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Abstract

We want to organize a body of trajectories in order to identify, compare and clas-
sify both common and uncommon behavior among objects such as aircraft and ships.
Existing comparison functions such as the Fréchet distance are computationally ex-
pensive and yield counterintuitive results in some cases. We propose an approach
using feature vectors whose components represent succinctly the salient information
in trajectories. These features incorporate basic information such as total distance
traveled and distance between start/stop points as well as geometric features related
to the properties of the convex hull, trajectory curvature and general distance ge-
ometry. Most of these geometric features are invariant under rigid transformation.
We demonstrate the use of different subsets of these features to identify trajectories
similar to an exemplar, cluster a database of several hundred thousand trajectories,
and identify outliers.
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1 Introduction

The growth of remote sensing capabilities has resulted in a well-documented explosion of

image data[1]. However, interpretation of that data mostly remains a human activity. In

recent years we have seen rapid growth not only in image resolution and field of view but

also in sampling frequency. This enables an interesting computational analysis problem

– trajectory analysis – that is inherently different than the search for large, durable fea-

ture changes. Given multiple data captures we can track particular objects, extract their

locations, and build up a series of time-stamped positions that compose a trajectory[2].

Of course, the problem of trajectory analysis is not only of interest in the setting of

overhead image analysis. The biology community uses it to examine animal behavior[3].

Molecular dynamics researchers use the trajectories of atoms and molecules to study the

behavior and conformations of proteins and polymers[4]. In general, any multidimensional

data set that has time-stamped points can be considered a trajectory through phase space.

One example of a difficult but important example that we have chosen to study is the

classification of aircraft behavior based on flight trajectories. This problem is important

for a number of reasons. First, there are a number of obvious security reasons. It is

useful to comb data to search for criminal or terrorist activity. Understanding patterns of

both normal and anomalous behavior is critical to optimizing public air traffic resources.

Obtaining details of airline performance is also a potential application.

The aircraft trajectory classification problem also has the quality of having a more

complicated space of input and output. Generally the input consists of time-stamped

location and altitude data from which other derived quantities such as speed and heading

can be calculated to a certain accuracy. This input is often derived from multiple data

sources and has many errors and omissions. The outputs are dependent on the problem of

interest. This could include looking for regular patterns, anomalous patterns[5], patterns

that correspond to a specific behavior, clustering into groups or finding a flight similar to

an input trajectory. The outputs described above are not necessarily well-defined and in

some cases have a human-defined component to them. The net result of these complexities

is a potentially rich set of ways to go about building the model that connects the inputs

and outputs.
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There have been a number of approaches to the trajectory problem including Fourier

descriptors[6], earth mover’s distance[7], hidden Markov models[8], Hausdorff-like distances[9],

Bayesian models[10] and other approaches. Most of these describe a trajectory in its en-

tirety or compute the distance between two trajectories. We propose an alternative ap-

proach based on trajectory features. These features have several desirable properties. First,

features based on some concise or spatially local property of a trajectory appear to corre-

spond well to how humans envision trajectories. Second, most of the descriptors we propose

can be pre-calculated once for each trajectory, as opposed to proximity measures such as

the Hausdorff and Fréchet distances that must be computed de novo for every different pair

of trajectories. The ability to do precomputation makes our approach suitable for rapid

lookup in a database. Finally, for many practical questions of interest that separate flight

behaviors, these geometric descriptors correspond fairly closely to one or more quantities

that describe the behavior of interest.

In this paper we begin by describing some of the related work that has been done in

the area of comparing trajectories specifically for aircraft as well as more general work.

In Section 3 we describe more carefully the specific problems we are trying to solve by

designing geometric measures for aircraft trajectories. We present results and discuss the

quality of the different geometric measures in Section 4. Finally, we summarize our work

and offer suggestions for future work in Section 5.

1.1 Notation

We will use the following conventions when describing trajectories and their features.

• A trajectory T comprises n+1 timestamped points (x0, t0), (x1, t1), . . . , (xn, tn), where

xi describes the position of point i.

• Given T, angle θi is the turning angle from vector (xi−xi−1) to (xi+1−xi). Informally,

θi is the turn between segments i and i + 1 in the trajectory. Positive angles indicate

counterclockwise turns.

• |T| is the total length of all the segments of T.

• ||xn − x0|| is the end-to-end distance of T.
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• C(T) is the convex hull of the points in T. Points c1, c2, . . . , cm ⊂ x0, . . . ,xn form

the vertices of C(T).

• A indicates the centroid of a polyline A. Thus T is the centroid of a trajectory T

and C(T) is the centroid of the convex hull of T.

In the figures where flight trajectories are shown, we use color to indicate the direction of

flight. Each trajectory is colored red when it starts and blue when it ends.

2 Background

2.1 Previous Approaches

The fundamental computer science issues related to comparing two trajectories have been

studied for many decades in their most general form. If one considers a trajectory T =

{(x0, t0), . . . , (xn, tn)} to simply be a set of points in a D+1-dimensional space, there are a

significant number of application drivers outside of aircraft trajectory comparison. These

include object recognition, handwriting analysis, and many different forms of time-series

analysis.

There have been many different distances defined to measure distance or divergence

between two trajectories. Perhaps the most straightforward measure of distance between

two curves is the Hausdorff metric[11]. For two trajectories A and B, the Hausdorff distance

is defined as greatest distance from any point on A to the nearest point on B. This gives

a rough sense of the distance between two curves but neglects the direction and speed of

travel along both trajectories.

One of the most well-known metrics associated with curve similarity that does take the

direction into account is the Fréchet distance. The Fréchet distance F (A,B) is formally

defined as

F (A,B) = inf
α,β

max
t∈[0,1]

d(A(α(t)),B(β(t))) (1)

where α(t) and β(t) are continuous, non-decreasing reparameterizations of A and B, re-

spectively, onto the interval [0, 1]. Eiter and Mannila[12] have extended this definition in

a straightforward manner to the case where A and B are described by discrete points as
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polygonal curves. Both variations of the Fréchet distance represent the minimum length

of a leash required for a man following one curve to walk a dog that is following the other

curve.

One problem that both the Hausdorff distance and Fréchet distance have is that they do

not allow for translational, rotational or reflectional invariance. That is, they measure the

distance between two curves given some pre-defined position and orientation. If the curves

to be compared are not already arranged as desired, they must be aligned before applying

either the Fréchet or Hausdorff distances. This is a difficult problem. Typically one would

have to do a Procrustes type of analysis to align them[13] or use an alternate method based

on dynamic time warping[14] or edit distance[15] that tries to match geometric distance

and curvature between points. Additionally, hidden Markov models have also been used[16]

to try to compare and classify trajectories.

2.2 Why Something Different?

The measures described above were primarily designed to do one-on-one comparisons be-

tween two trajectories, but for very large-scale work in identifying behavior in trajectories

(> O(106) trajectories), they become difficult to work with. Many of these distance metrics

require O(ab) operations to compute where a and b are the number of discrete points in

the trajectories being compared. Furthermore, there is little that can be pre-computed for

a trajectory in isolation: every comparison must be computed from scratch for every pair

of trajectories being compared. At a more abstract level, these measures operate directly

on trajectories as objects in a non-normed metric space. This makes clustering an asymp-

totically more difficult operation since spatial indices such as r-trees and kd-trees assume

a normed vector space. Finally, the aforementioned measures each compare the entirety of

two trajectories instead of identifying and addressing features of interest. What would be

ideal is a way to measure similarity that:

• Can be calculated once for each trajectory.

• Can be calculated for each trajectory in a time that is linear in the number of tra-

jectory points.
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• Can used to calculate similarity between two trajectories in constant time.

• Can be used efficiently to cluster trajectories.

• Has translational, rotational, and potentially scaling and reflection invariance prop-

erties.

• Is based on characteristics of the trajectories that can effectively categorize behavior.

Our approach is to use simple scalar measures associated with each trajectory (such as

time, total distance, etc.), and combine those values with geometric scalar quantities that

describe the relevant geometric characteristics of the trajectory. This gives us a feature

vector associated with each trajectory that can be used to store information about, and

do comparisons between different trajectories. These comparisons between feature vectors

can be done through a specifically defined vector product that can be done in a time that

is constant with respect to the length of the trajectories themselves. These features can

also be used in traditional databases or specially-designed database machines to do lookups

very quickly on very large databases.

3 Problem Definition

We define here more precisely what we mean by trajectory comparison. There are a few

different types of problems that involve trajectory comparison. Some of the more important

ones that we will cover are

• Can we find the trajectories in a database that are most similar to a given trajectory?

• Can we find trajectories that exhibit a behavior of interest without regard to trans-

lation, rotation or scale?

• Can we divide trajectories into specific clusters?

• Can we find trajectories that are outliers with respect to a given set of trajectories?

In order to solve these problems using the geometric feature vector approach, we have to

define the quantities that will be useful to construct the feature vector. These fell into a

few different categories that are described below.
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Figure 1: Illustration of the parts and properties of a trajectory that we use to compute

features. A trajectory T comprises n+1 points x0,x1, . . . ,xn. In (a) we see a trajectory T

labeled with its vertices xi, turning angles θ1 . . . θn−1 and end-to-end distance ||x5 − x0||.

In (b) we see another trajectory U with vertices x0 . . .x13 and convex hull C(U). We

approximate the aspect ratio of C(U) as the ratio of the lengths of its major and minor

axes where the major axis connects the centroid of C(U) with the most distant point on

C(U) and the minor axis connects the centroid with the nearest point point on C(U).
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3.1 Distance Measures

These measures include many straightforward measure associated with the flight and in-

clude:

• End-to-end distance of the flight:

de(T) = ||xn+1 − x0||

• Total distance traveled (length of trajectory):

dt(T) =
n−1
∑

i=0

||xi+1 − xi||

• Distance from a given fixed point or set of points

• Centroid of points:

T =
1

n

n
∑

i=0

xi

The first two of these measures are simple but important ones for characterizing flights,

while the third can be calculated for more specific concerns related to relevant fixed points

on the ground. Note that the fourth, along with similar measures defined later, consist

of two values defining a position (usually by longitude and latitude) and not just a single

value.

3.2 Heading Measures

We can also define measures associated with how straight a flight is such as:

• Total curvature:

ctotal(T) =
∑

i

θi

• Total turning:

cabs(T) =
∑

i

|θi|
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• Average curvature/turning:

1

n
ctotal(T),

1

n
cabs(T)

These measures turn out to be very useful either by themselves or in conjunction with other

measures to separate out different types of flights.

3.3 Geometric Measures

These more sophisticated measures often say more about the shape of the flight than the

more basic measures listed above and are key to some of the results later in the paper.

These measures include

• Area covered by flight, defined here as the area of the convex hull of the flight points.

• Aspect ratio of the convex hull of the flight. This is defined as the ratio of the shortest

to the longest axis of the polygonal convex hull of the points. We approximate the

length of the shortest axis as

min
c∈C(T)

||C(T) − c||

or in words, the distance from the centroid of the convex hull to the nearest point

on the convex hull. This includes any point on the convex hull, not just the vertices.

The length of the longest axis is defined as

max
i

||C(T) − xi||

for xi on C(T). In the case of the furthest distance from the centroid, we only need

to consider the vertices of the convex hull because the the convexity property of the

hull.

• Length of the perimeter of the convex hull.

• Centroid of convex hull C(T).

• Ratio of end-to-end distance traveled to total distance traveled:

de(T)

dt(T)

.
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• Radius of gyration of the points:
√

1

n

∑

i

(xi − T)2

We also believe that the geometric measures described above seem to capture more holis-

tic views of the trajectories and correspond closely to how humans view the trajectories.

However, this work will not examine this hypothesis and detailed comparisons to human

studies will be left to future work.

We will also use one final geometric measure based on the concept of distance geometry[17]

to describe complex shapes in more detail. We define it as follows. First, parameterize a

trajectory uniformly over the interval t ∈ [0, 1]. Then choose a set of m intervals (tm1 , tm2)

and measure the distance between the corresponding points xm1 and xm2 . This set of m

values then can be used as geometric measures to describe the shape of the trajectory.

These m values represent a geometric measure that is invariant to translation, rotation and

reflection. Further, if we normalize these m values by the largest value so that that all

of the values are between 0 and 1, we obtain a measure that is also scale invariant. The

distance geometry approach implicitly allows for features that are not neccesarily global

in nature if the intratrajectory distances include smaller ranges that describe distances in

smaller parts of the tracks. This helps to capture abnormal local aspects of the trajectory

that have shown to be important in [18] and [19].

3.4 Use of Feature Vectors

The feature vector representation enables two different approaches to solve the problems

listed above. The first is the most straightforward. We can calculate the feature vectors

and then use traditional searching algorithms using a distance metric defined by the feature

vectors. However, there is another approach that turns out to be faster and more general

for some applications. If we choose the feature vector carefully and build a distance metric

on those vectors that is expressible as an Lp norm, then we can use a spatial indexing

scheme such as an R-tree[20] to store feature vector values, search for nearest neighbors,

and even do clustering. Many clustering algorithms allow for outliers to be specifically

identified, which gives a powerful method of defining and determining anomalous flights.
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4 Results

4.1 Trajectory Data Set

We tested our algorithms and generated the results shown in this paper using the ASDI

(Aircraft Situation Display to Industry) data set. This is an air traffic data set generated

by the US FAA (Federal Aviation Administration) that contains most US civilian flights

that have flight plans on file. We obtain the data via a subscription through AirNav,

LLC, which disseminates the traffic data in XML format along with additional metadata

concerning each flight.

The ASDI data set comprises approximately 50,000 flights per day. At present we have

approximately 6 months of archived data. Each flight consists of a sequence of data points

generally spaced 60 seconds apart. Each data point contains a flight ID, a timestamp,

position data (latitude, longitude, heading) and a large amount of supporting metadata.

Flights contain anywhere between ten and several hundred data points. Although the

majority of the data points in most flights are uniformly spaced every 60 seconds, the data

contains occasional dropouts and duplicates depending on contact between an aircraft and

the ground sensors that communicate with it.

Metadata in the ASDI data set often includes altitude, speed, departure/arrival airport,

departure/arrival times and so on. This can be very useful in classifying flights. However,

the focus of this work is to study how geometric features can be used to compare, contrast

and identify flights. We do not use any of the metadata for this task.

4.2 Data Cleaning and Trajectory Assembly

The data points in the ASDI feed arrive sorted by timestamp rather than by flight. Our

first task was to reorganize this stream into potential trajectories. We first sort by flight ID

to create streams belonging to different flight IDs then search each stream for large time

breaks between points that indicate multiple stops under a common flight ID. We used a

threshold value of 30 minutes to identify these breaks. Values between 20 and 60 minutes

did not yield significantly different results.

Once we assembled these candidate trajectories we ran each one through a simple clean-
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ing operation to remove obviously bad data. We looked for and removed data points that

were an unreasonably large distance away from their neighbors given the time separation

between them. In this case, “unreasonably large distance” required an airspeed 3-10 times

faster than a typical airplane. This was sufficient to remove the especially bad points. There

are certainly more sophisticated cleaning and filtering operations available. We chose not

to use them because we want to test our measures for robustness against data that may

contain significant uncertainty or noise in the position fields.

4.3 Simple Geometric Filtering

The first examples we show here are primarily intended to test some of the more straight-

forward aspects of geometric search and were computed by single passes through data sets

looking for specific values of parameters that represent a given type of behavior.

4.3.1 Avoiding Airspace

One possible question that we could ask regarding a collection of flights is, “Is there a

section of airspace that flights seem to avoid?” A geometric signature corresponding to

such a question could be described in a number of ways. A simple way would be to look at

flights that traveled a significant distance (in order to exclude flights that are simply flying

circles as part of training), but traveled a distance that was significantly larger than the

distance between their take-off and landing points. Furthermore, to exclude flights that

simply meander, one could put a constraint on the aspect ratio of the convex hull, requiring

the flights to be more “round”. These criteria turned up a sizable cluster of flights on July

10, 2013 shown in Figure 2. Upon further research we found out what the flights were

avoiding. That day, many flights were rerouted to avoid a large system of thunderstorms

that swept eastward through Illinois and Indiana all the way to Ohio and Pennsylvania. In

Figure 3 we display the “avoiding” trajectories again along with a weather map from that

day.
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500

km

Figure 2: Examples of flights found for the “avoiding” specification. In this case, we

required the end points of the flight to be at least 1000 kilometers apart, the ratio of the

end-to-end distance of the flight to the total flight distance to be less than 0.7, and the

aspect ratio of the convex hull to be at least 1
3
.
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Figure 3: Most of the trajectories identified with the “avoiding” specification were respond-

ing to this event: a severe weather system crossing most of the midwestern United States

from Illinois to New York. This weather map was captured at 8:30PM Eastern Daylight

Time (UTC-5) on July 10, 2014.
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Figure 4: Examples of a flight found for the “holding and diverted” specification. In this

case, we required the end points of the flight to be at least 200 kilometers apart, the total

amount of turning to be at least 20π radians, and the aspect ratio of the convex hull to be

at least 1
10

.
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4.3.2 Holding Pattern

Another distinctive pattern of interest in flight trajectories is a holding pattern. We define

this as a flight that flies for some distance and then enters a circling pattern due to some

sort of landing delay. We translated this into two geometric constraints. First, the flight

had to have at least moderate length (200km) and a significant total curvature that would

be unusual for a point-to-point flight (at least 20π).

This search returned many flights that had clearly been instructed to circle while await-

ing permission to land. We decided to extend it for a more difficult test of our approach

to search for flights that entered holding patterns and were ultimately diverted to different

airports. To accomplish this, we added the constraint that the aspect ratio of the convex

hull of the trajectory must have an aspect ratio of at least 0.1. This search turned up one

flight in our test data set (see Figure 4). When we examined the original metadata for this

flight we found that it was indeed inbound to Atlanta when it entered a holding pattern

and was finally diverted to Chattanooga in early June of 2013.

4.3.3 Mapping Flights

Given the advances in imaging technology and the burgeoning business in on-line map

services, there are a significant number of planes flying in a back-and-forth scanning, or

boustrophedon, pattern. This type of flight will have a significant length, but will be

enclosed by a fairly compact shape. For this search, we require a reasonably long total

distance, but a small radius of gyration. An example of these flights is shown in Figure 5.

There were mapping flights all over the country, and the search found approximately 10%

“false positives” that did not seem to correspond to mapping flights. For the sake of

testing, we also implemented a “feature” that searched for straight segments separated by

180 degree turns that also did well, but was brittle with respect to minor variations in the

mapping process.
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Figure 5: Examples of flights found for the mapping criteria. We require the flights to be

longer than 800 miles, and have a convex hull aspect ratio greater than 1/8. We then took

the top 50 flights in terms of having a small ratio of radius of gyration to total distance

flown. A small sample of the results are shown in the figure. There were approximately

10% false positives for these criteria.
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Distance Geometry

(a) Exemplar (b)

(c) (d)

Figure 6: Examples of curve matching using the distance geometry algorithm. The curve

to be matched is shown in (a). Two examples of matched curves are shown in (b) and

(c), although at very different scales than (a). The curve in (b) flies around the southern

Louisiana area, while the curve in (c) flies around Washington, DC. Finally, in (d), we see

examples of flights diverting around New York City, in both directions.
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4.4 Distance Geometry Examples

To demonstrate the distance geometry technique described in Section 3, we will use one of

the flights that was found above in the avoiding airspace example above (Figure 2). While

the goal in that example was achieved by describing the features, distance geometry enables

an even simpler solution. We begin with the flight shown in Fig 6(a), measure distances at

various points along the flight, and build a feature vector with the distances normalized to

fall between 0 and 1. This gives us a feature vector based solely on the relative distances

between different points in the trajectory. We then compare this feature vector to those

from other flights in the database using the L2 norm to find flights with a similar shape.

In our example, we chose 10 different distances to use as the intratrajectory distances.

Let T(t)(t ∈ [0, 1]) be the entire trajectory parameterized by t. Let d : R
2 × R

2− > R be

a distance function between points (here the familiar Euclidean distance). We then define

the following distances as our features:

• End-to-end distance: d(T(0),T(1))

• Distances from midpoint to beginning and end:

d(T(0),T(1
2
)) and d(T(1

2
),T(1))

• Thirds: d(T(0),T(1
3
)), d(T(1

3
),T(2

3
)), d(T(2

3
),T(1))

• Quarters: d(T(0),T(1
4
)), d(T(1

4
),T(1

2
)), d(T(1

2
),T(3

4
)), d(T(3

4
),T(1))

While we could have estimated the distances at the precise time points through interpo-

lation between the nearest discrete points, we simply chose the points closest to the interval

boundary under the assumption that the points were roughly equally spaced. This made

the lookup very fast and did not significantly change the outcome compared to precise

interpolation between points.

The results for that the distance geometry search are shown in Figure 6. There were a

wide variety of results, all with similar fundamental shapes but with a wide variety of sizes

and orientations. We had also originally attempted these comparisons with curve alignment

algorithms that were based on dynamic programming techniques. Those approaches took

much longer due to their increased computational complexity and failed to match the global

shape of the curves due to their focus on aligning local structures.
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4.5 Indexing Within Feature Space

We have just demonstrated finding trajectories with a certain shape by calculating a feature

vector for an exemplar and then comparing that exemplar to all trajectories in the database

one by one - an O(n) search with respect to the size of the database. This becomes expensive

as the database grows to millions or billions of trajectories, especially since each search has

to be computed from scratch. An approach that would allow us to re-use calculations is

to create a spatial index within multidimensional feature space that will allow us to search

quickly for nearby flights.

One of the most popular data structures for this type of spatial indexing is an R-tree[20].

The R-tree is a multidimensional data structure that represents objects by their minimum

bounding n-dimensional rectangle in the next highest level of a tree. This hierarchical

structure allows for logarithmic time search and insertion. If the specific characteristics

required for comparison are known a priori, a multidimensional space of those geometric

features can be populated with the database of flights and finding “similar flights” becomes

a neighbor search that is simple to do on the R-tree.

As an example of this, we demonstrate a somewhat more sophisticated search. We

start with the flight shown in Figure 7(a), a roughly figure-eight shape which is somewhat

unusual among the flights in our database. It is more difficult to write a feature descriptor

for this flight. Instead of writing the descriptor directly, we define the different dimensions

of the feature space to be features that we guess will be relevant. For this test we chose

three features: the total distance, the ratio of the end-to-end distance to the total distance,

and the aspect ratio of the convex hull. We built an index over approximately 50,000

flights (about 1 day’s worth) and asked for the 10 closest points in feature space. The

flights corresponding to three of the closest points are shown. Given the small dimension

of the feature space, some of the other neighbors did not resemble the figure-eight shape as

closely. On an interesting note, we can also search for the flights that are “furthest” away

from the test flight above. In this case, the 10 flights furthest away were all long, straight

trans-Atlantic flights.

Representing the data as feature vectors in a normed vector space also allows clustering

to be done in a number of different ways. There are a variety of traditional dimensionality
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Feature Space Search

(a) Exemplar (b) Result 1

(c) Result 2 (d) Result 3

Figure 7: Examples of curve matching using feature space search. The curve to be matched

is shown in (a). The dimensions in the feature space here represent total distance, the ratio

of total distance to end-to-end distance, and the aspect ratio of the convex hull. The 10

nearest-neighbor points in the feature space were searched for, and 3 of the results are

shown.
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reduction techniques that project data down from a high dimensional space to a two-

dimensional space so that clusters can be found through visual inspection or by existing

algorithms.

Finally, the feature space embedding enables an elegant solution to a difficult problem:

finding trajectories that are outliers with respect to a set of other trajectories. Through

the feature space embedding method, one can search for individual trajectories or small

clusters of trajectories that do not have many nearby neighbors. This gives a quantitative

definition of the notion of an outlier or outliers with respect to a set of trajectories and

their respective features.

5 Conclusions

For many cases, working in feature space rather than the physical space in which trajectories

are embedded is a more effective way of finding trajectories that match a given set of

criteria than using dynamic programming approaches that employ more local comparisons.

This is partially due to computational issues, but very preliminary discussions have also

indicated that these more global geometric features also generally correspond better to how

people see trajectories. This is also more aligned with our overall goal of building tools for

analysts to use to find trajectories that correspond to specific behaviors and not necessarily

to narrowly-defined numerical quantities.

We anticipate that follow-on work will focus on two general areas. The first will center on

computational improvements that include implementation on a database machine, a more

thorough analysis of the information content in the different features, and examination of

more efficient ways to break up the trajectories into segments to find smaller features. We

also would like to work with analysts to understand better how people currently compare

trajectories based on their experience.
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