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Trinity Benchmarks On Xeon Phi 
(Knights Corner) 

 
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-

8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks.   
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NERSC-8/Trinity benchmarks; Optimal MPI tasks & OMP threads on 
Knights Corner and host dual Sandy Bridge(E5-2670) investigated  

Benchmark Domain/Physics Algorithm/Kernel Phi (Knights Corner )to Dual 
Sandy Bridge ; 
 wall time Ratio 

miniFE Finite Element Sparse Linear Algebra/ MatVec 0.81 

AMG Algebraic Multi Grid Hypre / csr_solve / MatVec 2.01 

UMT Det. Photon Transport Boltzmann Transport solve/ OMP ‘ordinate’ 
computations 

1.38 

SNAP Proxy Particle Transport Boltzmann Transport Solve/OMP Loop over 
outer energy domain 

2.95 

GTC 3-D PIC plasma  Vlasov Eqn. Solve / OMP over particle flux 
computations 

1.95 

MILC QCD Ks_dynamical Simul. / OMP over Conjug. 
Grad. Solve only 

2.32 

miniDFT Plane-wave DFT based 
on Espresso 

Folk Matrix Diagonalization and FFT 3.30 

miniFE performance on Knights Corner (left) and  Dual Sandy Bridge host  right) 

miniFE Vectorization Intensity for Sparse 

MatVec Kernel = 

VPU_ELEMENTS_ACTIVE/VPU_INSTRUC

TIONS_EXCECUTED =  7.634e08/4.363e08 

= 1.75 

Optimal=8;  Plan to benchmark using Intel 

MKL with tuned Sparse Matrix vector 

kernel.    

 

https://software.intel.com/en-us/articles/the-intel-math-kernel-library-

sparse-matrix-vector-multiply-format-prototype-package 
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Vectorization Investigation & Sustained FLOPS 

Measurement with CrayPat;  Percentage of 

peak on Cielo (Cray XK6) with Trinity “small” 

input benchmarks; Points to even greater 

challenge with TFLOPS Phi;  we need to 

improve vectorization and  minimize threading  

& MPI overhead 

0.0% 20.0% 40.0% 60.0%

AMG

GTC

miniDFT

miniFE

miniGHOST

UMT

SNAP

MILC

Trinity Benchmark Applications % of 
Peak FLOP/s 

Application miniFE AMG UMT SNAP 

Vectorization 
%age Gain  

4.68% -6.52% 17.95% 19.52% 

 

PMU counter usage and its limitations;  Example DGEMM: 

Vectorization intensity defined as: 

 Vectorization Intensity = VPU_ELEMENTS_ACTIVE / 

VPU_INSTRUCTIONS_EXECUTED 

 Measurements of this metric ratio on the MIC with 4 and 8 threads  

for DGEMM :   

  

 vectorization intensity DGEMM = 7.84 

 

This metric has an upper bound of 8.  Values close 8 suggest 

efficient use of MIC’s SIMD units.  However since the 

VPU_ELEMENTS_ACTIVE counter measures vector instructions 

like vector load/stores from memory, and instructions to manipulate 

vector mask registers, in addition to the double precision floating 

point instructions, caution is needed in use of this metric for 

performance tuning.  The fact that our measurements of this metric 

achieves close to the peak showing high vectorization intensity is 

misleading if our goal is to achieve high floating point operations 

throughput.  The percentage of peak double precision floating point 

operations achieved with MKL DGEMM in this test is about 30% 

Need in  KNC & KNL:  DP_OPS counter 

compiler vectorization; compare  with 

vectorization ( -O3 ) and without 

vectorization(-novec –O3) 
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Tools to understand performance; 
Vampir Profile; Needed information to 
tune: %age fraction of run time in OMP 
loops, OMP overhead, MPI, MPI 
overhead, and application functions  

miniFE profile showing percentage run time 

fractions 

AMG profile showing percentage run time 

fractions 

Function Legend 
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Tuned Performance of MiniFE 
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Bridge

MIC MiniFE
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Only)

MIC MiniFE

Inlined Kernels
(MPI Only)

MIC MiniFE

OpenMP and MPI

MIC MiniFE

Selective Large
Pages

MiniFE Optimizations 

CG Solve Time (Seconds), 175x175x175, 200 Itr 

 Baseline all MPI performance 23% 
slower than optimized Sandy Bridge 
implementation 

 Goal to provide strong performance 
using 1 MPI rank up to 224 threads 

 Add affinitized OpenMP 
instead of MPI and 
inlining small kernels 
gets 26% improvement 

 

 Disable transparent 
huge pages and 
selectively use large 
page allocations for 
vector data structures 
(to lower TLB miss rate) 

 

 End performance is 
approximately 33% 
higher on 57 core Xeon 
Phi, ~20% over SNB 


