
Tools for Enabling Automatic Validation of
Large-scale Parallel Application Simulations

Deli Zhang
University of Central Florida

Orlando, FL, USA
de-li.zhang@knights.ucf.edu

Gilbert Hendry
Sandia National Laboratories

Livermore, CA, USA
ghendry@sandia.gov

Damian Dechev
University of Central Florida

Orlando, FL, USA
Sandia National Laboratories

Livermore, CA, USA
dechev@eecs.ucf.edu

Abstract—Validation is highly important in parallel application
simulations with a large number of parameters, a process that can
vary depending on the structure of the simulator and the granu-
larity of the models used. Common practice involves calculating
the percentage error between the projected and the real execution
time of a benchmark program. However, this coarse-grained
approach often suffers from a parameter insensitivity problem
in regions of high-dimensional parameter space. In this work
we demonstrate the use of our fine-grained validation toolset to
capture and compare the statistical characteristics of a parallel
application’s execution. Our experimental evaluation shows that
our validation approach offers a significant improvement in
fidelity when compared to validation using total execution time.

I. INTRODUCTION

Building a system simulator is a well-known approach to
predict the performance of large-scale parallel applications∗.
Performance projections can be produced by executing the
application in a simulated environment comprised of software
models in place of hardware components. To fully capture
the interactions between computation and communication in
hardware and software components, system simulators usually
evolve into large software packages comprised of several
layers of modules with dozens of input parameters.

Such complexity makes the task of establishing a sim-
ulator’s accuracy a challenging problem. Most simulation
frameworks evaluate accuracy in terms of total execution
time [4, 3, 1, 12], where the projected execution time is
compared against the real execution time and the error of
the simulation is denoted by a percentage ratio. While the
total execution time is one of the most important artifacts
in a simulation environment, it lacks the fidelity (the ability
to identify execution details) and the coverage (the ability to
encompass all aspects of execution) to serve as a metric for
fine-grained simulation accuracy.

In this work we present a validation toolset † that aims
to capture fine-grained execution details. It consists of a
trace analysis tool that decomposes execution time into finer
granularity, a trace comparison tool that quantizes the disparity

∗Since Message Passing Interface (MPI) is the dominating parallel pro-
graming model in high performance computing, we use the term large-scale
parallel application and MPI application interchangeably
†Both the toolset and demonstration video can be downloaded from

http://cse.eecs.ucf.edu/download.php?approval=417740585

between corespondent metrics of two executions, and a visual-
ization tool that renders the analysis and comparison results in
intuitive graphs. The analysis process takes into account five
groups of statistical data profiled from program traces: overall
traffic and timing, per-node traffic and timing, MPI function
histogram, collective synchronization and node-to-node com-
munication. Although a trace file, such as one collected with
the DUMPI format [5], can itself provide thorough details
about the execution, quantitatively comparing two traces is
difficult because the relevant information is scattered among
a large volume of data. Our statistical metrics aggregate the
relevant information from the traces and provide a scalable
and lightweight overview of the application’s execution details.
To verify our approach, we conduct a number of trace-driven
hardware model validation experiments on the SST/macro
simulation framework [5].

II. BACKGROUND

Most papers related to MPI simulation contain a rigorous
discussion on their evaluation methodology. To the best of
our knowledge, there is no dedicated toolset addressing fine-
grained simulation validation. Our validation toolset greatly
enhances the reliability of the simulation results. In addition,
the presented approach is tightly integrated with our MPI trac-
ing and profiling tools, thus offering a practical and effective
technique for performance analysis of MPI codes.

A. Accuracy Evaluation Approaches

Evaluating the accuracy of simulation, or simulation vali-
dation, normally involves the choice of an evaluation metric
and an error measure‡, and benchmark programs.

An accuracy evaluation metric is a quantitative measurement
that captures certain aspects of a program’s execution. Total
execution time is the most pervasive choice since it is directly
linked to performance. Other metrics such as network latency
and bandwidth are also used to validate network models.

Error measure is a binary function that computes the dispar-
ity between two input arguments. The most common choice

‡We use the term error measure to refer to the function that calculates the
error between two values

SAND2014-16867C

Input Traces from
Real Execution

Analyze

Visualize

Com
pare

Comparison
Report XML

Traces from
Simulation

Stats Report
XML Stats Report

XML

Figure 1: Data flow of the validation toolset. The visualization
graphs are (from top to bottom): break down of computation
and communication time, per-node communication time break-
down, and communication traffic matrix.

is the percentage error or relative error:

Err =
X −R

R
(1)

where X denotes the experimental value and R denotes the
reference value. However, relative error is not symmetrical,
meaning that if the experiment’s value and reference value
are swapped, the result is not the same. To overcome the
biases introduced by the relative error metric, logarithmic error
was proposed in the accuracy study of SimGrid [9]. Using
the logarithmic error provides a symmetrical function which
also allows for computing the maximum, the mean and the
variance.

B. Tracing and Profiling

Tracing is the postmortem approach for analyzing the
performance of MPI applications. It collects detailed event
history data including function name, call stack, timing, and
payload, which could be visualized on a timeline display.
Vampir [6], Scalasca [2], and TAU [7] are some of the well
known comprehensive tracing tools. However, tracing tools
place noticeable overhead on the application and produce large

volumes of trace data (up to hundreds of Gigabytes), which
makes working with them a laborious task.

Profiling, on the other hand, is the low overhead alternative
to providing scalable, lightweight overview of the applications
communication activity. Tools like IPM [11] and mpiP [10]
have been extensively used for application optimization. Un-
like a full-fledged tracing toolset that records the event history,
a profiling tool only aggregates and reports runtime statistics.

Our toolset bears close resemblance to existing profiling
tools in that they both capture execution statistics. Moreover,
our toolset support quantitative comparison of two traces,
which is essential in simulation validation tasks. This func-
tionality is not present in existing tracing or profiling tools.

III. FINE-GRAINED VALIDATION TOOLSET

The core validation toolset consists of two loosely cou-
pled component: a Trace Analysis Tool (TAT) and a Trace
Comparison Tool (TCT). The validation process takes as input
two traces and quantizes the error between them. In the case
of hardware model validation, these two traces come from
executing the benchmark on the real machine and the simulator
respectively. An additional Trace Visualization Tool (TVT)
helps render the analysis and comparison results in graphs.
Figure 1 shows the data flow among the tools in a typical
validation scenario. The action arrows represents the data
transformation process done by the three tools. The tools are
only coupled together by a common XML format, facilitating
both standalone invocation and scripted automation.

A. Trace Analysis Tool

TAT extracts five groups of statistics from each input trace,
which are used as the fine-grained evaluation metrics. It trans-
forms the trace files (in binary format) into statistics report files
in XML format as shown in Figure 2. Each statistics group
is a modular entry in the report file. The advantage of this
structured file format is that new entries can be added without
interfering with the existing ones. This allows us to tailor the
analysis process according to the simulation framework used.

The analysis process aggregates timing and traffic informa-
tion from MPI function calls within trace files. The core idea
is to decompose traffic and timing information along different
dimensions to obtain zoom-in views of the same data. At
the topmost level, we simply separate the total computation
and communication time (see Figure 1). As we progress, the
granularity of the decomposition increases. Namely, we break
down the traffic and timing on per-node, per-function, per-
collective-phase and node-to-node bases. This process also
strikes a balance between granularity and noise. While trace
files provide finest execution details, isolated function logs are
noisy. By aggregating the information, we quash the noise and
distill statistically significant characteristics.

The first metric is the overall traffic and timing, which lists
the respective total of communication traffic, wait time and
compute time. The traffic measures the communication data
flow. In our case we count the total number of data bytes
sent out by each node. Additionally, we obtain bandwidth via

<?xml version="1.0" ?>
<DUMPI_Trace_Report>

<Meta fileprefix="dumpi-2013.01.17.16.33.05"
numprocs="64" startime="1358469185">

</Meta>
<Statistics count="5">

<Entry name="Overall">
<![CDATA[Actual Data]]>

</Entry>
<Entry name="PerNode">

<![CDATA[Actual Data]]>
</Entry>
<Entry name="PerFunction">

<![CDATA[Actual Data]]>
</Entry>
<Entry name="PerCollectivePhase">

<![CDATA[Actual Data]]>
</Entry>
<Entry name="NodeToNode">

<![CDATA[Actual Data]]>
</Entry>

</Statistics>
</DUMPI_Trace_Report>

Figure 2: The structure of statistics report file

dividing traffic by communication time, which is a necessary
measurement to identify the network bottlenecks. Wait time
is the amount of time spent on blocking communication
calls. Comparing with the total execution time, listing both
wait time and compute time breaks down timing granularity,
allowing us to capture the communication and computation
performance separately. The second metric, per-node traffic
and timing, decomposes the traffic and timing by node. These
breakdown statistics reflect the load balancing among the
nodes, because we expect an accurate simulation to also
reproduce the deviation among the nodes. The third metric is
the MPI function histogram. For each profiled MPI function
call, we record the total block time on each node. We also
collect the average and the standard deviation of block time
for each MPI function across all nodes. The fourth metric is
the collective synchronization. We define a collective phase
as an interval of program execution between two consecutive
collective MPI calls. Unlike point-to-point functions, collective
functions operate on every node within a communicator, and
they effectively act as the barriers that synchronize program
execution across all nodes. The sequence of collective function
calls between MPI_Init and MPI_Finalize divide the
whole execution into numbers of synchronization phases. The
time interval of these phases on all nodes also forms a matrix.
We then compute the average and the standard deviation.
The last metric is the node-to-node communication, which
quantitatively shows the communication traffic and timing
among all pairs of nodes.

B. Trace Comparison Tool

TCT computes the element-wise percentage difference on
a per-group basis between the extracted metrics. It produces
trace comparison report in a structured format similar to that
in Figure 2. From the timing data obtained from the trace
analysis process, we first compute the element-wise percentage

difference and then take the average as final error:

Err =
1

n

∑
1≤i≤n

|xi − ri|
xi+ri

2

(2)

Unlike percentage error, percentage difference only measures
magnitude and is completely symmetrical. This can be ob-
served from |x − r| = |r − x|. The symmetric error function
is important when comparing two simulated executions. We
expect the same error regardless which is used as a reference.

We also consider the validation of software models, such as
skeleton applications [8], which are used in on-line simulators
as the surrogates of the original program. A skeleton is derived
by removing computationally intensive program fragments,
but retaining code that determines the execution behavior.
The program’s communication pattern has the most signifi-
cant impact on the performance and scalability of large-scale
applications. Validating a skeleton is similar to machine model
validation except that now we compare the execution of two
different programs (the original program and its skeleton) on
the same simulated environment. Under such circumstances,
we also compute an additional qualitative error that measures
the structural difference between the statistics entries. We
present this qualitative error alongside the regular quantitative
error in our comparison report.

IV. TOWARDS AUTOMATIC SIMULATION TUNING

Using our validation toolset, we conducted a preliminary
evaluation of the simulation accuracy of the SST/macro sim-
ulation framework against a Cray XE6 cluster §. SST/macro
is a coarse-grained system simulator that supports both on-
line and off-line simulations. When it is driven by a trace file
in off-line mode, the simulator accepts trace files in both the
standard Open Trace Format (OTF) and its custom DUMPI ¶

format. We prioritize the support of the DUMPI trace format
because of its performance advantages over OTF. Support for
other formats is also possible since we isolate the trace file
interface from the core analysis and comparison module.

In our tests we execute miniMD ‖ on the cluster using 64,
128, 256, and 512 nodes. We then simulate these executions
with a nominal hardware model and four of its variations (by
randomly changing parameters of the nominal model). We
expect the nominal model to give the most accurate simulation
results. However, all projected total execution time agrees with
the real execution time within 5% error, making it impossible
to judge the simulation accuracy based on this metric alone. By
resorting to manual inspection of the TAT results, we see that
the decomposition of the timings are actually different at finer
granularity. For example, MPI function histogram shows that
MPI_Allreduce contribute most the disparity between the
real run and the simulations. We also observe that the projected
time of variation 1 is the closest to the actual execution time,
but it erroneously prolongs MPI_Send for more than 10%. On

§http://www.cray.com/Products/Computing/XE/XE6.aspx
¶http://sst.sandia.gov/using dumpi.html
‖http://www.mantevo.org/packages.php

Simulation
Parameters

Traces from
Simulation

MPI
Simulator

Application

TAT

TCT

Tuning
Actuator

Traces from
Real

TAT

Figure 3: The automatic simulation tuning framework.

the other hand, the TCT reports reveal that the nominal model
systematically produces the least amount of quantized error
while the errors of other variations increase as the parameters
drifting further away from the nominal values. The quantized
error thus serves as a reliable criterion for identifying the
optimal simulation parameters.

Moreover, the validation toolset fits into the automated sim-
ulation tuning process as shown in Figure 3. Based on the error
generated by comparing two traces, the automatic simulation
tuning framework finds optimal simulation parameters with
little or no human intervention. The auto-tuning process would
heuristically search through the valid simulation parameter
space, and favor those which produce the most similar traces.
This automation eases the repetitive simulation process in
designing large-scale parallel machines and could potentially
shorten the development cycle.

To conclude, we presented a validation toolset that uses
statistical metric instead of total execution time to evaluate
the accuracy of large-scale parallel simulation. The toolset
is modular and can be used in isolation or within scripted
automation frameworks. It provides improved fidelity over the
current accuracy evaluation approaches and additional trace
comparison functionality over existing profiling tools.

V. ACKNOWLEDGEMENTS

Sandia National Laboratories is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Com-
pany, for the United States Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-
94AL85000.

REFERENCES

[1] W. Denzel, J. Li, P. Walker, and Y. Jin. A framework for
end-to-end simulation of high-performance computing
systems. Simulation, 86(5-6):331–350, 2010.

[2] M. Geimer, F. Wolf, B. Wylie, E. Ábrahám, D. Becker,
and B. Mohr. The scalasca performance toolset archi-
tecture. Concurrency and Computation: Practice and
Experience, 22(6):702–719, 2010.

[3] S. Hammond, G. Mudalige, J. Smith, S. Jarvis, J. Herd-
man, and A. Vadgama. Warpp: a toolkit for simulating
high-performance parallel scientific codes. In Proceed-
ings of the 2nd International Conference on Simulation
Tools and Techniques, page 19. ICST (Institute for Com-
puter Sciences, Social-Informatics and Telecommunica-
tions Engineering), 2009.

[4] T. Hoefler, T. Schneider, and A. Lumsdaine. Loggopsim-
simulating large-scale applications in the loggops model.
In Proceedings of the 19th ACM international symposium
on high performance distributed computing, HPDC, vol-
ume 10, pages 597–604, 2010.

[5] C. Janssen, H. Adalsteinsson, S. Cranford, J. Kenny,
A. Pinar, D. Evensky, and J. Mayo. A simulator for large-
scale parallel computer architectures. International Jour-
nal of Distributed Systems and Technologies (IJDST),
1(2):57–73, 2010.

[6] W. Nagel, A. Arnold, M. Weber, H. Hoppe, and
K. Solchenbach. VAMPIR: Visualization and analysis
of MPI resources. Citeseer, 1996.

[7] S. Shende and A. Malony. The tau parallel performance
system. International Journal of High Performance
Computing Applications, 20(2):287–311, 2006.

[8] M. Sottile, A. Dakshinamurthy, G. Hendry, and
D. Dechev. Automatic extraction of software skeletons
for benchmarking large-scale parallel applications. In
ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation (PADS), May 2013.

[9] P. Velho and A. Legrand. Accuracy study and improve-
ment of network simulation in the simgrid framework.
In Proceedings of the 2nd International Conference on
Simulation Tools and Techniques, page 13. ICST (In-
stitute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2009.

[10] J. Vetter and C. Chambreau. mpip: Lightweight, scalable
mpi profiling. URL: http://www.llnl.gov/CASC/mpiP, Ac-
cessed 4/26/2013, 2005.

[11] N. Wright, W. Pfeiffer, and A. Snavely. Characteriz-
ing parallel scaling of scientific applications using ipm.
In The 10th LCI International Conference on High-
Performance Clustered Computing, pages 10–12, 2009.

[12] J. Zhai, W. Chen, and W. Zheng. Phantom: predicting
performance of parallel applications on large-scale par-
allel machines using a single node. In ACM Sigplan
Notices, volume 45, pages 305–314. ACM, 2010.

	Introduction
	Background
	Accuracy Evaluation Approaches
	Tracing and Profiling

	Fine-grained Validation Toolset
	Trace Analysis Tool
	Trace Comparison Tool

	Towards Automatic Simulation Tuning
	Acknowledgements

