexity 
Kolmogorov Complexity is an idealized way of evaluating the 

quantity of information in an individual piece of data.  Intuitively, 

the Kolmogorov Complexity of a piece of data is the shortest 

program that could be used to reproduce that piece of data [5].  

For example, consider the string composed of the letter a repeated 

ten billion times.  Printed out, it would take up a considerable 

amount of space.  Intuitively, such a string is actually very simple 

and its shear length is not an indication of the complexity of the 

information it contains.  The same string can also be represented 

simply with the phrase “a repeated 10 billion times.”  With those 

directions, one could perfectly reproduce the string.  Compare this 

with a truly random sequence of ten billion characters.  To 

reproduce such a specific sequence, you would need the full 

sequence itself.  There wouldn’t be a shorter set of directions that 

could be used to produce the sequence.  So even though the 

original strings are the same length (ten billion characters), the 

sequence of a’s is simpler than the random sequence.  This 

difference is captured with the notion of Kolmogorov Complexity.   

Another way to think about Kolmogorov Complexity is that it 

identifies and removes redundancy in the data, leaving only the 

parts of a data item that can’t be anticipated.  
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2.2.2 Compression as an Approximation of 

Kolmogorov Complexity 
Compression algorithms are one way to approximate Kolmogorov 

Complexity because they identify and isolate redundancy.   Li et. 

al. have a detailed treatment of the relationship between 

Kolmogorov Complexity and data compression [6].  They also 

include a description of the properties that a compression 

algorithm must have in order to be reliably useful as an 

approximation.  In our experiments, LZMA served as a better 

compressor than BZip2. Figure 1 shows the behavior of BZip2 

and LZMA compression over massively repetitive data.  We took 

a single, short Wikipedia article and produced a series of 

documents of varying length composed of the same article 

repeated multiple times. The x-axis is the length of the document. 

To be an approximation of Kolmogorov Complexity, we’d expect 

that the compressed size would remain relatively constant since 

the shortest string needed to represent the document would be the 

compressed size of the original document along with the number 

of times it was repeated. The figure shows that LZMA has this 

property and BZip2 doesn’t. 

 

Figure 1. Compressed page length of a repeated Wikipedia 

page 

Figure 2 shows another view of the same information over the 

same set of documents.  This time the y axis is a log plot of the 

compression ratio and the x axis is size.  This graph shows that as 

the data size gets larger, massively redundant text files are about 

10 times larger using BZip2 than using LZMA.  This is consistent 

with the size of the Wikipedia download files.  The history files 

are compressed versions of every revision of a page where even a 

small change to the page would result in the full version being 

stored in the XML and then compressed, thus creating a massively 

redundant data set.  Wikipedia hosts both BZip2 and LZMA 

versions of the files; the LZMA files are approximately one tenth 

the size of the corresponding BZip2 file. 

 

Figure 2. Log Scale view of compression ratio on repetitive 

Wikipedia document 

All this suggests that in order to get good results, one must not 

choose an algorithm arbitrarily.  The LZMA implementation we 

use for the analysis in this paper works well. 

2.2.3 Normalized Compression Distance 
Normalized Information Distance [6] is an idealized similarity 

metric for comparing the shared information between two items.  

The metric is rooted in Kolmogorov Complexity.  If two items are 

exactly the same, then the shortest string that could generate both 

of them together would be the string that would generate one of 

them, plus a small addition to indicate that the item should be 

repeated.    

More formally, consider two data items, x and y, both of which 

can be expressed in terms of a sequence of bytes.  Let some 

function C take an item and return the number of bytes in a 

compressed version of the item. Figure 3 illustrates how the 

compression function can be used to compute normalized 

compression distance between two items.  The circle on the left 

illustrates the number of bytes in the compressed version of x, 

computed by C(x).  The circle on the right illustrates the number 

of bytes in the compressed version of y, computed by C(y).  The 

entire area contained by the two circles represents the number of 

bytes in the concatenation of x and y, C(x,y).  The overlap of the 

two circles, represented by v, is what enables a comparison of two 

items.  The area v is the overlap in content between the two; the 

size of v represents the content in x that is also in y.   

 

Figure 3. Normalized Compression Distance 

The size of v is proportional to the amount of shared content.  

Two extreme situations are illustrated in Figure 4.  If x and y are 



 

 

nearly identical (the left side of the illustration), v is very large, 

almost the same size as the compressed version as either of the 

items individually.  If x and y share no information, then v is 

empty and C(x,y) is simply the sum of C(x) and C(y). 

 

Figure 4. Two extreme compression scenarios 

Normalized Compression Distance (NCD) is the ratio of the 

largest amount of unshared information in either C(x) or C(y) to 

the larger of C(x) and C(y), as shown in Equation 1.  Chen et. al. 

explain how this operation defines a metric that meets specific, 

provable criteria.   

   (   )   
 (   )       ( )  ( ) 

      ( )  ( ) 
 

Equation 1. Normalized Compression Distance 

The accuracy of these computations relies on how well the 

compressor approximates the Kolmogorov Complexity of the 

items.  An analysis of the features needed by a good compressor 

appears in the literature [1,6]. 

2.2.4 Applications of Normalized Compression 

Distance 
Normalized Compression Distance has been applied to DNA 

sequence analysis and the relationships among different languages 

[6].  It has also been applied to clustering text and time series 

information as well as finding anomalies in time series [4].  It has 

even been used for clustering music [2,3] and Internet traffic [12].   

However, the technique has not found broad application to Web 

data.  One possible reason for this is that at its core, NCD is about 

comparing two items to each other.  For text documents, it is 

straight forward to create a vector space and compare the items 

within that vector space, as is usually done, and which generates 

more concrete results than the NCD approach, with more user 

control.   

3. Complexity Difference 
This section describes a new algorithm called Complexity 

Difference.  Complexity Difference starts with the assumption 

that the redundancy (compressibility) in a piece of data comes 

from multiple sources.  Looking at the difference in compression 

ratios where some sources are held constant lets one measure 

changes in other sources.  This is what will let us discover 

changes in group dynamics over time.  

More formally, let us treat a piece of information as being 

generated by a combination of different sources,             

Some other function, G, takes these sources and combines them, 

producing a specific piece of information.  So each specific piece 

of information is a function of the sources, passed through G. 

 (          ) 

The complexity of the final product is a combination of the 

complexity of the individual sources.  Consider the string 

composed entirely of the letter ‘a.’  It can be thought of as a 

function of a single source which produces ‘a.’ If we call that 

source ‘A’, the function would be as follows. 

 ( ) 

The complexity of the product is just the complexity of that single 

source, which is small. In other words, it would have a very large 

compression ratio.   

Now consider a sequence of truly random characters.  Any 

sequence of random characters can be thought of as the product of 

some source that produces random characters.  If we call that 

source R, the function would be as follows. 

 ( ) 

The compression ratio of such a product would be quite large  In 

fact, it would be approximately one because no compression 

would be possible.  Thus, it is possible to compare the amount of 

information in two pieces of data simply by knowing the 

compression ratios. This is invariant with respect to the lengths of 

the strings.  Two truly random strings, one of a billion and one of 

100 characters, would both have the same compression ratio (of 

one) because the same information source was producing them.   

Now let us consider a slightly more complex situation, one that 

mixed the sources A and R. as follows: 

 (   ) 

 The strings are generated as a function of the two constituent 

generators.  One is a truly random character generator and the 

other generates sequences of the letter ‘a.’ A sample string might 

be as follows: 

dijfjeaaaaffihenvifaaaaaakfbibeekaaaaaaaaaa 

The compression ratio of this string would be somewhere between 

the compression ratio of A and that of R.  It would be less than 1, 

but greater than if the whole sequence was determined.  The 

measured complexity of the product would be a function of the 

two generators along with the function that combines them. 

Natural language is a combination of several different 

“information sources.”  The English language, for example, has a 

certain complexity due to its grammar.  For a given topic domain, 

the specialized vocabulary also provides a certain amount of 

complexity.   Complex topics with a large vocabulary will not 

compress as well as topics with a smaller vocabulary.  Finally, a 

certain amount of complexity is due to the ideas themselves.  

Although vocabulary selection and idea complexity certainly are 

inter-related, it’s also the case that the ideas are expressed in the 

arrangement of terms and not just the vocabulary choice.  The 

same distribution of terms could be used to express a wide variety 

of different ideas, some of them more complex than others.  So we 

might represent any given natural language text as a function of 

three generators, language structure (S), vocabulary choice (V), 

and idea complexity (I).  Thus, a piece of natural language is 

generated by the function). 

 (     ) 



 

 

 

Figure 5. Compression ratios of Wikipedia pages 

This is measurable in English language text.  Consider the 

compression ratio of Wikipedia pages as shown in Figure 5.  This 

graphs 1,110 Wikipedia pages of various sizes.  The x-axis 

represents uncompressed article length and the three lines 

represent the size of different compressed versions of the page.  

The bottom line is the size of the compressed version of the 

document with every term instance put into alphabetical order.  

By putting all the terms in order, we’ve eliminated parts of the 

complexity due to language.  The top line is the average 

compression size of three documents where all the terms from the 

document at that x-value were arranged randomly, which 

represents the situation where every term position was critical 

(unpredictable).  The middle line is the compressed size of the 

actual document.  The bottom line thus represents the information 

conveyed simply by the choice of terms.  The top line represents 

the maximum potential information in the document if the 

arrangement were purely random.  The actual compression size is 

somewhere between the two.     

Assuming that all the documents are in a natural language, 

changes in the compression ratios should reflect changes in the 

complexity of the content, namely the vocabulary selection and 

the complexity of the underlying ideas.  Our goal was to detect 

this change in complexity. 

4. FINDING INFLECTION POINTS IN THE 

HISTORY OF A WIKIPEDIA PAGE 

4.1 Data 
The Wikipedia edit history provides an ideal place to test the 

concept that we can control for some forms of complexity and 

detect others.  We looked at four pages, three of which have been 

pointed out as being targets for edit wars [8] and one which we 

picked simply because it had a significant number of page 

revisions. 

Wikipedia makes its entire revision history available for 

download, meaning users can see how a page changes over time.  

This history, along with the data itself, has made Wikipedia the 

subject of much data mining research [8,13] and for understanding 

group behavior. Many pages have evolved over time with 

thousands of revisions.  The Elvis page is a good example of this.  

There are 16,501 revisions, including revisions made by registered 

and anonymous users.  As information gets added on a topic, the 

page can grow or shrink.  If a page becomes too large or complex, 

the authors of a page may decide to split the page in to multiple 

pages, one for each subtopic.  That way, each individual page 

covers fewer topics.  This happened with the Elvis page when the 

users decided to split the article, creating new pages, each devoted 

to a different topic.   

And yet, the core topic for any page and the language used stays 

constant.  This suggests that changes in compression ratios may 

reveal critical changes to the page. 

4.2 Approach 
Assuming that the language stays constant, if the underlying 

vocabulary and the complexity of the ideas grow or shrink, we’d 

expect that change to be reflected in the compression ratios.  So 

for each set of documents (each revision in the case of Wikipedia 

page edits), we compute a function over all of the page lengths of 

each revision to the number of compressed bytes for that revision.  

From that, we compute what we would expect the compressed 

size to be for each page.  Finally, we compute the difference 

between the expected and actual number of bytes, which we then 

plot.  What we find empirically is that this value varies with 

respect to inflection points in the group over time. 

  

4.3 RESULTS 

4.4 Power Law Distribution of Compression 

Lines 
The Power Law description of the relationship between original 

and compressed bytes takes the form in the following equation.  

      

In our data a power law distribution was the best fit, especially for 

the smaller page sizes.  However, a linear regression also fit well 

and provided almost the same results as the ones described in this 

paper.  The table below shows the parameters to this equation for 

each article. 

 

Table 1. Parameters to the exponential equations 

Page a b 

Elvis 1.0653 0.8981 

Anarchism 0.9234 0.9033 

Global Warming 1.6266 0.8500 

Pumpkin 1.6963 0.8473 

4.5 Elvis 
Let’s consider the page on Elvis.  In our data set than runs through 

2011, the Elvis page has 16,501 revisions.   

 

Figure 6. Elvis Original and Compressed Bytes 



 

 

 

Figure 7. Elvis Page Length and Compression Difference 

Figure 7 plots the length of the Elvis page over time and the 

difference between the expected and actual compression ratios.  

Revisions that were clearly vandalism (sudden deletions of 

content or massive increase in content, either of which were 

immediately fixed) have been dropped from this analysis.  It’s 

clear that the page increases in length over time with the 

exception of a sudden decrease.  Examining the revision 

comments around this time shows that the editors decided that the 

page had grown too complex and that it should be split into 

different subsections, one for each major topic: one page for his 

movie career, one page for Graceland, etc.    There is a sudden 

drop in the page length when subsections were cut out to form 

new pages.  After that, however, the page starts growing again, 

soon being even larger than before.  So did the effort to simplify 

the page fail?  If we were to only look at the page length, we 

might conclude that.  However, a closer examination of the page 

shows that this is not the case. Before the break, we see the 

difference between the expected and actual compression ratio 

increasing.  In other words, the vocabulary was getting more 

complex.  But after the split, this difference remains the same and 

even declines.  This is reflective of the complexity of the 

vocabulary remaining more constant.   

4.6 Anarchism 
The Wikipedia page for Anarchism has 16,006 revisions, 

including revisions of registered and unregistered users.  Like 

Elvis, the compression to original bytes ratio follows a power law 

distribution.     

 

Figure 8. Anarchism Original and Compressed Bytes 

Early on, the page shows an erratic, but slowly increasing 

compression difference as shown in Figure 7.  At a certain point 

in the history, the compression diff starts decreasing with two 

small spikes.  

 

Figure 9. Anarchism Page Length and Compression 

Difference 

4.7 Global Warming 
The Wikipedia page for global warming has 18,581 revisions.  

The compressed and original bytes also exhibits a power law 

distribution, but with somewhat different parameters than 

Anarchism and Elvis.   

 

Figure 10. Global Warming Original and Compressed Bytes 

The page has a clean and simple increase in compression 

difference from early on throughout approximately half of its life 

followed by a stable or slowly decreasing compression diff.   

 

Figure 11. Global Warming Page Length and Compression 

Difference 

4.8 Pumpkin 
Finally, the page for Pumpkin also has a power law distribution 

relationship between compressed and original bytes.  The page is 

also heavily edited, but considerably less than the other pages 

with only 1,949 revisions.  



 

 

 
Figure 4. Pumpkin Original and Compressed Bytes 

The compression difference history for this page is different than 

for the other three pages.  It has a fairly stable Complexity 

Difference for much of its life.  Then there is a sudden drop, 

followed by an increasing compression diff.  This change took 

place in March of 2008.  A look through the logs of the page 

shows that the Pumpkin page was vandalized and in mid-2008, 

shortly after this shift, the page was locked down and a large 

amount of new content was added.  The inflection point occurs 

when the page was locked down and improved. 

 

Figure 5. Pumpkin Page Length and Compression Difference 

5. FINDING INFLECTION POINTS IN 

RESEARCH PAPER TITLES 

5.1 Data  
We also examined approximately 21.5 million publications from 

PubMed [7] that were made available for this year’s WebSci14 

data challenge.  We split the paper titles into different files by 

year.  (There are 1.7 million papers in the data set do not have 

years associated with them. We excluded these from this study.) 

5.2 Results 
We computed the Complexity Difference for the PubMed articles.  

The CD analysis shows that the complexity of the information 

stays relatively constant until later years even though the raw data 

size starts increasing earlier. 

 

Figure 6. PubMed Original and Compressed Bytes 

 

 

Figure 7. PubMed Complexity Difference 

5.3 Other Applications of Compression 
Using compression as a proxy for information content allows for 

other avenues of exploration.  NCD, as outlined earlier, creates a 

powerful similarity measure.  Additionally, we may wish to know 

the amount of new information produced by a new document.  For 

the PubMed data set, this is the same as asking “given the article 

titles in some year N, how much new information was there in 

year N+1”.  Put another way, we wish to find C(yn+1)-vn+1,n.  

Rearranging Equation 1, this is equivalent to finding C(yn+1,yn) – 

C(yn).  We then scale this by C(yn+1).  Intuitively, this value is the 

new information in year N+1, divided by the total information in 

year N+1; or more simply the percent of information in year N+1 

which is new.  This is described in Equation 2. 

  (  )   
 (       )   (  )

 (    )
 

Equation 2. New, Unique Information 

 

 

5.4 Results 
We ran an NCD analysis of each year’s paper titles against each 

other year, for years in the range 1900-1982.  We then used these 

results to create a graph where each node represents a year and 

edge weights give the NCD between two years of papers (scaled 

so that larger values indicate the years are more similar; in 

traditional NCD the smaller a value the more similar the two 

documents). 

Figure 8 shows the results when the edges are filtered so only the 

10% strongest edges are shown.  There are three distinct 

communities visible.  The first, on the far right, contains the years 

from 1900-1907.  The years 1908-1910 act as a bridge to the large 

community in the middle, which encompasses the years 1908-

1926.  The final community contains the years from 1926-1944.  

In general, two years will have a high NCD if they are close 

chronologically, and this is well illustrated by the community 

structure in the graph. 

After 1945, each node is independent.  The hypothesis is that 

there is an exponential growth of information, and as information 

grows it becomes more varied.  Thus, the later years are 

dissimilar, simply because there is so much, and such different, 

information being discussed each year. 



 

 

 

Figure 8. The 10% strongest edges in a similarity graph 

This effect is robust: the same pattern is evident when all but 25% 

of the edges are removed (Figure 15) with 25% of the edges 

visible.  In this case, the region from 1900-1944 is a dense graph, 

and only a handful of edges connect to other nodes.  No year after 

1960 has an edge connected to it, and 1960 only has degree 1 (it’s 

connected to 1959).  Put another way, the publications in the 

1900s and 1940s are more similar to each other than publications 

from the 1970s to the 1980s.  

 

Figure 9. The 25% strongest edges in a similarity graph 

On the surface this is a surprising result, but lends credence to the 

claim that exponential growth of knowledge leads to exponential 

specialization and distinction.  As more information is gained, it 

splinters into different, distinct subfields that are dissimilar. 

It’s easy to check that each year more publications are written (a 

simple count of publications per year shows this to be true), but 

it’s not so obvious that each of those publications contains new 

information.  To check this, we look at two key metrics.  First, we 

find the compressed size of the year file, using compression size 

as a proxy for information content.   Additionally, we use the 

normalized new information content function given in Equation 3. 

  

 

 

Figure 10. File Compression Size 

Figure 10 shows a graph of the file compression size for each 

year, from 1900-2012.  As expected, this graph shows an 

exponential growth in the amount of information contained in 

each year, giving evidence to the theories outlined above. 

 

 

 

Figure 11. Normalized New Information Content 

Figure 11 shows the new information each year as a percent of 

total information from that year (note that the chart starts at 1901 

since this equation requires data from the previous year).  For 

years before 1945, the new information produced each year is 

roughly 85% of the total information.  Between 1945 and 1962, 

the new information content is around 92%, and afterwards the 

new information asymptotically approaches 1.   

This makes clear a relation outlined earlier: as time goes on, more 

of the information being created each year is new information.  

This explains why the NCD for years later in the data set is so 

small.  Similarly, the valley from 1945-1962 corresponds to the 

newly connected nodes in the second network.  Later nodes 

weren’t connected since a larger percent of the information in 
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each year was new information, and thus dissimilar to previous 

years. 

The spike at 1945 is interesting, and corresponds to a change in 

the data set.  Prior to 1945, each file was relatively small 

(approximately 200kb at a maximum), but afterwards the files 

became much larger (approximately 2500kb at a minimum), with 

1945 falling roughly in the middle (808 kb).  This increase in 

PubMed articles corresponds to an increase in the percent of new 

information published each year, and is related to real life events, 

most notably the post-war science boom. 

 

6. DISCUSSION 
The use of compression to analyze data in various ways has a 

number of advantages.  First, it is straightforward to apply.  All 

that is needed is to compress two items individually, and then 

compress the concatenation of them, and compare the results.   

Second, a compression analysis does not require a priori 

knowledge of features to extract.  This means both that the kinds 

of data that can be analyzed and the kinds of questions that can be 

asked are fairly broad.   

There are some downsides of the application of compression.  

While on the one hand, it is not necessary to extract features; 

neither does one have much control over the features used.   

Through our work in this paper, we have shown compression 

analysis is a useful tool for analyzing data sets where no prior 

knowledge of the important features is known. 

7. Conclusion 
This paper introduced a new measure called Complexity 

Difference that can be used to analyze change in group dynamics 

over time.  Additionally, we have shown other uses for 

compression as a measure of information theory, notably in 

Normalized Compression Distance analysis and as a measure of 

normalized new information content.  We’ve applied these 

measures to various data sets and shown that they identify specific 

points in time where there are inflection points in the complexity 

of the information in the data.   
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