
SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
1

Trinity Benchmarks On Xeon Phi
(Knights Corner)

https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-

8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks.

Mahesh Rajan, Doug Doerfler, Si Hammond,
Christian Trott, Richard Barrett

Sandia National Laboratories

Albuquerque, NM

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,

a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration

under contract DE-AC04-94AL85000.

SAND2014-19083C

https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
2

NERSC-8/Trinity benchmarks; Optimal MPI tasks & OMP threads on
Knights Corner and host dual Sandy Bridge(E5-2670) investigated

Benchmark Domain/Physics Algorithm/Kernel Phi (Knights Corner)to Dual
Sandy Bridge ;
 wall time Ratio

miniFE Finite Element Sparse Linear Algebra/ MatVec 0.81

AMG Algebraic Multi Grid Hypre / csr_solve / MatVec 2.01

UMT Det. Photon Transport Boltzmann Transport solve/ OMP ‘ordinate’
computations

1.38

SNAP Proxy Particle Transport Boltzmann Transport Solve/OMP Loop over
outer energy domain

2.95

GTC 3-D PIC plasma Vlasov Eqn. Solve / OMP over particle flux
computations

1.95

MILC QCD Ks_dynamical Simul. / OMP over Conjug.
Grad. Solve only

2.32

miniDFT Plane-wave DFT based
on Espresso

Folk Matrix Diagonalization and FFT 3.30

miniFE performance on Knights Corner (left) and Dual Sandy Bridge host right)

miniFE Vectorization Intensity for Sparse

MatVec Kernel =

VPU_ELEMENTS_ACTIVE/VPU_INSTRUC

TIONS_EXCECUTED = 7.634e08/4.363e08

= 1.75

Optimal=8; Plan to benchmark using Intel

MKL with tuned Sparse Matrix vector

kernel.

https://software.intel.com/en-us/articles/the-intel-math-kernel-library-

sparse-matrix-vector-multiply-format-prototype-package

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
3

Vectorization Investigation & Sustained FLOPS

Measurement with CrayPat; Percentage of

peak on Cielo (Cray XK6) with Trinity “small”

input benchmarks; Points to even greater

challenge with TFLOPS Phi; we need to

improve vectorization and minimize threading

& MPI overhead

0.0% 20.0% 40.0% 60.0%

AMG

GTC

miniDFT

miniFE

miniGHOST

UMT

SNAP

MILC

Trinity Benchmark Applications % of
Peak FLOP/s

Application miniFE AMG UMT SNAP

Vectorization
%age Gain

4.68% -6.52% 17.95% 19.52%

PMU counter usage and its limitations; Example DGEMM:

Vectorization intensity defined as:

 Vectorization Intensity = VPU_ELEMENTS_ACTIVE /

VPU_INSTRUCTIONS_EXECUTED

 Measurements of this metric ratio on the MIC with 4 and 8 threads

for DGEMM :

 vectorization intensity DGEMM = 7.84

This metric has an upper bound of 8. Values close 8 suggest

efficient use of MIC’s SIMD units. However since the

VPU_ELEMENTS_ACTIVE counter measures vector instructions

like vector load/stores from memory, and instructions to manipulate

vector mask registers, in addition to the double precision floating

point instructions, caution is needed in use of this metric for

performance tuning. The fact that our measurements of this metric

achieves close to the peak showing high vectorization intensity is

misleading if our goal is to achieve high floating point operations

throughput. The percentage of peak double precision floating point

operations achieved with MKL DGEMM in this test is about 30%

Need in KNC & KNL: DP_OPS counter

compiler vectorization; compare with

vectorization (-O3) and without

vectorization(-novec –O3)

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
4

Tools to understand performance;
Vampir Profile; Needed information to
tune: %age fraction of run time in OMP
loops, OMP overhead, MPI, MPI
overhead, and application functions

miniFE profile showing percentage run time

fractions

AMG profile showing percentage run time

fractions

Function Legend

SC14 BOF: Performance Tuning and Functional Debugging for Intel® Xeon Phi™ Processors
5

Tuned Performance of MiniFE

0.0

2.0

4.0

6.0

8.0

10.0

Optimized Sandy

Bridge

MIC MiniFE

Reference (MPI
Only)

MIC MiniFE

Inlined Kernels
(MPI Only)

MIC MiniFE

OpenMP and MPI

MIC MiniFE

Selective Large
Pages

MiniFE Optimizations

CG Solve Time (Seconds), 175x175x175, 200 Itr

 Baseline all MPI performance 23%
slower than optimized Sandy Bridge
implementation

 Goal to provide strong performance
using 1 MPI rank up to 224 threads

 Add affinitized OpenMP
instead of MPI and
inlining small kernels
gets 26% improvement

 Disable transparent
huge pages and
selectively use large
page allocations for
vector data structures
(to lower TLB miss rate)

 End performance is
approximately 33%
higher on 57 core Xeon
Phi, ~20% over SNB

