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ABSTRACT
The current system reaction to the loss of a single MPI pro-
cess is to kill all the remaining processes and restart the
application from the most recent checkpoint. This approach
will become unfeasible for future extreme scale systems. We
address this issue using an emerging resilient computing
model called Local Failure Local Recovery (LFLR) that pro-
vides application developers with the ability to recover lo-
cally and continue application execution when a process is
lost. We discuss the design of our software framework to
enable the LFLR model using MPI-ULFM and demonstrate
the resilient version of MiniFE that achieves a scalable re-
covery from process failures.

Categories and Subject Descriptors
D.1.3 [Software, Programming Techniques]: Parallel
Programming

Keywords
MPI, Fault Tolerance, User Level Fault Mitigation, PDE
solvers, Scientific Computing

1. INTRODUCTION
As leadership class computing systems increase in their

complexity and the component feature sizes continue to de-
crease, the ability of an application code to treat the system
as a reliable digital machine diminishes. In fact, there is a
growing concern in the reliability of extreme scale systems
in future [2], exemplified by a significant reduction in mean
time between failures (MTBF) to less than an hour. For
such unreliable systems, it is essential for application users
to manage resilience issues beyond those provided by sys-
tems and hardware.

For application users, the majority of failures are mani-
fested as single node failures. According to Moody et al,
85% of application interrupts are related to single node fail-
ures in large PC clusters [16]. Similarly, several anecdotal
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evidences indicate the predominance of single node failures
on Jaguar and Titan at Oak Ridge National Laboratory.

In the current programming model, single node failures
are typically handled by checkpoint/restart (C/R); it kills
all the remaining processes of a program execution and then
restarts the program from the most recent global snapshot
of the execution. This approach fits to the current Mes-
sage Passing Interface (MPI) 3.0 standard because a single
process failure triggers termination of all the remaining pro-
cesses. However, such a globalized reaction to single node
(local) failures will be infeasible for future extreme systems
because we are already running applications using more than
100,000 MPI processes. Although improvements in C/R
techniques may keep its feasibility under a short MTBF, the
nature of disproportional recovery for local failures needs to
be addressed for efficient system use.

We address this scaling issue through an emerging re-
silient programming model called Local Failure Local Re-
covery (LFLR) that provides application developers with the
ability to recover locally and continue application execution
when a process is lost. In order to achieve this model, we de-
sign and implement a software framework using a prototype
MPI with User Level Fault Mitigation (MPI-ULFM) [3], a
fault tolerance capability proposed for the MPI-4.0 stan-
dard, to improve the resilience of the existing SPMD execu-
tion model.

The organization of this paper is as follows. The back-
ground information is covered in Section 2 followed by the
architecture of our LFLR framework in Section 3. The
recovery mechanism of LFLR-enabled applications is de-
scribed in Section 4. For evaluating our preliminary imple-
mentation, a resilient version of MiniFE code is presented
in Section 5, including performance evaluations up to 2,048
processes. Finally, the summary of our work and future re-
search direction are discussed in Section 6.

2. BACKGROUND
Checkpoint/restart (C/R) has been studied for a long time

in the context of HPC systems [6, 8, 14, 16, 20, 21], and suc-
cessful implementations are available for distributed mem-
ory systems [8, 16, 17]. The recent work achieved a signif-

OMPI_Comm_revoke Communicator Revocation
OMPI_Comm_shrink Communicator Fix
OMPI_Comm_agree Resilient global agreement

Table 1: A partial list of APIs in MPI-ULFM
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Figure 1: Execution Model of LFLR

icant performance improvement, reducing the overhead for
accessing global file systems [16, 17].

The design of the current MPI-3.0 standard, which aborts
a program for any process/node failures, has made C/R a
method of choice for resilience. Despite a few fault-tolerant
MPI implementations proposed for alternative schemes [1,
9], none of them has been integrated into the MPI standard.
Recently, Fault Tolerance Work Group of MPI Forum pro-
posed MPI-ULFM [3, 4] to integrate resilience capabilities
into the MPI-4.0 standard, and a prototype implementa-
tion is available in public. ULFM provides the following
capabilities: (1) continuing program execution through pro-
cess failure, (2) process failure detection and notification, (3)
communicator revocation and (4) communicator correction.
Interestingly, ULFM does not support any special functions
to restore failed processes, leaving the users to design their
own recovery scheme with a set of APIs listed in Table 1.
Despite such a low-level API support, there have already
been a few use cases of the resilient version of parallel dense
matrix algorithms [15] and Monte Carlo method [18].

3. LOCAL FAILURE LOCAL RECOVERY
(LFLR)

Local Failure Local Recovery (LFLR) coined by Heroux [10]
is a resilient programming model to overcome the dispropor-
tional recovery for single node failures practiced by C/R.
LFLR permits a local recovery for a local failure to keep
the remaining processes alive during the recovery. The local
recovery operation is not limited to single process computa-
tion, allowing some assistance from the remaining processes.
This loose restriction permits several design options for im-
plementing LFLR.

In this paper, we adapt the LFLR model to the existing
MPI SPMD model as illustrated in Figure 1; we employ the
idea of spare processes reserve in order to keep the number of
computing processes constant after a loss of processes. This
eliminates the need for load balancing and maintaing the
correctness of an application running with fewer processes.
To enable this programming model, we identify several re-
quirements listed below:

1. Runtime and middleware that permit parallel program
execution to continue under process failures.

2. Runtime and middleware that provide replacement pro-
cesses for the failed ones, in order to mitigate complica-
tions by running a program with fewer processes. For
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Figure 2: Architecture of LFLR Framework

the process replacement, they allow application pro-
grams to query the status of all the processes (alive or
lost).

3. Redundant persistent storage for restoring the data
associated with failed processes.

4. Tools and frameworks to build application specific re-
covery schemes. These services would provide flexible
options for re-constituting the lost local state of a given
application.

In the following sections, we discuss our implementation for
each of the requirements.

3.1 LFLR Framework
Based on these requirements discussed in the previous sec-

tion, we design a software framework to enable the LFLR
model for large scale parallel applications as illustrated in
Figure 2; the numbers (1-4) in the individual components
correspond to the numbers associated with the requirement
listed above. Our framework, object-oriented C++ code,
provides a seamless integration of all the four requirements
through abstraction of each requirement. The labels on the
left of Figure 2 indicate our implementation choice for each
layer to demonstrate how the existing technologies can be
assembled to build an LFLR model.

The bottom two layers denoted as Parallel Execution Run-
time (PER) and Resilient Communicator (RC) manage pro-
gram execution and resource allocation to handle process
failures, respectively. In our approach, the user is respon-
sible for allocating extra processes at job launch because
typical HPC systems do not always support dynamic pro-
cess spawning to fill failed processes. At runtime, RC man-
ages a number of parallel execution contexts by separating
processes into groups, each of which serves for application
execution, application data redundancy and process recov-
ery respectively. This requires several MPI communicators
including global MPI communicator (MPI_COMM_WORLD) and
sub-communicators as illustrated in Figure 3. In this fig-
ure, all message passing calls for the existing application are
made through Compute_Comm. The other sub-communicators
such as Group_Comm and Compute_Group_Comm are split from
the global communicator to serve for the recovery purpose
such as commit and restore in the Redundant Storage; they
are not relevant to application-specific communicator split-
ting, and the management of these split communicators is
left to the future work.
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Figure 3: Splitting of MPI_Comm by Resilient Communicator:
the circles with dashed line indicate the spare processes.

For message passing, RC provides two functionalities: (1)
direct access to all the MPI communicators to allow MPI
calls directly from an application program and (2) wrapper
functions to perform message passing calls including one-to-
one send/receive and collectives with different types of re-
silience capabilities not directly supported by MPI-ULFM.
The design of the wrapper functions is similar to those in
BLACS [7], which supports different message passing soft-
ware and parallel computing runtime other than MPI.

The Redundant Storage (RS) layer provides a temporary
space for every local process so that the spare processes can
retrieve the data for failed ones. In traditional C/R, the
storage for checkpoint involves file I/O, which allows the
restarted program to retrieve the data to restore its origi-
nal state. Instead, our framework leverages the user-space
memory to minimize the performance impact of applications
while providing data persistence unaffected by process fail-
ures. To meet this goal, we employ the ideas from diskless
checkpointing [19, 20] in which the spare processes accom-
modate a space for data redundancy combined with local
checkpointing. These spare processes, controlled by RC,
dedicate their memory space to keep the parity of individ-
ual data structures distributed across the processes. The
storage cost per spare process never exceeds any of the com-
puting processes in the associated process group. The parity
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Figure 4: Commit and Restore using dedicated Parity.
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Figure 5: Progress of the stack in LFLR_registry for a typ-
ical PDE-based application.

operations are implemented with MPI_Reduce using binary
XOR operation as illustrated in Figure 4. In the RS com-
ponent, we provide APIs for commit and restore to recover
a specified memory region using a spare process associated
with the process group defined by Group_Comm in Figure 3.

The Application Recovery Layer (ARL) bridges between
data structure (Vector, Matrix and Mesh) and the RS and
RC layers bringing these elements together to implement
application specific recovery. This design enables to add a
recovery mechanism to the existing scientific data structures
and classes as seen in the software frameworks such as Trili-
nos [11]. ARL has two capabilities to enable application-
specific recovery: (1) abstract class to allow users to imple-
ment a recovery scheme specific to individual data structure
and (2) registry class to monitor the status of every recover-
able data objects. An abstract class, recoverable, permits
the users to design data-structure specific recovery scheme
using several method calls for accessing to the RS. For each
data class, recoverable encapsulates the commit and recov-
ery schemes in its class functions, commit and restore, re-
spectively. The object monitor class, LFLR_registry, main-
tains a stack of pointers to the active data objects as il-
lustrated in Figure 5. The details of our application data
recovery scheme is described in Section 4.2.

4. RECOVERY OF APPLICATIONS
In the current LFLR framework, MPI-ULFM is responsi-

ble for failure detection and notification to trigger applica-
tion recovery. For detection, MPI-ULFM returns an error
flag when receiving messages from a failed process. Fail-
ure notification can be implemented using APIs such as
OMPI_Comm_revoke and OMPI_Comm_agree. In our use case
described in Section 5, we have found OMPI_Comm_agree suit-
able for iterative linear system solvers to stop iterations
across all the processes in the same iteration. More gen-
eralized failure detection/notification is left to the future
work.

When recovering an application, our LFLR framework re-
stores three entities: process, data and state. The following
subsections describe how our framework handles them, re-
spectively.

4.1 Process Recovery
For process recovery, the application code invokes RC to

make a recover call to correct its internal MPI communica-



Compute(comm,data) { 
 CSR_Matrix A(comm); 

 
 for ( i = 0; … )  { 
  Vector x(comm); 

 
  // Do real computation 

 
 
 
 
 
 
 
 
 

 } 
 
} 

Compute(rcomm, registry, data, flg) { 
 CSR_Matrix A(rcomm,&registry); 
 registry.commit();  
 for (i=0; …  ) { 
  Vector x(rcomm,&registry); 
  registry.commit(); 
  if( flag == true ) {
   // Do real computation 
  }    
  if( failure is detected  ) { 
   rcomm.recover; 
   registry.recover; 
   i= i -1;     
   if(I am joining from spare) { 
    flag = true; 
   } 
  } 
 }  // x is unregistered 
 // Check failure here 

} 

Figure 6: Code modification to enable LFLR. A spare pro-
cess has flg=false to skip the real computation. Once it
joins the computing processes, flg is changed to true to
perform real computation for the lost process.

tors. The correction begins with MPI_Comm_shrink for the
global communicator (copied from MPI_COMM_WORLD). Then,
a spare process takes over the lost process through rank re-
ordering by MPI_Group_incl and MPI_Comm_create. After
this correction, Compute_Comm is created from the new global
communicator. The other sub-communicators follows the
correction process after the global communicator is fixed.

4.2 Data Recovery
After all MPI communicators are updated, a new process

joining from the spare reserve needs to recover the data and
state of the application. The LFLR_registry object in ARL
then iterates its own stack of pointers for the allocated ob-
jects from the bottom. This bottom-up ordering ensures
the recovery of the primary data objects prior to the recov-
ery of the objects dependent on these. For distributed data
structures, the recovery involves restore calls to recover
the local data as indicated by Figure 4. For non-distributed
data structures such as application parameters, the recovery
schemes can be implemented without RS.

4.3 Application State Recovery
For application-based C/R [16, 17, 19, 20], users need to

design a way to locate the most recent successful checkpoint
of a given application code so that it can restart with an
appropriate roll-back. In our approach, the spare processes
keep abreast to the application state by executing a “skele-
tonized” code of the application, by which we mean that the
spare processes participate in the program logic execution,
but have no portion of the distributed data. In the ap-
plication program source, these spare processes execute the
same program of the compute process, but skip the real com-
putation except initialization of data objects that requires
binding to LFLR_registery. Figure 6 presents a source code
modification to enable LFLR. This involves some coding ef-
fort for the users to write extra if statements, but it can
be mitigated by writing pre-built classes for basic scientific
data and compute kernel functions. Many robustly imple-
mented applications already contain some logic that handles
this situation, since partitioning of data may naturally result
in a process have no portion of the distributed data.

5. USE CASE: RESILIENT MINIFE

We present a use case of the LFLR framework with MiniFE
from the Mantevo mini-applicaition collection [12]. MiniFE
is a parallel finite element analysis code for thermal PDEs
on 3D regular mesh written in C++. The code includes
three major functions (1) mesh generation, (2) construction
of the sparse linear system and (3) single linear system so-
lution using Conjugate Gradient (CG) iterations. In real
PDE applications, a number of linear systems are solved to
understand nonlinear or time-dependent behavior of phys-
ical systems. Exploring a single linear system solution is,
therefore, oversimplified to understand the behavior of such
applications from the resilience perspective. For this rea-
son, we modify the source code to emulate a time dependent
PDE solver, which iterates a number of linear system solu-
tions with a right hand side updated by the solution of the
previous linear system as shown in Algorithm 1. The sparse
matrix data is kept constant during the time stepping. The
source of MiniFE is template based C++ code to describe
all data classes and methods, making it straightforward to
integrate with our LFLR framework.

The process failure is emulated by kill system call on
a randomly chosen process at any matrix or vector opera-
tions in the linear system solution. In the solver code of
MiniFE, a failure is detected by MPI_Wait for non-blocking
receive at sparse matrix vector multiplication (SpMV) and
MPI_Allreduce in vector dot product. For failure notifica-
tion, OMPI_comm_agree is called at the end of the iteration
to terminate the solver.

Algorithm 1 Resilient Time Step MiniFE

Create Mesh Ω
Commit
Create Matrix A from Ω
Create Initial x0 from Ω
Commit
while i = 1 until the last time step do

Commit
Create bi from xi−1

Solve Axi = bi (process failure occurs here)
if Process failure is detected then

Recover, i := i− 1
end if

end while

5.1 Performance of Resilient MiniFE
The performance testing is conducted on Sandia’s TLCC2

cluster that comprises 1,272 nodes (19,712 cores). Each
compute node has dual sockets of 2.6Ghz 8-core Intel Sandy-
brdigeEP CPUs with 64 Gbyte 1,600MHz DDR3 RAM. The
interconnect is 4xQDR QLogic Infiniband in Fat-Tree topol-
ogy. For MPI-ULFM, we applied a modification to the
source of the latest commit (b24c2e4 as of May 1, 2014)
to apply tree-based resilient collectives [13] primarily for

512 procs 1,024 procs 2,048 procs

Original 5.65 sec 16.53 sec 30 min+ (hang?)
Tree-based 4.04 sec 6.55 sec 12.07 sec

Table 2: Performance of Communicator Fix: the cost of
OMPI_Comm_shrink and a few MPI_Comm_Create calls.
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communicator creation calls used in MPI_Comm_create and
OMPI_Comm_shrink. The original code uses one-to-all and
all-to-one algorithm, which exhibits a poor scalability. The
performance improvement with the tree-based code is shown
in Table 2; we have observed that the original code fails
to finish in 30 minutes on 2,048 processes. The parame-
ters for the collective communications for mpiexec are set
to tuned,basic,ftbasic. All the source code (including
MPI-ULFM) has been compiled with GNU-4.7.2 compilers.
The performance of the code was measured as large as 2,048
processes (cores).

We study the weak scalability of the resilient MiniFE from
64 × 64 × 64 grid (262K in matrix size) for 4 processes to
512×512×512 grid (134M in matrix size) for 2,048 processes.
The data size per process is approximately 23 Mbytes. A
process group size is set to 128 for the efficiency of commit

and restore. The recovery involves process replacement
(communicator fix), data recovery and repeating the same
linear system solution. The resilient MiniFE performs 20
time steps, and one of the processes is killed during these
time steps.

The execution time of MiniFE and its recovery overhead
are presented in Figure 7, indicating a small effect to the
overall performance by process failure. The cost for com-
mit shows a moderate increase for small process counts, but
the growth after 128 processes is relatively small due to the
grouping. The data recovery cost is very negligible as it is
executed within a single process group and leaves the other
group to start roll-back recovery immediately. The cost of
the communicator fix is more expensive than the other re-
covery operations. Despite the performance improvement of
the resilient agreement algorithm in OMPI_Comm_shrink and
MPI_Comm_create, the execution time grows almost linearly
as indicated by Figure 8. We further investigate the perfor-
mance of every single resilient agreement performed in the
communicator fix routine. Interestingly, a large fluctuation
is observed in the execution time as shown in Figure 9. In
particular, the first two calls (in OMPI_Comm_Shrink) spend
a significant amount of time compared to the subsequent
agreement calls. We conjecture that MPI-ULFM has some
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Figure 8: Execution Time of Individual Recovery Compo-
nents in Resilient MiniFE.

problems in the network setup for managing new communi-
cation patterns incurred by a process loss.

6. CONCLUSION
In this paper, we have described a software framework to

enable the LFLR resilience model for SPMD programming
model. For the backend of our framework, we employ MPI-
ULFM, a fault tolerant MPI proposed for the future MPI
standard. Our framework allows application developers to
extend their MPI programs so that they can run through sin-
gle process failures, thereby eliminating the need for check-
point/restart (C/R) and global files systems. The use of hot
spare processes combined with the ideas of disk-less check-
pointing permits scalable recovery and relaxes the compli-
cations for running applications with fewer processes. Fu-
ture middleware and I/O technology can be plugged into our
framework for more flexible options of the recovery schemes.
Our preliminary results indicate that a scalable recovery for
application data and state is achievable though there are
some performance issues in MPI-ULFM, in particular the
resilient collective for the communicator modification rou-
tines. The current implementation of MPI-ULFM is still
a prototype; the performance is the secondary interest at
this moment. Performance improvements in future releases
would resolve this problem and make LFLR a method of
choice over the state-of-art C/R for extreme scale systems.

The future work includes two directions. The first direc-
tion is performance tuning and analysis of our LFLR frame-
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work for a larger number of processes and multiple process
failures. This will also involve more effective use of the hot
spare processes to take over some resilience functionalities
beyond those described in this paper. The second direction
is exploring more sophisticated recovery semantics such as
roll-forward and the algorithm-based fault tolerance such as
FT-GMRES [5].
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