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ABSTRACT
We want to organize a body of trajectories in order to iden-
tify, compare and classify both common and uncommon be-
havior among objects such as aircraft and ships. Existing
comparison functions such as the Frechet distance are com-
putationally expensive and yield counterintuitive results in
some cases. We propose an approach using feature vectors
whose components represent succinctly the salient informa-
tion in trajectories. These features incorporate basic infor-
mation such as total distance traveled and distance between
start/stop points as well as geometric features related to the
properties of the convex hull, trajectory curvature and gen-
eral distance geometry. Most of these geometric features are
invariant under rigid transformation. We demonstrate the
use of different subsets of these features to identify trajec-
tories similar to an exemplar, cluster a database of several
hundred thousand trajectories, and identify outliers.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS ; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Curve, sur-
face, solid, and object representations; I.4.7 [Image Pro-
cessing and Computer Vision]: Feature Measurement—
Feature representation; I.4.8 [Image Processing and Com-
puter Vision]: Scene Analysis—Tracking ; I.5.2 [Pattern
Recognition]: Design Methodology—Feature evaluation and
selection

General Terms
Algorithms, Measurement, Verification
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Trajectory, Flight
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The growth of remote sensing capabilities has resulted in
a well-documented explosion of image data[4]. However, in-
terpretation of that data mostly remains a human activity.
One of the important changes in this revolution of sensing
data is not only increasingly high-resolution and wide-field
imagery, but also rapid time sampling. This data presents
an interesting computational analysis problem that is in-
herently different than that associated with comparing im-
ages for large, durable feature changes. With multiple data
points, one can track particular objects, and build a series of
time stamped location points that make up a trajectory. Of
course, the problem of comparing trajectories is not limited
to traditional overhead imagery analysis. Animal tracking is
of great interest to the biology community to understand be-
havior[9]. In general, any multidimensional dataset that has
time stamped points can be considered a trajectory through
phase space.

One example of a difficult but important example of intent
that we have chosen to study is classifying aircraft behavior
based on their trajectories. It is important for a number
of reasons. First, there are a number of obvious security
reasons. It is useful to comb data to search for criminal or
terrorist activity. Understanding patterns of both normal
and anomalous behavior is critical to optimizing public air
traffic resources. Obtaining details of airline performance
that are not usually called out is also a potential application.

The aircraft intent problem also has the quality of having
a more complicate space of input and output. Generally the
input consists of time-stamped location and altitude data
from which other derived quantities such as speed and head-
ing can be calculated to a certain accuracy. In many cases
this input is derived from multiple data sources and has
many errors and omissions. The outputs are dependent on
the problem of interest. This could include looking for regu-
lar patterns, anomalous patterns, patterns that correspond
to a specific behavior, clustering into groups or finding a
flight similar to an input trajectory. The outputs described
above are not necessarily well-defined and in some cases have
a human-defined component to them. The net result of these
complexities is a potentially rich set of ways to go about
building the model that connects the inputs and outputs.

There have been a number of approaches to the trajectory
problem that include Fourier descriptors[1], earth mover dis-
tance[3], hidden Markov Models[2], Hausdorff-like distances[7],
Bayesian models[8] and other approches. We propose an al-
ternative approach that is primarily focused around geomet-
ric quantities related to the track as a whole. These quan-
tities have many desirable properties. First, most describe
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the trajectories as a whole, and this appears to correspond
better to how a person views the trajectories. Second, most
of these descriptors correspond to values that can be pre-
calculated and compared quickly with other trajectories, as
opposed to comparison measures that require specific com-
parisons between every track with every other track. This
would allow rapid lookup in a database. Finally, for many
practical questions of interest that separate flight behaviors,
these geometric descriptors correspond fairly closely to one
or more quantities that describe the behavior of interest.

In this paper, we begin by describing some of the related
work that has been done in the area of comparing trajec-
tories, in terms of both aircraft and more general work. In
Section 3 we move on to describing more carefully the spe-
cific problems we are trying to solve by designing geometric
measures for aircraft trajectories. Section 4 gives a summary
of the quantities that were evaluated as geometric measures.
The techniques used to find trajectories in relevant feature
spaces, and the relationship to clustering is described in Sec-
tion 5. The evaluation of the quality of the different geomet-
ric measure is given in Section 6, and then we summarize our
work and offer suggestions for future work in Section 7.

1.1 Notation
We will use the following notation when describing trajec-

tories and their features.

• A trajectory T comprises n + 1 timestamped points
(x0, t0), (x1, t1), . . . , (xn, tn).

• Given T, angle θi is the turning angle from vector (xi−
xi−1) to (xi+1−xi). Informally, θi is the turn between
segments i and i+ 1 in the trajectory. Positive angles
indicate counterclockwise turns.

• |T| is the total length of all the segments of T.

• ||xn − x1|| is the end-to-end distance of T.

• C(T) is the convex hull of the points in T. Points
c1, c2, . . . , cm ⊂ x1, . . . , xn form the vertices of C(T).

• C(T) is the centroid of C(T).

2. BACKGROUND

2.1 Previous Approaches
The fundamental computer science issues related to com-

paring two trajectories have been studied for many decades
in their most general form. If one considers a trajectory,
T = {(x1, t1), . . . , (xn, tn)} to simply be a set of points in
an D + 1-dimensional space, there are a significant number
of application drivers outside of aircraft trajectory compari-
son. These include object recognition, handwriting analysis,
and many different forms of time-series analysis.

There have been many different distances defined to mea-
sure how far apart two trajectories are. Perhaps the most
straightforward measure of distance between two curves is
the Hausdorff metric. For two trajectories, A and B, it is de-
fined as greatest distance out of all of the distances between
from a point on A to the nearest point on B. This gives a
rough sense of the distance between two curves, but doesn’t
take into account the direction traveled on the trajectories.

One of the most well-known metrics associated with curve
similarity that does take the direction into account is the

Frechet distance. The Frechet distance F (A,B) is formally
defined as

F (A,B) = inf
α,β

max
t∈[0,1]

{d(A(α(t)),B(β(t)))} (1)

where α(t) and β(t) are continuous, non-decreasing repa-
rameterizations of A and B, respectively, onto the interval
[0, 1]. Eiter and Mannila[6] have extended this definition in
a straightforward manner to the case where A and B are
described by discrete points as polygonal curves. Both vari-
ations of the Frechet distance represent the minimum length
of a leash required for a man, following one curve, to walk a
dog that is following the other curve.

One problem that both the Hausdorff distance and Frechet
distance have is that they do not allow for translational,
rotational or reflectional invariance. If they do not natu-
rally represent curves that would naturally be positioned
perfectly, they must be aligned for the those two distances
to compare the shapes. Proper alignment is a difficult prob-
lem, and typically one would have to do a Procrustes type
of analysis to align them[5], or alternative methods based
on dynamic time warping or sophisticated edit distance ap-
proaches that try to match geometric distance and curvature
between points. Additionally, hidden Markov models have
also been used to try to compare and classify trajectories.

2.2 Why Something Different?
The metrics described above were primarily designed to

do one-on-one comparisons between two trajectories, but
for very large-scale work in identifying behavior in trajec-
tories (> O(106) trajectories), they become difficult to work
with. Many of these distance metrics have a behavior that
is O(ab), where a and b are the number of discrete points
in the trajectory. Furthermore, there is little that can be
pre-computed for each individual trajectory, so every com-
parison calculation must be done completely for each com-
parison of interest. What would be ideal is a way to measure
similarity that:

• Can be calculated once for each trajectory.

• Can be calculated for each trajectory in a time that is
linear in the number of trajectory points.

• Can used to calculate similarity between two trajecto-
ries in constant time.

• Can be used to cluster trajectories.

• Has translational, rotational, and potentially scaling
and reflection invariance properties.

• Is based on characteristics of the trajectories that can
effectively categorize behavior.

The approach here is to use simple scalar measures as-
sociated with each trajectory (such as time, total distance,
etc.), and combine those values with geometric scalar quan-
tities that describe the relevant geometric characteristics of
the trajectory. This gives us a feature vector associated with
each trajectory that can be used to store information about,
and do comparisons between different trajectories. These
comparisons between feature vectors can be done through
a specifically defined vector product that can be done in a
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Figure 1: Illustration of the parts and properties of a trajectory that we use to compute features. A trajectory
T comprises n+ 1 points x0, x1, . . . , xn. In (a) we see a trajectory T labeled with its vertices xi, turning angles
θ1 . . . θn−1 and end-to-end distance ||x5 − x1||. In (b) we see another trajectory U with vertices x0 . . . x13 and
convex hull C(U). We approximate the aspect ratio of C(U) as the ratio of the lengths of its major and minor
axes where the major axis connects the centroid of C(U) with the most distant vertex xi and the minor axis
connects the centroid with the nearest vertex xj.

time that is constant with respect to the length of the tra-
jectories themselves. These features can also be used in tra-
ditional databases or specially-designed database machines
to do lookups very quickly on very large databases.

3. PROBLEM DEFINITION
We define here more precisely what is meant by trajectory

comparison. There are a few different types of problems that
involve trajectory comparison. Some of the more important
ones that we will cover are

• Can you find the trajectories in a database that are
most similar to a given trajectory?

• Can you find trajectories that exhibit a behavior of in-
terest that can be translationally, rotationally or scale
invariant?

• Can you divide trajectories into specific clusters?

• Can you find trajectories that are outliers with repsect
to a given set of trajectories?

In order to solve these problems using the geometric feature
vector approach, we have to define the quantities that will
be useful to construct the feature vector. These fell into a
few different categories that are described below.

3.1 Distance Measures
These measures include many straightforward measure as-

sociated with the flight and include

• End-to-end distance of the flight:

de(T) = ||xn+1 − x1||

• Total distance traveled (length of trajectory):

dt(T) =

nX
i=0

||xi+1 − xi||

• Distance from a given fixed point or set of points

• Centroid of points:

T =
1

n

n+1X
i=0

xi

The first two of these measures are simple but important
ones for characterizing flights, while the third can be cal-
culated for more specific concerns related to relevant fixed
points on the ground. Note that the fourth, along with sim-
ilar measures defined later, consist of two values defined on
the surface of a sphere (usually by longitude and latitude)
and not just a single value.

3.2 Heading Measures
One can also define measures associated with how straight

a flight is, such as

• Total curvature:

ctotal(T) =
X
i

θi

• Total turning:

cabs(T) =
X
i

|θi|

• Average curvature/turning:

1

n
ctotal(T),

1

n
cabs(T)

These measures turn out to be very useful either by them-
selves or in conjunction with other measures, to separate out
different types of flights.

3.3 Geometrical Measures
These more sophisticated measures often say more about

the shape of the flight than the more basic measures listed
above, and are key to some of the results later in the paper.
These measures include

• Area covered by flight, defined here as the area of the
convex hull of the flight points



• Aspect ratio of the convex hull of the flight. This is
defined as the ratio of the shortest to the longest axis
of the polygonal convex hull of the points. (FOOT-
NOTE: We approximate the length of the shortest axis
as

2 min
i
||C(T)− xi||

where xi is on the convex hull of T. The length of the
longest axis is similarly

2 max
i
||C(T)− xi||

for xi on C(T).

• Length of the perimeter of the convex hull

• Centroid of convex hull C(T)

• Ratio of end-to-end distance traveled to total distance
traveled:

de(T)

dt(T)

. This will never be greater than 1.

• Radius of gyration of the points (FIXME: need math
here)

We also believe that the geometric measures described above
seem to capture more holistic views of the trajectories and
correspond closely to how humans view the trajectories.
However, this work will not examine the question in details,
and detailed comparisons to human studies will be left to a
future work.

There is a final geometric measure based on the concept
of distance geometry that we will use that describes com-
plex shapes in more detail. First, parameterize a trajectory
uniformly over the interval 0 ≤ t ≤ 1. Then choose a set
of m intervals (tm1, tm2) and measure those distances. This
set of m values then can be used as geometric measures to
describe the shape of the trajectory. These m values rep-
resent a geometric measure that is invariant to translation,
rotation and reflection. However, if you normalize these m
values by the largest value, such that all of the values are
between 0 and 1, one obtains a measure that is also scale
invariant.

3.4 Use of Feature Vectors
The feature vector approach allows two different approaches

to solve the problems listed above. The first one is the most
straightforward. One can calculate the feature vectors and
then use traditional searching or clustering approches algo-
rithms using a distance metric defined by the feature vectors.

However, there is another approach that turns out to be
faster and more general for some applications. If one chooses
the feature vector carefully and builds a distance metric on
those vectors that is expressible as an Lp norm, then one
can use a spatial indexing scheme such as an r-tree to store
feature vector values, search for nearest neighbors, and even
do clustering.

4. RESULTS

4.1 Data
The data used to test our algorithms and generate the

results is the ASDI (Aircraft Situation Display to Industry)
data set that includes most US civilian air traffic that have
flight plans on file. This is the same data set that is used
by many flight status web sites. It originates from the FAA
(Federal Aviation Administration) and comes from multiple
original sources. We get the data from AirNav, Inc., which
does some structuring of the data and puts it in an XML
format.

The data consists of approximately 50,000 flights per day,
with approximately 6 months of flights represented. Each
flight consists of a flight ID, position (latitude and longi-
tude) data and a time stamp on each data point along with
a large amount of supporting metadata. The number of
data points represented by each flight ranges from less than
10 to many hundreds. The data points for each flight gener-
ally were spaced approximately 60 seconds apart, but could
spaced more closely (or even have the same time stamp) if
the data was obtained from multiple sources. The meta-
data associated with each point could include, but doesn’t
always, altitude, speed, heading, departure/arrival airport,
etc. If one is working on an application where there is signif-
icant metadata available, it certainly makes sense to include
it to help classify flights. However, the focus of theis work
is study how geometric classifiers can be used to compare
flights and so the associated metadata for each point was
not used.

The data points did not arrive sorted by flight, but were
instead sorted by time. Separation into individual flights
was done via sorting by flight ID, and then looking for poten-
tially large time breaks between points that would indicate
a landing and take-off from a flight that included multiple
stops under a common flight ID. In general, a gap of 30
minutes between points was indicitive of a landing/take-off,
although values between 20 and 60 minutes didn’t change
the flight separation process significantly.

Each flight was checked for data irregularities before it
was finally accepted as a proper flight. Mostly, this consisted
of checking to see if a point was an unreasonable distance
away from its neighboring points given the time separation
between them, and removing them. In general, we required
this effective speed to be approximately 3-10 times faster
than a typical airplane in order to remove only the especially
bad points. The reason for this is that we were interested
in testing our measures against data that potentially had
significant uncertainty in the position in order to see how
robust they were in the presence of noise.

4.2 Simple Geometrical Filtering
The first examples we show here are just primarily in-

tended to test some of the more straightforward aspects of
geometric search and are based around single passes through
data sets looking for specific values of parameters that rep-
resent a given type of behavior.

4.2.1 Avoiding Airspace
One possible question that could be asked of a collections

of flights is, ”Is there a section of airspace that flights seem to
be avoiding?” A geometric signature corresponding to such
a question could be described in a number of ways. A sim-
ple way would be to look at flights that traveled a signif-
icant distance (in order to exclude flights that are simply



Figure 2: Examples of flights found for the “avoid-
ing” specification. In this case, we required the end
points of the flight to be at least 1000 kilometers
apart, the ratio of the end-to-end distance of the
flight to the total flight distance to be < 0.7, and
the aspect ratio of the convex hull to be > 1

3
.

flying circles as part of training), but traveled a distance
that was significantly larger, but not too much larger, than
the distance between their take-off and landing points. Fur-
thermore, to exclude flights that simply meander, one could
put a constraint on the size of the convex hull of the flight,
relative to the length. Flights from July 10, 2013 satisfying
those criteria area show in Figure 2. Upon doing a little dig-
ging, one finds that there was a large cell of thunderstorms in
the central Indiana area that evening that the flights were
all avoiding. Figure 3 shows a weather map from midday
overlaid on those same trajectories.

4.2.2 Holding Pattern
Another somewhat distinctive pattern that one might be

interested in is that of a holding pattern, indicitive of a plane
that has flown for a distance, but is now flying in circles due
to some sort of landing delay. The geometric constraints
for this search are having a flight of some moderate length,
but a signficant total curvature that would be unusual for a
point-to-point flight. This was successful in the sense that
it returned many flights that had clearly been instructed to
circle while waiting permission to land. We decided to try
to make this more difficult and find flights that appeared to
be in a holding pattern and then diverted to a different air-
port. This was done by requiring a flight to have significant
turning, but also cover lots of distance and have a signif-
icant aspect ratio to its convex hull. The flight that was
found is shown in Figure 4. Examining the metadata shows
that it was indeed inbound to Atlanta and was diverted to
Chattanooga in early June of 2013.

4.2.3 Mapping Flights

t

Figure 3: Most of the trajectories identified with
the “avoiding” specification were responding to this
event: a severe weather system crossing Illinois and
Indiana. This weather map was captured at 2:30PM
Eastern Daylight Time (UTC-5) on July 10, 2014.

Given the advances in imaging technology and the bur-
geoning business in on-line map services, there are a signifi-
cant number of planes flying in a back-and-forth, or boustro-
phedon, pattern. This type of flight will have a significant
length, but the actual flight will be enclosed by a fairly com-
pact shape. For this search, we require a reasonably long
total distance, but a small radius of gyration. This gives a
number of false positives, but it also finds the flights shown
in Figure 5. That was just a sample of the flights found.
There were mapping flights all over the country, and the
search found approximately 10% “false positives” that did
not seem to correspond to mapping flights. For the sake of
testing, we also implemented a “feature” that did a simple
search for straight segments separated by 180 degree turns
that also did well, but was brittle with respect to minor
variations in the mapping process.

5. DISTANCE GEOMETRY EXAMPLES
As an example for the use of distance geometry technique

that was described in section 3, we will use one of the flights
that was found above in the example on finding flights that
appear to be avoiding a specific area of airspace. While the
goal in that example was achieved by attempting to describe
the features of interest that would find the flights, using
distance geometry, we can do something even simpler. By
starting with flight shown in Fig 6a we can measure distances
at various points along the flight, and build a feaure vector
with the distances normalized by the largest distance. We
can then compare the distance between that feature vector
and the feature vectors from the other flights in the database
using an L2 distance to find flights that have a similar shape.



Figure 4: Examples of flights found for the “holding
and diverted”specification. In this case, we required
the end points of the flight to be at least 200 kilome-
ters apart, the total amount of turning to be > 20π
radians, and the aspect ratio of the convex hull to
be > 1

10
.

In our example, we chose 10 different distances to use as
the intratrajectory distances. If the curve was parameter-
ized as a function of time over [0, 1], we approximately chose
the full distance (d(0, 1)), the two half distances (d(0, 1

2
) and

d( 1
2
, 0)), and so on through the 4 quarter distances. While

we could have estimated the distances at the precise time
points through interpolation between the discrete points,
we simply chose the points that was closest to the inter-
val boundary under the assumption that the points were
roughly equally spaced. This made the lookup very fast
and did not significantly change the outcome from where we
wrote a routine to do a careful parameterization of the time
and found precise distances through interpolation between
points.

The results for that comparison are also shown in Figure 6.
There were a wide variety of results, with quite a few dif-
ferent sizes and orientations, but all fundamentally shaped
the same. We had also originally tried to do these com-
parisons with curve alignment algorithms that were based
on dynamic programming techniques, but they took much
longer and didn’t match the global nature of the curves due
to their focus on matching local structures.

6. INDEXING WITHIN FEATURE SPACE
The previous example that used distance geometry found

trajectories that were similar to a given trajectory by cal-
culating a feature vector of intertrajectory distances for the

Figure 5: Examples of flights found for the mapping
criteria. We require the flights to be longer than 800
miles, and have a convex hull aspect ratio greater
than 1/8. We then took the top 50 flights in terms
of having a small ration of radius of gyration to total
distance flown. A small sample of the results are
shown below. There were approximately 10% false
positives for these criteria.

initial trajecory and doing a serial comparison to all of the
flights in the database. However, for a large database, multi-
ple searches would each individually take a time proportional
to the number of flights in the database due to the need to
compare each feature vector against the flight of interest.
An alternative to this is to create a data structure that will
create a spatial index within the multidimensional feature
space that will allow searching only flights that are nearby
for similarity.

One of the most popular data structures for this type of
spatial indexing is a R-tree. The R-tree is a multidimen-
sional data structure that represents objects by their mini-
mum bounding n-dimensional rectangle in the next highest
level of a tree. This hierarchical structure allows for logarith-
mic time search and insertion. If the specific characteristics
required for comparison are known a priori, a multidimen-
sional space of those geometric features can be populated
with the database of flights, and finding ”similar flights” be-
comes a neighbor search that is simple to do on the R-tree.

As an example of this, we demonstrate a somewhat more
sophisticated search. We start with the flight shown in Fig-
ure 7, a roughly figure-eight shape which is somewhat un-
usual among the flights in our database. This flight is some-
what harder to write the descriptor for. Instead of writing
the descriptor, we’ll just define the different dimensions of
the feature space to be features that we guess will be rel-
evant. For this test, we simply chose 3 features: the total
distance, the ratio of the end-to-end distance to the total
distance, and the aspect ratio of the convex hull. We did
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Figure 6: Examples of curve matching using the dis-
tance geometry algorithm. The curve to be matched
is shown in (a). Two examples of matched curves are
shown in (b) and (c), though at very different scales
as (a). The curve in (b) flies around the southern
Louisiana area, while the curve in (c) flies around
Washington, DC area. Finally, in (d), we see some
examples of a pattern of flying around NYC, in both
directions.

a search over approximately 50,000 flights (about 1 day’s
worth), and asked for the 10 closest points in feature space.
Three of the closest points are shown for comparison. Given
the small dimension of the feature space, some of the other
neighbors did not resemble the figure-eight shape as well. On
an interesting note, you can also search for the flights that
are “furthest” away from the test flight above. In this case,
the 10 flights furthest away were all long, straight trans-
Atlantic flights.

Additionally, embedding the data in the feature space al-
lows clustering to be done in a number of different ways.
There are a number of traditional dimensionality reduction
techniques that project data down from a high dimensional
space to a two-dimensional space so that clusters can be
found through visual inspection or by existing algorithms.

Finally, with the feature space embedding, there is a some-
what elegant solution to a difficult problem: finding trajec-
tories that are outliers with respect to a set of other trajecto-
ries. Through the feature space embedding method, one can
search for individual trajectories, or small clusters of trajec-
tories, that do not have many nearby neighbors. This gives
a quantitative definition of the notion of an outlier or out-
liers with respect to a set of trajectories and their respective
features.

(a) Exemplar (b) Result 1

(c) Result 2 (d) Result 3

Figure 7: Examples of curve matching using feature
space search. The curve to be matched is shown in
a). The dimensions in the feature space here rep-
resent total distance, the ratio of total distance to
end-to-end distance, and the aspect ratio of the con-
vex hull. The 10 nearest-neighbor points in the fea-
ture space were searched for, and 3 of the results
are shown.



7. CONCLUSIONS
The key conclusion that we have drawn from the work

that we have done is that for many cases, working in feature
space, rather than the physical space of the trajectories, is a
much more effective way of finding trajectories that match
a given set of criteria than using dynamic programming ap-
proaches that do more local comparisons. This is partially
due to computational issues, but very prelimary discussion
have also indicated that these more global geometric features
also generally correspond better to how people see trajec-
tories. This is also more aligned with our overall goal of
building a tools for analysts to use to find trajectories that
correspond to specific behaviors and not necessarily to well-
defined numerical qualities.

We anticipate that follow-on work will focus on two gen-
eral areas. The first one will be centered on computational
improvements that include implementation on a database
machine, a more thorough analysis of the information con-
tent in the different features, and examination of more effi-
cient ways to break up the trajectories into segments to find
smaller features. We also would like to do experiments with
analysts to understand better how people currently compare
trajectories using only their experience as a tool.
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