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ABSTRACT

The Web contains a wealth of information that captures the
evolution of groups of individuals. Mining this information can
help us better understand human dynamics and build better data
mining algorithms. Due to the complexity and richness of this
data, it is difficult to find general analysis techniques for
understanding the underlying dynamics. This paper discusses how
data compression algorithms can be brought to bear on this
problem and introduces a new measure called Complexity
Difference (CD). CD can be used to detect inflection points in
complex, human generated time series data without requiring
costly feature extraction. It is rooted in Kolmogorov Complexity
and related to Normalized Compression Distance. This paper will
review the applicability of compression techniques to data mining.
It will then describe Complexity Difference and show its
application to several data sets. The first is a series of edit
histories from individual Wikipedia pages. The second is the
21M PubMed titles provided for the WebScil4 data challenge. In
both cases, we show that data compression without feature
extraction can be applied to find points in time where the group
dynamics change.

Categories and Subject Descriptors

1.2.7 [Artificial Intelligence]: Natural Language Processing —
language parsing and understanding, text analysis. H.3.1
[Information Storage and Retrieval]: Content Analysis and
Indexing — linguistic processing

General Terms
Algorithms, Measurement, Human Factors, Languages, Theory

Keywords
Compression, Text Analysis, Event Detection

1. INTRODUCTION

When looking at a time series of human generated data, a natural
question to ask is whether there are key points in time when there
are shifts. This kind of inference is different and more complex
than questions about the content of the data itself. For example,
questions such as “when was the first time that some specific
topic was mentioned,” are more easily answered because they are
about the content of the data itself. But sometimes we’d like to
ask if there are unusual periods of time, and use this as a basis for
further analysis. We may not know a priori what features would
be useful in making that determination.

In this paper, we will present a new algorithm called Complexity
Difference (CD) that can be applied to complex time series data to
address this problem. The algorithm is related to Kolmogorov
Complexity and Normalized Compression Distance (NCD). NCD
is a method for comparing two items using data compression [6].
The advantage of such techniques is that they work without
requiring individual feature extraction.

We will start with a brief review of Kolmogorov Complexity and
Normalized Compression Distance. Then we’ll define Complexity
Difference and apply it to several data sets.

Thomas Brounstein
Sandia National Labs
trboroun@sandia.gov

2. BACKGROUND

2.1 Inferring Information about Groups
Using Web Data

Information on the Web is often used as a means of acquiring a
deeper understanding of the people and organizations that create
and consume web content. For example, a current active area of
research is inferring information about populations of people from
social media. Additionally, the Wikipedia edit history has been
studied as a means of thinking about group dynamics [14].

Much of this analysis relies on feature extraction and prior
knowledge of critical elements. While these methods can be very
powerful, they are also specific—when the genre or type of
question being asked changes, the technique breaks down. By
avoiding user specified features, complexity analysis is a more
robust operation. For any individual problem, complexity
analysis may be weaker than the optimal feature based algorithm,
but across the range of all possible problems, complexity will give
useful results without manual tweaking and manipulation.

Additionally, traditional methods, such as machine-learning, that
require these specified features make it difficult to ask general
questions, such as “find an important point in time” when that
point in time may come from one of many different possible
feature sets. However it is possible to get access to this kind of
information through the use of complexity analysis, as discussed
in the next section.

2.2 Compression

2.2.1 Kolmogorov Complexity

Kolmogorov Complexity is an idealized way of evaluating the
quantity of information in an individual piece of data. Intuitively,
the Kolmogorov Complexity of a piece of data is the shortest
program that could be used to reproduce that piece of data [5].
For example, consider the string composed of the letter a repeated
ten billion times. Printed out, it would take up a considerable
amount of space. Intuitively, such a string is actually very simple
and its shear length is not an indication of the complexity of the
information it contains. The same string can also be represented
simply with the phrase “a repeated 10 billion times.” With those
directions, one could perfectly reproduce the string. Compare this
with a truly random sequence of ten billion characters. To
reproduce such a specific sequence, you would need the full
sequence itself. There wouldn’t be a shorter set of directions that
could be used to produce the sequence. So even though the
original strings are the same length (ten billion characters), the
sequence of a’s is simpler than the random sequence. This
difference is captured with the notion of Kolmogorov Complexity.

Another way to think about Kolmogorov Complexity is that it
identifies and removes redundancy in the data, leaving only the
parts of a data item that can’t be anticipated.



2.2.2 Compression as an Approximation of

Kolmogorov Complexity

Compression algorithms are one way to approximate Kolmogorov
Complexity because they identify and isolate redundancy. Li et.
al. have a detailed treatment of the relationship between
Kolmogorov Complexity and data compression [6]. They also
include a description of the properties that a compression
algorithm must have in order to be reliably useful as an
approximation. In our experiments, LZMA served as a better
compressor than BZip2. Figure 1 shows the behavior of BZip2
and LZMA compression over massively repetitive data. We took
a single, short Wikipedia article and produced a series of
documents of varying length composed of the same article
repeated multiple times. The x-axis is the length of the document.
To be an approximation of Kolmogorov Complexity, we’d expect
that the compressed size would remain relatively constant since
the shortest string needed to represent the document would be the
compressed size of the original document along with the number
of times it was repeated. The figure shows that LZMA has this
property and BZip2 doesn’t.
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Figure 1. Compressed page length of a repeated Wikipedia
page

Figure 2 shows another view of the same information over the
same set of documents. This time the y axis is a log plot of the
compression ratio and the x axis is size. This graph shows that as
the data size gets larger, massively redundant text files are about
10 times larger using BZip2 than using LZMA. This is consistent
with the size of the Wikipedia download files. The history files
are compressed versions of every revision of a page where even a
small change to the page would result in the full version being
stored in the XML and then compressed, thus creating a massively
redundant data set. Wikipedia hosts both BZip2 and LZMA
versions of the files; the LZMA files are approximately one tenth
the size of the corresponding BZip2 file.
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Figure 2. Log Scale view of compression ratio on repetitive
Wikipedia document

All this suggests that in order to get good results, one must not
choose an algorithm arbitrarily. The LZMA implementation we
use for the analysis in this paper works well.

2.2.3 Normalized Compression Distance

Normalized Information Distance [6] is an idealized similarity
metric for comparing the shared information between two items.
The metric is rooted in Kolmogorov Complexity. If two items are
exactly the same, then the shortest string that could generate both
of them together would be the string that would generate one of
them, plus a small addition to indicate that the item should be
repeated.

More formally, consider two data items, x and y, both of which
can be expressed in terms of a sequence of bytes. Let some
function C take an item and return the number of bytes in a
compressed version of the item. Figure 3 illustrates how the
compression function can be used to compute normalized
compression distance between two items. The circle on the left
illustrates the number of bytes in the compressed version of x,
computed by C(x). The circle on the right illustrates the number
of bytes in the compressed version of y, computed by C(y). The
entire area contained by the two circles represents the number of
bytes in the concatenation of x and y, C(x,y). The overlap of the
two circles, represented by v, is what enables a comparison of two
items. The area v is the overlap in content between the two; the
size of v represents the content in x that is also in y.

Figure 3. Normalized Compression Distance

The size of v is proportional to the amount of shared content.
Two extreme situations are illustrated in Figure 4. If x and y are



nearly identical (the left side of the illustration), v is very large,
almost the same size as the compressed version as either of the
items individually. If x and y share no information, then v is
empty and C(x,y) is simply the sum of C(x) and C(y).

Nearly ldentical ltems Items Sharing no Information

Figure 4. Two extreme compression scenarios

Normalized Compression Distance (NCD) is the ratio of the
largest amount of unshared information in either C(x) or C(y) to
the larger of C(x) and C(y), as shown in Equation 1. Chen et. al.
explain how this operation defines a metric that meets specific,
provable criteria.

C(x,y) —min{C(x),C(y)}
max{C(x),C(y)}
Equation 1. Normalized Compression Distance

The accuracy of these computations relies on how well the
compressor approximates the Kolmogorov Complexity of the
items. An analysis of the features needed by a good compressor
appears in the literature [1,6].

2.2.4 Applications of Normalized Compression

Distance

Normalized Compression Distance has been applied to DNA
sequence analysis and the relationships among different languages
[6]. It has also been applied to clustering text and time series
information as well as finding anomalies in time series [4]. It has
even been used for clustering music [2,3] and Internet traffic [12].

NCD(x,y) =

However, the technique has not found broad application to Web
data. One possible reason for this is that at its core, NCD is about
comparing two items to each other. For text documents, it is
straight forward to create a vector space and compare the items
within that vector space, as is usually done, and which generates
more concrete results than the NCD approach, with more user
control.

3. Complexity Difference

This section describes a new algorithm called Complexity
Difference. Complexity Difference starts with the assumption
that the redundancy (compressibility) in a piece of data comes
from multiple sources. Looking at the difference in compression
ratios where some sources are held constant lets one measure
changes in other sources. This is what will let us discover
changes in group dynamics over time.

More formally, let us treat a piece of information as being
generated by a combination of different sources, S;,S,,Ss3, ...
Some other function, G, takes these sources and combines them,
producing a specific piece of information. So each specific piece
of information is a function of the sources, passed through G.

G(51,55, 83, ..)

The complexity of the final product is a combination of the
complexity of the individual sources. Consider the string
composed entirely of the letter ‘a.” It can be thought of as a
function of a single source which produces ‘a.” If we call that
source ‘A’, the function would be as follows.

G(4)

The complexity of the product is just the complexity of that single
source, which is small. In other words, it would have a very large
compression ratio.

Now consider a sequence of truly random characters. Any
sequence of random characters can be thought of as the product of
some source that produces random characters. If we call that
source R, the function would be as follows.

G(R)

The compression ratio of such a product would be quite large In
fact, it would be approximately one because no compression
would be possible. Thus, it is possible to compare the amount of
information in two pieces of data simply by knowing the
compression ratios. This is invariant with respect to the lengths of
the strings. Two truly random strings, one of a billion and one of
100 characters, would both have the same compression ratio (of
one) because the same information source was producing them.

Now let us consider a slightly more complex situation, one that
mixed the sources A and R. as follows:

G(AR)

The strings are generated as a function of the two constituent
generators. One is a truly random character generator and the
other generates sequences of the letter ‘a.” A sample string might
be as follows:

dijfjeaaaaffihenvifaaaaaakfbibeekaaaaaaaaaa

The compression ratio of this string would be somewhere between
the compression ratio of A and that of R. It would be less than 1,
but greater than if the whole sequence was determined. The
measured complexity of the product would be a function of the
two generators along with the function that combines them.

Natural language is a combination of several different
“information sources.” The English language, for example, has a
certain complexity due to its grammar. For a given topic domain,
the specialized vocabulary also provides a certain amount of
complexity. Complex topics with a large vocabulary will not
compress as well as topics with a smaller vocabulary. Finally, a
certain amount of complexity is due to the ideas themselves.
Although vocabulary selection and idea complexity certainly are
inter-related, it’s also the case that the ideas are expressed in the
arrangement of terms and not just the vocabulary choice. The
same distribution of terms could be used to express a wide variety
of different ideas, some of them more complex than others. So we
might represent any given natural language text as a function of
three generators, language structure (S), vocabulary choice (V),
and idea complexity (I). Thus, a piece of natural language is
generated by the function).

G, V,.D



Message Complexity Compared to Byles
20000

5000

Page Compluxty (e}

Masirum Complesity
duen ing.

Complesity due 1o
the omdeing ofterms

500

Complesity due 1o chosen,
e distrioution

o 17500 35000 500 70000
Page Langth fartns)

Most Recant Flevision Complexty — Sorted Compisxity  Mean Randomizsd Complexity

Figure 5. Compression ratios of Wikipedia pages

This is measurable in English language text. Consider the
compression ratio of Wikipedia pages as shown in Figure 5. This
graphs 1,110 Wikipedia pages of various sizes. The x-axis
represents uncompressed article length and the three lines
represent the size of different compressed versions of the page.
The bottom line is the size of the compressed version of the
document with every term instance put into alphabetical order.
By putting all the terms in order, we’ve eliminated parts of the
complexity due to language. The top line is the average
compression size of three documents where all the terms from the
document at that x-value were arranged randomly, which
represents the situation where every term position was critical
(unpredictable). The middle line is the compressed size of the
actual document. The bottom line thus represents the information
conveyed simply by the choice of terms. The top line represents
the maximum potential information in the document if the
arrangement were purely random. The actual compression size is
somewhere between the two.

Assuming that all the documents are in a natural language,
changes in the compression ratios should reflect changes in the
complexity of the content, namely the vocabulary selection and
the complexity of the underlying ideas. Our goal was to detect
this change in complexity.

4. FINDING INFLECTION POINTS IN THE
HISTORY OF A WIKIPEDIA PAGE

4.1 Data

The Wikipedia edit history provides an ideal place to test the
concept that we can control for some forms of complexity and
detect others. We looked at four pages, three of which have been
pointed out as being targets for edit wars [8] and one which we
picked simply because it had a significant number of page
revisions.

Wikipedia makes its entire revision history available for
download, meaning users can see how a page changes over time.
This history, along with the data itself, has made Wikipedia the
subject of much data mining research [8,13] and for understanding
group behavior. Many pages have evolved over time with
thousands of revisions. The Elvis page is a good example of this.
There are 16,501 revisions, including revisions made by registered
and anonymous users. As information gets added on a topic, the
page can grow or shrink. If a page becomes too large or complex,
the authors of a page may decide to split the page in to multiple
pages, one for each subtopic. That way, each individual page
covers fewer topics. This happened with the Elvis page when the

users decided to split the article, creating new pages, each devoted
to a different topic.

And yet, the core topic for any page and the language used stays
constant. This suggests that changes in compression ratios may
reveal critical changes to the page.

4.2 Approach

Assuming that the language stays constant, if the underlying
vocabulary and the complexity of the ideas grow or shrink, we’d
expect that change to be reflected in the compression ratios. So
for each set of documents (each revision in the case of Wikipedia
page edits), we compute a function over all of the page lengths of
each revision to the number of compressed bytes for that revision.
From that, we compute what we would expect the compressed
size to be for each page. Finally, we compute the difference
between the expected and actual number of bytes, which we then
plot. What we find empirically is that this value varies with
respect to inflection points in the group over time.

4.3 RESULTS

4.4 Power Law Distribution of Compression
Lines

The Power Law description of the relationship between original
and compressed bytes takes the form in the following equation.

y = ax?
In our data a power law distribution was the best fit, especially for
the smaller page sizes. However, a linear regression also fit well
and provided almost the same results as the ones described in this

paper. The table below shows the parameters to this equation for
each article.

Table 1. Parameters to the exponential equations

Page a b
Elvis 1.0653 0.8981
Anarchism 0.9234 0.9033
Global Warming 1.6266 0.8500
Pumpkin 1.6963 0.8473
4.5 Elvis

Let’s consider the page on Elvis. In our data set than runs through
2011, the Elvis page has 16,501 revisions.
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Figure 7. Elvis Page Length and Compression Difference

Figure 7 plots the length of the Elvis page over time and the
difference between the expected and actual compression ratios.
Revisions that were clearly vandalism (sudden deletions of
content or massive increase in content, either of which were
immediately fixed) have been dropped from this analysis. It’s
clear that the page increases in length over time with the
exception of a sudden decrease. Examining the revision
comments around this time shows that the editors decided that the
page had grown too complex and that it should be split into
different subsections, one for each major topic: one page for his
movie career, one page for Graceland, etc. ~ There is a sudden
drop in the page length when subsections were cut out to form
new pages. After that, however, the page starts growing again,
soon being even larger than before. So did the effort to simplify
the page fail? If we were to only look at the page length, we
might conclude that. However, a closer examination of the page
shows that this is not the case. Before the break, we see the
difference between the expected and actual compression ratio
increasing. In other words, the vocabulary was getting more
complex. But after the split, this difference remains the same and
even declines. This is reflective of the complexity of the
vocabulary remaining more constant.

4.6 Anarchism

The Wikipedia page for Anarchism has 16,006 revisions,
including revisions of registered and unregistered users. Like
Elvis, the compression to original bytes ratio follows a power law
distribution.
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Early on, the page shows an erratic, but slowly increasing
compression difference as shown in Figure 7. At a certain point
in the history, the compression diff starts decreasing with two
small spikes.
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Figure 9. Anarchism Page Length and Compression
Difference

4.7 Global Warming

The Wikipedia page for global warming has 18,581 revisions.
The compressed and original bytes also exhibits a power law
distribution, but with somewhat different parameters than
Anarchism and Elvis.
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Figure 10. Global Warming Original and Compressed Bytes

The page has a clean and simple increase in compression
difference from early on throughout approximately half of its life
followed by a stable or slowly decreasing compression diff.
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Figure 11. Global Warming Page Length and Compression
Difference

4.8 Pumpkin

Finally, the page for Pumpkin also has a power law distribution
relationship between compressed and original bytes. The page is
also heavily edited, but considerably less than the other pages
with only 1,949 revisions.



Compressed Bytes
P v y = 1.6963x0-8472

%

R?=0.9972

10000
«
o
]
g‘ 8000
o
@
@ o
a
o
g
&
g wo
o
o

2000

N . I
1 10 100 1000 10000 100000

Original Bytes
Figure 4. Pumpkin Original and Compressed Bytes

The compression difference history for this page is different than
for the other three pages. It has a fairly stable Complexity
Difference for much of its life. Then there is a sudden drop,
followed by an increasing compression diff. This change took
place in March of 2008. A look through the logs of the page
shows that the Pumpkin page was vandalized and in mid-2008,
shortly after this shift, the page was locked down and a large
amount of new content was added. The inflection point occurs
when the page was locked down and improved.
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Figure 5. Pumpkin Page Length and Compression Difference

5. FINDING INFLECTION POINTS IN
RESEARCH PAPER TITLES
5.1 Data

We also examined approximately 21.5 million publications from
PubMed [7] that were made available for this year’s WebScil4
data challenge. We split the paper titles into different files by
year. (There are 1.7 million papers in the data set do not have
years associated with them. We excluded these from this study.)

5.2 Results

We computed the Complexity Difference for the PubMed articles.
The CD analysis shows that the complexity of the information
stays relatively constant until later years even though the raw data
size starts increasing earlier.
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Figure 7. PubMed Complexity Difference
5.3 Other Applications of Compression

Using compression as a proxy for information content allows for
other avenues of exploration. NCD, as outlined earlier, creates a
powerful similarity measure. Additionally, we may wish to know
the amount of new information produced by a new document. For
the PubMed data set, this is the same as asking “given the article
titles in some year N, how much new information was there in
year N+1”. Put another way, we wish to find C(yn+1)-Vas1n-
Rearranging Equation 1, this is equivalent to finding C(Yn+1,Yn) —
C(yn). We then scale this by C(yn+1). Intuitively, this value is the
new information in year N+1, divided by the total information in
year N+1; or more simply the percent of information in year N+1
which is new. This is described in Equation 2.

C(yn+1; Yn) - C(Yn)
C(Wn+1)
Equation 2. New, Unique Information

Nl(yn) =

5.4 Results

We ran an NCD analysis of each year’s paper titles against each
other year, for years in the range 1900-1982. We then used these
results to create a graph where each node represents a year and
edge weights give the NCD between two years of papers (scaled
so that larger values indicate the years are more similar; in
traditional NCD the smaller a value the more similar the two
documents).

Figure 8 shows the results when the edges are filtered so only the
10% strongest edges are shown. There are three distinct
communities visible. The first, on the far right, contains the years
from 1900-1907. The years 1908-1910 act as a bridge to the large
community in the middle, which encompasses the years 1908-
1926. The final community contains the years from 1926-1944.
In general, two years will have a high NCD if they are close
chronologically, and this is well illustrated by the community
structure in the graph.

After 1945, each node is independent. The hypothesis is that
there is an exponential growth of information, and as information
grows it becomes more varied. Thus, the later years are
dissimilar, simply because there is so much, and such different,
information being discussed each year.
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Figure 8. The 10% strongest edges in a similarity graph

This effect is robust: the same pattern is evident when all but 25%
of the edges are removed (Figure 15) with 25% of the edges
visible. In this case, the region from 1900-1944 is a dense graph,
and only a handful of edges connect to other nodes. No year after
1960 has an edge connected to it, and 1960 only has degree 1 (it’s
connected to 1959). Put another way, the publications in the
1900s and 1940s are more similar to each other than publications
from the 1970s to the 1980s.

Figure 9. The 25% strongest edges in a similarity graph

On the surface this is a surprising result, but lends credence to the
claim that exponential growth of knowledge leads to exponential
specialization and distinction. As more information is gained, it
splinters into different, distinct subfields that are dissimilar.

It’s easy to check that each year more publications are written (a
simple count of publications per year shows this to be true), but
it’s not so obvious that each of those publications contains new
information. To check this, we look at two key metrics. First, we
find the compressed size of the year file, using compression size
as a proxy for information content.  Additionally, we use the
normalized new information content function given in Equation 3.
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Figure 10. File Compression Size

Figure 10 shows a graph of the file compression size for each
year, from 1900-2012. As expected, this graph shows an
exponential growth in the amount of information contained in
each year, giving evidence to the theories outlined above.
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Figure 11. Normalized New Information Content

Figure 11 shows the new information each year as a percent of
total information from that year (note that the chart starts at 1901
since this equation requires data from the previous year). For
years before 1945, the new information produced each year is
roughly 85% of the total information. Between 1945 and 1962,
the new information content is around 92%, and afterwards the
new information asymptotically approaches 1.

This makes clear a relation outlined earlier: as time goes on, more
of the information being created each year is new information.
This explains why the NCD for years later in the data set is so
small. Similarly, the valley from 1945-1962 corresponds to the
newly connected nodes in the second network. Later nodes
weren’t connected since a larger percent of the information in



each year was new information, and thus dissimilar to previous
years.

The spike at 1945 is interesting, and corresponds to a change in
the data set. Prior to 1945, each file was relatively small
(approximately 200kb at a maximum), but afterwards the files
became much larger (approximately 2500kb at a minimum), with
1945 falling roughly in the middle (808 kb). This increase in
PubMed articles corresponds to an increase in the percent of new
information published each year, and is related to real life events,
most notably the post-war science boom.

6. DISCUSSION

The use of compression to analyze data in various ways has a
number of advantages. First, it is straightforward to apply. All
that is needed is to compress two items individually, and then
compress the concatenation of them, and compare the results.

Second, a compression analysis does not require a priori
knowledge of features to extract. This means both that the kinds
of data that can be analyzed and the kinds of questions that can be
asked are fairly broad.

There are some downsides of the application of compression.
While on the one hand, it is not necessary to extract features;
neither does one have much control over the features used.

Through our work in this paper, we have shown compression
analysis is a useful tool for analyzing data sets where no prior
knowledge of the important features is known.

7. Conclusion

This paper introduced a new measure called Complexity
Difference that can be used to analyze change in group dynamics
over time.  Additionally, we have shown other uses for
compression as a measure of information theory, notably in
Normalized Compression Distance analysis and as a measure of
normalized new information content. We’ve applied these
measures to various data sets and shown that they identify specific
points in time where there are inflection points in the complexity
of the information in the data.
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