
Toward an Evolutionary Task Parallel
Integrated MPI + X Programming Model

Richard F. Barrett, Dylan T. Stark, Courtenay T. Vaughan, Ryan E. Grant, Stephen L. Olivier and Kevin T. Pedretti
Sandia National Laboratories*

Albuquerque, NM, USA
Email: rfbarre,dstark,ctvaugh,regrant,slolivi,ktpedre@sandia.gov

Abstract—This paper presents some results from a research
project designed to address some performance issues attributable
to the bulk synchronous parallel programming model seen
at large processor counts. Over-decomposition of the domain,
operated on as tasks, is designed to smooth out utilization of
the computing resource, in particular the node interconnect and
processing cores, and hide intra- and inter-node data movement.
Our approach maintains the existing coding style commonly
employed in computational science and engineering applications.
Although we show improved performance on existing computers,
the effectiveness of this approach on expected future architectures
will require the continued evolution of capabilities throughout
the codesign stack. Success then will not only result in decreased
time to solution, but would make better use of the hardware
capabilities and reduce power and energy requirements, while
fundamentally maintaining the current code configuration strat-
egy.

Index Terms—scientific and engineering applications; high
performance computing; programming models.

I. INTRODUCTION

The Bulk Synchronous Parallel programming model (BSP)
is the dominant strategy for implementing high performance
portable parallel processing scientific and engineering appli-
cations. As widely available parallel processing architectures
focused node interconnect performance on bandwidth (relative
to latency), code developers often aggregated data from vari-
ous structures into single messages [3] in order to reduce the
communication cost. Although many such applications have
performed well even up to peta-scale, the situation appears
to be changing. For example, as illustrated in Figure 1, when
using a simple difference stencil code from the Mantevo suite,
we are seeing degradations in scaling performance, found to be
caused by very small synchronization effects cascading as the
number of MPI ranks increased, exacerbated by the “bursty”
use of the interconnect. Briefly, with more details below,
this figure represents the performance of a difference stencil
code. Careful attention to process placement moved the scaling
degradation to the right, but this can be a significant hindrance
to throughput in a shared resource production environment
and may not be tractable for other algorithms. Regardless,
this bursty communication strategy requires increasing global

Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

Fig. 1. Difference stencil code weak scaling on a Cray XE6. MPI + OMP(n)
represents n OpenMP threads for each of the (Number of processor cores /
n) MPI processes.

bandwidth support, a meaningful impediment to the need to
reduce power and energy consumption, a stated requirement
of exascale roadmaps [13].

This has led to a renewed focus on non-traditional architec-
tures, providing new opportunities for exploring alternatives
to this programming approach. The emerging trend of lighter-
weight cores, each with access to a decreasing per core
amount of memory, combined with the expanding capabilities
of the interconnect compels a rethinking of basic programming
strategies, with special emphasis on inter-process communica-
tion.

In this paper we report on our work in developing a task par-
allel programming approach to “MPI + X” [24] that combines
computation and communication requirements into a task in
a way that maintains the traditional coding style, yet spreads
the workload more evenly across the computing resource in
comparison to the bulk synchronous parallel model. This is
enabled by exposing a greater level of parallelism by dividing
the workload into smaller pieces, presented to a task model
that couples computation and communication requirements,
allowing the runtime system to manage the work as a function
of the computing environment capabilities.

Task parallel approaches have been available previously

SAND2014-17445C

to code developers, but acceptance has been limited for a
variety of reasons, perhaps most strongly by the requirement
of significantly rewriting code. We demonstrate our approach
using the ubiquitous difference stencil. Although a relatively
simple computation, it composes a broad range of modeling
approaches of physical phenomena in science and engineering,
and leads to optimism for the principles being applied to more
challenging algorithms.

II. RELATED WORK

Over-decomposition strategies are being effectively applied
in linear algebra algorithms, where it is commonly referred to
as tiling [25], [15].

Unlike these computations, difference stencil algorithms
have no meaningful data re-use. Further, they continue to
maintain a strong separation between computation and com-
munication phases. We break up the workload of each beyond
the core view and provide a node view to the smaller individual
workloads. By including inter-process communication require-
ments within a task, the task can be swapped out while the
inter-MPI rank data is moved, new work swapped in, and the
MPI work swapped back in once the data motion is complete.

The performance of stencil computations has been an ongo-
ing focus area in high performance scientific computing, for
example as described in [2], [7], [9], [10], [21]. In fact many
of these ideas could be incorporated into our approach.

The advent of multicore processors compelled the increase
of injection rates and bandwidth from the node onto the
interconnect. This inspired and enabled our recent work in
message passing strategies: rather than aggregate data from
each of say 40 variables into single messages (in a multi-
material physics code), we performed the halo exchange as
each variable was updated, resulting in a 40 times increase in
the number of messages, each 1/40th the size [5]. Our work
herein takes this approach to a much more challenging level.

A large body of past work has addressed computation and
communication overlap [16], [14], [11] in MPI. Our work
leverages the benefits of such overlap as a consequence of
its task-parallel approach. Past approaches to automatically
provide overlap [22] have been proposed. Our approach using
tasks provides similar benefits without the need for manual or
automatic code transformation, or runtime methods of overlap
prediction and scavenging.

Prior work supporting dynamic parallelism and MPI mes-
sage passing includes integration of an on-node task parallel
runtime with MPI with SMPS [18] or Habanero [8], and with
use of application-level frameworks such as Uintah [19]. Our
work is closely related to these approaches, though it is more
limited in focus than either of these two efforts. We delib-
erately avoid imposing a broader task parallel programming
model on the user, and we do not require language extensions
or compiler support. Both decisions were made to decrease
any re-writing of existing MPI codes to take advantage of
special MPI calls or features of a particular model. Likewise,
approaches like Uintah also requires code rewriting, leaving

legacy MPI code behind and recasting algorithms to their high-
level framework.

III. A TASK PARALLEL OVER-DECOMPOSITION
STRATEGY FOR FINITE DIFFERENCE STENCILS

The algorithmic structure of the finite difference method
maps naturally to the parallel processing architecture and
single-program multiple-data (SPMD) programming model.
On parallel processing architectures, these stencil computa-
tions require data from neighboring processes. This inter-
process communication is typically abstracted into some sort
of functionality that may be loosely described as boundary
exchange (also called ghost-exchange or halo-exchange). The
general form of this may be expressed as

int stencil (...) {
Exchange_boundary_data (...);
Apply_boundary_conditions (...);
Apply_stencil (...);

}

including the application of physical boundary condition com-
putation.

A data-parallel implementation of difference stencils de-
composes the domain such that each core is assigned a single
contiguous block, illustrated in Figure 2(a). This requires

(a) Data parallel

(b) Task parallel over-decomposition

Fig. 2. Domain decomposition approaches to finite differencing

that the communication requirement be completed before the
computation may begin.

The task-parallel version over-decomposes the domain that
has been assigned to a set of cores sharing memory, and relies
on a dynamic runtime system to schedule blocks to a set of
processing cores spanning a shared memory region, illustrated

in Figure 2(b). This approach maintains the basic form of
these operations, allowing computation and communication
requirements to be included in the same task, but with the
individual task workloads significantly reduced. Here, when a
communication event reaches a blocking state, the task may be
swapped out, allowing another task to be swapped in. When
that task completes, or is itself swapped out while blocking
on a communication event, another task may be swapped in,
and so on. For a high enough level of over-decomposition,
most tasks will require computation only, and thus quickly
complete. At some point, the communication-blocked task
is swapped back in and its work continues. This process is
illustrated in Figure 3. We abbreviate this task parallel over-

Fig. 3. Computation and communication interaction

decomposition programming model as TPOD.
The amount of over-decomposition, defined by the size of

the subblocks, is chosen as a balance of processor capabilities,
memory hierarchies, node interconnect capabilities, and the
runtime scheduling system’s ability to manage the tasks.

In this work, we employ miniGhost [6], a miniapp from
the Mantevo suite (mantevo.org) that models heat diffusion
across a homogenous three dimensional surface by applying
difference stencils. It has been demonstrated to represent the
scaling behavior of full application programs (for example,
[4]) and has been previously used to explore alternative inter-
communication strategies [5].

Miniapplications provide a proven application-relevant con-
text for our experiments [4]. Designed for modification and
experimentation, they are open source, self-contained, stand-
alone code, with simple build and execution systems. They
enable investigation of different programming models and
mechanisms, existing, emerging, and future architectures, and
enabling investigation of entirely new algorithmic approaches
for achieving effective use of the computing environment
within the context of complex application requirements.

A. Code Discussion
The computational science and engineering community has

a significant investment in application programs. For exam-
ple, the United States Department of Energy has a multi-
billion dollar investment across many years of application
development, resulting in application programs that exceed
one million source lines of code. Many of these applications
make strong use of stencil computations. Our task-based model
requires only minor reconfiguration, leaving the fundamentals

in-place: loops over blocks of grid points with nearest neighbor
interprocess communication of face data. That is, this is an
evolutionary approach with the potential for revolutionary con-
sequences. Moreover, rooted in the fundamentals of threading,
this model provides a natural mapping to different architec-
tures (e.g. many-core, gpu-acceleration, etc) and programming
mechanisms (e.g. OpenMP, CUDA, etc).

The definition and ordering of the over-decomposition is ab-
stracted to an initialization function, say Over_decompose,
resulting in code that looks like this

ierr = Over_decompose (blks, ...);
for (i=0; i<numblks; i++)

spawn (stencil (blks[i], ...));

Now rather than constraining the ordering of the application of
the stencil (typically to an (i,j,k) nesting), the ordering is
defined within this function, allowing exploration of different
strategies for presenting the workload to the scheduler.

For the results presented herein, we used a simple random
shuffling of the block order, with the goal of spacing out
the tasks that include communication while requiring nothing
from the code developer. Additional orderings, defined for
example in terms of a directed acyclic graph (DAG), perhaps
informed by some known workload characterization, could be
inserted. The code developer now has a higher level view of
the computation, looping over sets of grid points defined by the
blocks, with the actual computation and communication code
remaining the same (with the exception of the new indexing
set).

This does require a modification to the starting and ending
indices. Whereas the data parallel version sweeps across all
grid points, and thus indices span the entire dimension from
1, . . . , n (the 0th and n+1 indices are ghost space), over-
decomposition of miniGhost requires defining task workload
indices. Similar indexing would be needed for the application
of boundary conditions. But again, the fundamental structure
of user code remains unchanged.

B. MPI+X Discussion
In order to evaluate the potential of the task parallel over-

decomposition approach described herein, we extended the
Qthreads task-parallel runtime system [26] to support direct
calls to MPI from within tasks (user-level threads). Qthreads
supports a variety of task creation and synchronization con-
structs, but does not require that the user adopt language
extensions or robust programming models, such as with Cilk
and other approaches. In fact, TPOD requires only two calls
to the Qthreads C API: a straightforward spawn function
(qthreads_spawn) creates new tasks, and a task-level
barrier (qt_sinc_wait) enforces task completion for each
time step.

This integration of MPI+Qthreads (MPIQ) manages the
scheduling of tasks across the available cores, independent
of the application. Tasks without communication can execute
on any core, with a work stealing scheduler ensuring that
no core is idle while there is more available work. Tasks
that include communication must be scheduled with respect

mantevo.org

to the thread support level provided by the MPI implemen-
tation. MPIQ does not require a specific thread level and
will adapt the scheduling of tasks with communication to
guarantee correct usage of MPI. For instance, when running
with MPI_THREAD_FUNNELED support, a task that attempts
to call into MPI will be migrated by the runtime to the
execution context where MPI was initialized. Because TPOD
may induce considerably more concurrent tasks with MPI calls
than parallel execution contexts, MPIQ can swap out tasks
on blocking MPI calls. Further, because a correct ordering
of those calls that guarantees no dead- or live-locking is
not known by the runtime system, blocking MPI calls are
converted to their non-blocking equivalents. These are then
managed using a combination of cooperative yielding of tasks
while waiting for the request to be satisfied. If an MPI function
does not have non-blocking equivalent, we create auxiliary OS
threads that can manage the blocking events without starving
a core.

The TPOD approach provides multiple opportunities for
reducing MPI communication costs. It spreads communication
over a longer time period, lessening network pressure. This
allows for shorter communication queues, which can improve
receive side message matching performance. It also facilitates
computation/communication overlap, which is a factor in
improving overall runtime. Finally, this approach integrated
with the runtime/tasking system can leverage the fast-path
in MPI implementations by using MPI_THREAD_FUNNELED
mode instead of MPI_THREAD_MULTIPLE. This helps
to avoid much of the locking inherent in multi-threaded
MPI implementations, which in turn provides performance
similar to that of single threaded MPI (and for some
implementations MPI_THREAD_FUNNELED is identical to
MPI_THREAD_SINGLE). This is an important factor in en-
suring that this approach will be applicable to future systems,
as the performance of traditional single-thread MPI imple-
mentations is well known to be excellent at scale. Additional
details of the MPI + X integration can be found in [23].

IV. EXPERIMENTAL PLATFORMS

New high performance architectures are showing signs of
increased thread parallelism, NUMA effects, heterogeneity,
and network opportunities and restrictions. We selected two
systems, Cielo and Volta, that we see representing these issues
and their expansion onto future architectures. These machines
allow us to begin to evaluate the model and answer fundamen-
tal scaling questions related to task granularity. For example,
what is the appropriate abstraction between the application
and the system? And how do we best control computation and
communication granularity for effective system utilization?

Cielo [12], an instantiation of a Cray XE6, is composed
of 8,944 compute nodes, connected using a Cray custom
interconnect named Gemini, and a light-weight kernel (LWK)
operating system called Compute Node Linux. Each compute
node, illustrated in Figure 4, consists of two oct-core AMD
Opteron Magny-Cours processors, for a total of 143,104 cores.
Each core has a dedicated 64 kByte L1 data cache, a 64

Gemini
ASIC

AMD
Magny-Cour

8-core

AMD
Magny-Cour

8-core

D
R
AM

D
R
AM

AMD
Magny-Cour

8-core

AMD
Magny-Cour

8-core
D
R
AM

D
R
AM

X Y Z

Fig. 4. Cielo node architecture

kByte L1 instruction cache, and a 512 kByte L2 data cache,
and the cores within a NUMA node share a 6 MByte L3
cache (of which 5 MBytes are user available). Each Magny-
Cours processor is divided into two memory regions, called
NUMA nodes, each consisting of four processor cores and
8 GBytes of DDR3 1333 MHz memory. Thus each compute
node consists of 16 processor cores, 32 GBytes of memory,
evenly divided among four NUMA nodes, which are connected
using HyperTransport version 3. The links between NUMA
nodes run at 6.4 GigaTransfers per second (GT/s).

Cielo compute nodes are connected using Cray’s Gemini
3-D torus interconnect. Relative to its SeaStar predecessor
used in the Cray XT series, Gemini provides an improve-
ment to the achievable asymptotic bandwidth for point-to-
point communication. There are two potential bottlenecks to
consider: injection bandwidth and link bandwidth. Injection
bandwidth is limited by the speed of the Opteron to Gemini
HyperTransport link, which runs at 4.4 GT/s.

The computing environment was set using module
PrgEnv-intel/4.2.34, which includes the Intel icc com-
piler version 14.0.02 (using -O3 -fast) and the Cray MPI
implementation cray-mpich/7.0.1.

Volta, a Cray XC30 Cascade system, consists of 52 compute
nodes, connected using a Cray Aries custom interconnect [1],
at this scale configured with all-to-all connectivity. Each node
is composed of two 12 core Intel Xeon E5-2670 Sandy
Bridge processors, for a total of 1,248 cores, running the
CLE operating system. Each core has a dedicated 32KB L1
data cache, a 32KB L1 instruction cache, and a 256KB L2
data cache, and the cores within each socket share a 20
MB L3 cache. The computing environment was set using
module PrgEnv-intel/5.2.25, which includes the Intel
icc compiler version 14.0.01 (using -O3 -fast) and the
Cray MPI implementation cray-mpich/7.0.1.

V. EXPERIMENTS

Our focus here is on Cielo, which allows us to scale up to
processor counts where we see the performance issue with the
BSP implementation. Volta provides a smaller scale alternative
for additional data points. Future work targets additional
platforms, including a large scale Cray XC, where the Aries
interconnect is configured with a dragonfly topology [17].

We configured a weak scaling problem set that consumes
a large proportion of the memory available in each shared

Block Cache lines Number Blocks Msg size
dimension per dim of blocks per face (bytes)
720, 3602 90,45 4 2,4 4e6,1e6

3603 45 8 4 1.04e6
2563 32 8 4 5.24e5
1283 16 125 25 1.31e5
643 8 1331 121 3.28e4
323 4 10648 484 8.19e3
243 3 27000 900 4.61e3
163 2 91125 2025 2.05e3
83 1 729000 8100 5.12e2

TABLE I
OVER-DECOMPOSITION SPECIFICATIONS

memory region, i.e. a socket or NUMA node, and assigned
one MPI rank to each. The problem was solved using different
amounts over-decomposition, as defined by the sub-blocks
(three dimensional cubes) of the full domain assigned to
each MPI rank. Although not necessary for our regular grid,
we focus on cubic blocks in preparation for Adaptive Mesh
Refinement (AMR), where cubes are a natural structure of
computation. Block dimensions are defined as factors of a
cache line, ranging from a single line (64 bytes, or 8 grid
points in double precision, on Cielo) in each dimension,
increasing at a rate of one cache line in each dimension, up to
half of the dimension defined for the MPI rank. We apply a 7-
point stencil in three dimensions, and therefore from the MPI
perspective there are six inter-process communication partners
(fewer, of course, on physical boundaries). Once the over-
decomposition creates a reasonable number of sub-blocks,
an individual block will have at most three communication
partners.

A global barrier is inserted at the end of each time step
to represent some sort of reduction operation expected there,
but without intruding on the basic stencil computation. The
Dirichlet boundary conditions require a negligible amount of
computation, used here only to ensure correctness: flux out
plus the current sum across the grid must remain equal to the
initial conditions.

For this example, we assign a grid of size 720⇥ 720⇥ 720
to each MPI rank (for a variety of reasons, this is different
from the problem set used in Figure 1) and iterate for 20 time
steps. This consumes a significant amount of memory (more
than six of the available eight GBytes) while also providing a
significant number of evenly divisible over-decomposition fac-
tors. Table I lists some details of interest for the decomposition
dimensions we present here.

As discussed above, ultimately our work is motivated by
our understanding of future architectures. Therefore the MPI-
everywhere model, whereby one MPI rank is assigned to each
processor core, is not seen a viable option.

The figure of merit for understanding the overall parallel
performance of a finite difference algorithm is grind time,
defined as

g = t/n

for g = grind time, t = total time, and n = total number
of grid points. That is, this is the time to operate on an
individual grid point, and therefore good performance results
in a decreasing grind time. This is also a useful metric for
this particular work, since we configure all decompositions
to be even factors of the block dimension (again, the natural
approach for AMR). So for example, for a block dimension
of 64, there will be 11 blocks in each dimension, resulting in
a domain of 704⇥704⇥704 assigned to each MPI rank. This
also means that in order to make a fair comparison of scaling,
we multiply grind time by the same number of grid points for
each over-decomposition.

Figure 5 shows the performance of these over-
decomposition configurations. For this weak scaling
experiment, the workload increases linearly with the
computing resource, and so perfect scaling is a flat line.
For small amounts of over-decomposition there is little
opportunity for communication overlap, though still,
performance improves. As the over-decomposition increases,
overlap opportunities increase, and the overall performance
improves to its best point with the 643 decomposition, when
time begins to increase. The 163 decomposition performs
relatively well at the beginning, but then degrades terribly at
4k cores.

In comparison with the MPI + OpenMP version in Figure 1,
where scaling degrades at high core counts (this with careful
process mapping), the TPOD approach stays flat, and this with-
out the attention to process mapping. We see similar behavior
on Volta (Figure 5(b)), except that the single-block case starts,
and remains, flat, indicating the increased capabilities of the
interconnect and the processor. (Plans calls for testing this
trend at much higher scales on a much larger Cray XC.)

A typical next step in examining the behavior of a BSP
model code is to examine computation and communication
times. Here, though, this exposes some issues regarding deeper
profiling of the TPOD model. In the BSP model, its relatively
easy to capture, interpret, and understand the behavior of
computation and inter-process communication requirements
because of the synchronous execution model. But the TPOD
model, by design, has a far more complex execution model,
so the standard timing method of starting and stopping timers
surrounding the computation and communication activities
will include things not seen in the BSP model. For example, as
illustrated above in Figure 3, the goal of hiding communication
costs by swapping tasks due to communication events would
result in communication times reported that exceed the total
run time. And we see this effect for these experiments,
graphically illustrated in Figure 6. This does not really provide
much actionable information for understanding execution, but
it does provide confidence that our task swapping approach
is resulting in communication hiding. It also illustrates the
interaction between computation and communication as over-
decomposition changes. The computation cost increases with
increasing over-decomposition, as does the reported commu-
nication time, but the total run time decreases to a point,
here 643, at which point the ability to hide the increasing

(a) Cielo (b) Volta

Fig. 5. Weak scaling performance

Fig. 6. Computation and communication for 32k processor cores on Cielo

communication cost is diminished.
A different view of this performance data is shown in

Figure 7. Here, each line represents a fixed number of cores
and grid size, with the x-axis varying the over-decomposition
block dimension, so that we may see the impact of the over-
decomposition on the grind time. In some sense, then, each
line may be considered strong scaling and the different lines
weak scaling. We see that for many block dimensions, the
grind time decreases as over-decomposition increases, possible
only if some communication is being hidden by computation.

One of the key goals of our over-decomposition scheme
is to spread network communication over a longer period of
time, which for a constant problem size will result in lower
point-in-time load on the network. Doing this should reduce
the network bandwidth requirement for a given problem size
and also reduce network congestion, which when present can
substantially increase message latency and overall communica-
tion time. We examined the Cray Gemini network performance
counters [20] in an effort to empirically measure whether or
not these benefits were being achieved in practice.

Results suggest that point-in-time network load is being
reduced. First, we examined the per-link bytes transmitted
counter to measure the total communication volume injected
into the network for each block size, which corresponds to
the total bytes (including header data) sent by all MPI ranks.
Illustrated in Figure 8(a), successively larger core counts result
in larger communication volume, causing the curves in the
figure to stack nicely on one another. The large dips for
the 2563 and 1283 block sizes, attributable to their overall
problem size being approximately 2.5 and 1.5 times smaller
due to the cache line factor blocks, show that network traffic
decreases by the expected amount for the smaller problem
sizes, providing confidence that these counters are working
properly. For the actual over-decomposition targets on the
right half of the graph, the general trend is for the bytes
injected to increase slightly for successively finer-grained over-
decomposition dimensions. This is expected since increased
over-decomposition should result in a larger number of smaller
messages, and each message has a fixed overhead cost (i.e., the
message headers and other per-message wire overhead). The
empirical data shows this effect, confirming that per-message
overhead on the Cray Gemini network is reasonable.

Next, we examined network stalls per byte transmitted, a
proxy for network congestion. In general, as more load is
placed on a sparse network like the Gemini’s 3-D torus, more
head of line blocking occurs, more network router buffers fill
up, and higher message latencies result. Congestion causes
stalls, meaning messages must wait in a router buffer before
they can continue to their next hop in the network. Measuring
total stalls at all allocated Gemini network ASICs, if over-
decomposition spreads out communication traffic, we expect to
see a reduced point-in-time network load and fewer stalls. We
compute the average number of stalls by dividing measured
bytes injected into the network. The general trend, illustrated
in Figure 8(b), shows a decrease in average stalls as over-
decomposition increases, suggesting that over-decomposition

(a) Cielo (b) Volta

Fig. 7. Exploring block sizes

is having the desired impact.

VI. SUMMARY AND FUTURE WORK

Scaling issues encountered using the BSP programming
model on current architectures and inspiration from emerging
and expected future architectures motivated an exploration of
alternative coding strategies for some computational science
and engineering applications of interest. The task parallel over-
decomposition programming model provides a theoretically
viable alternative, but we were intent on maintaining the
general structure of existing application coding strategies. We
were somewhat surprised to see the TPOD approach out-
perform the BSP model on current, traditional cluster-like
architectures. Although results presented herein were run in
dedicated resource mode, i.e. no other programs were execut-
ing at the time, we also saw that performance was seemingly
not adversely impacted on shared resources, the standard re-
source management model that production computing operates

in. This provides encouragement that this approach will have
an even greater impact on more challenging applications on
more challenging architectures.

Looking forward to new architectures, we expect that the
number of processor cores on a node will approach the
hundreds and even thousands, each of lighter weight (e.g.
slower clocks and less memory per core) than those on current
multicore processors. Interconnect technologies, such as fat
trees, dragonfly, etc, and future optical, are designed to provide
more efficient bandwidth, but latencies are in some sense
more constrained. Therefore the increasing core threading
capabilities could be combined with an off-load model of
inter-node communication to provide stronger support for
the TPOD strategy. The tasks are spawned onto the node,
assigned as a task to a thread on a core. If required, MPI
communication is initiated by the core, but as much of the
subsequent work is performed on a separate processor assigned
the task: transmission and reception of the data, the source

 0

 2e+12

 4e+12

 6e+12

 8e+12

 1e+13

 1.2e+13

 1.4e+13

 1.6e+13

 1.8e+13

 2e+13

720x360x360

360x360x360

256x256x256

128x128x128

64x64x64

32x32x32

24x24x24

16x16x16

B
yt

e
s

In
je

ct
e

d

Over-Decomposition Dimensions

131072 cores
65536 cores
32768 cores
16384 cores

8192 cores
4096 cores

(a) Bytes injected into 3-D torus

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

720x360x360

360x360x360

256x256x256

128x128x128

64x64x64

32x32x32

24x24x24

16x16x16

S
ta

lls
 /

 B
yt

e

Over-Decomposition Dimensions

131072 cores
65536 cores
32768 cores
16384 cores

8192 cores
4096 cores

(b) Ratio of network stalls per byte injected

Fig. 8. Measured network traffic for Cielo

and destination matching, etc. We further believe that this
approach maps well to GPU architectures, which we intend
to investigate as well. This will, however, present challenges
with regard to moving data between the host and device if that
model persists.

Our next application target involves Adaptive Mesh Refine-
ment (AMR). AMR is a strategy for focusing attention on areas
of intensive activity in computational science and engineering
applications while still constraining the overall workload.
This comes at the cost of added complexity, including more
challenging computational and communication patterns. AMR
provides a naturally changing workload that can, in a strong
sense, be viewed and managed as domain over-decomposition,
illustrated in Figure 9. We are also targeting other application

Fig. 9. AMR dynamic workload.

domains for applying this approach.
Our initial work has exposed questions that must be ad-

dressed if this approach is to provide a viable alternative
for full application programs on new architectures. Stronger
means for understanding run time behavior at a finer grain
is required to make stronger causal relationships in this exe-
cution model. Strong integration of the inter-node and intra-
node (MPI and “X”, respectively) is necessary to effectively
manage and coordinate communication and computation. Our
future work will include addressing these and other issues so
that we may fully explore the potential for this alternative
programming model.

REFERENCES

[1] B. Alverson, E. Froese, L. Kaplan, and D. Roweth. Cray XC Series
Network. Technical Report WP-Aries01-1112, Cray Inc., 2012.

[2] V. Bandishti, I. Pananilath, and U. Bondhugula. Tiling stencil compu-
tations to maximize parallelism. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, SC12, 2012.

[3] R.F. Barrett, S. Ahern, M.R. Fahey, R. Hartman-Baker, J.K. Horner, S.W.
Poole, and R. Sankaran. A Taxonomy of MPI-Oriented Usage Models
in Parallelized Scientific Codes. In The International Conference on
Software Engineering Research and Practice, 2009.

[4] R.F. Barrett, P.S. Crozier, M.A. Heroux, P.T. Lin, T.G. Trucano, and
C.T. Vaughan. Assessing the Validity of the Role of Mini-Applications
in Predicting Key Performance Characteristics of Scientific and Engi-
neering Applications. Journal of Parallel and Distributed Computing,
2014. To appear.

[5] R.F. Barrett, C.T. Vaughan, S.D. Hammond, and D. Roweth. Reducing
the Bulk of the Bulk Synchronous Parallel Model. Parallel Processing
Letters, 23, December 2013.

[6] R.F. Barrett, C.T. Vaughan, and M.A. Heroux. MiniGhost: A Miniapp for
Exploring Boundary Exchange Strategies Using Stencil Computations in
Scientific Parallel Computing. Technical Report SAND2011-5294832,
Sandia National Laboratories, May 2011.

[7] L. Bongo, B. Vinter, O. Anshus, T. Larsen, and J. Bjorndalen. Using
Overdecomposition to Overlap Communication Latencies with Com-
putation and Take Advantage of SMT Processors. In Proceedings of
the 2006 International Conference Workshops on Parallel Processing,
ICPPW ’06, 2006.

[8] S. Chatterjee, S. Tasırlar, Z. Budimlic, V. Cavé, M. Chabbi, M. Gross-
man, V. Sarkar, and Y. Yan. Integrating asynchronous task parallelism
with MPI. Department of Computer Science, Rice University, Technical
Report TR12-07, 2013.

[9] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and K. Yelick.
Optimization and performance modeling of stencil computations on
modern microprocessors. SIAM Review, pages 129–159, 2009.

[10] R. de la Cruz and M. Araya-Polo. Towards a multi-level cache
performance model for 3D stencil computation. Procedia CS, 4:2146–
2155, 2011.

[11] D.W. Doerfler and R. Brightwell. Measuring MPI send and receive
overhead and application availability in high performance network
interfaces. In Recent Advances in Parallel Virtual Machine and Message
Passing Interface, pages 331–338. Springer, 2006.

[12] D.W. Doerfler, M. Rajan, C. Nuss, C. Wright, and T. Spelce.
Application-Driven Acceptance of Cielo, an XE6 Petascale Capability
Platform. In Proc. 53rd Cray User Group Meeting, 2011.

[13] J. Dongarra and P. Beckman et. al. The International Exascale Software
Roadmap. International Journal of High Performance Computing, 25(1),
2011.

[14] R.L. Graham et al. Overlapping computation and communication: Bar-
rier algorithms and ConnectX-2 CORE-Direct capabilities. In Parallel
& Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010
IEEE International Symposium on, 2010.

[15] B. Hadri, E. Agullo, and J. Dongarra. Tile QR factorization with parallel
panel processing for multicore architectures. In 24th IEEE International
Parallel and Distributed Processing Symposium (submitted), 2010.

[16] T. Hoefler, A. Lumsdaine, and W. Rehm. Implementation and per-
formance analysis of non-blocking collective operations for MPI. In
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC’07), 2007.

[17] J. Kim, W. J. Dally, S. Scott, and D. Abts. Technology-Driven,
Highly-Scalable Dragonfly Topology. SIGARCH Comput. Archit. News,
36(3):77–88, June 2008.

[18] Vladimir Marjanović, Jesús Labarta, Eduard Ayguadé, and Mateo
Valero. Overlapping communication and computation by using a hybrid
MPI/SMPSs approach. In Proceedings of the 24th ACM International
Conference on Supercomputing, ICS ’10, pages 5–16, New York, NY,
USA, 2010. ACM.

[19] Q. Meng and M. Berzins. Scalable Large-Scale Fluid-Structure Interac-
tion Solvers in the Uintah Framework via Hybrid Task-based Parallelism
Algorithms. Concurrency and Computation: Practice and Experience,
26(7):1388–1407, 2014.

[20] K.T. Pedretti, C.T. Vaughan, K.S. Hemmert, and R.F. Barrett. Using the
Cray Gemini Performance Counters. In Proc. 55th Cray User Group
Meeting, 2013.

[21] S. Rahman, Q. Yi, and A. Qasem. Understanding Stencil Code
Performance on Multicore Architectures. In Proceedings of the 8th ACM
International Conference on Computing Frontiers, CF ’11, pages 30:1–
30:10, New York, NY, USA, 2011. ACM.

[22] M.J. Rashti and A. Afsahi. A speculative and adaptive MPI rendezvous
protocol over RDMA-enabled interconnects. International Journal of
Parallel Programming, 37(2):223–246, 2009.

[23] D.T. Stark, R.F. Barrett, R.E. Grant, S.L. Olivier, K.T. Pedretti, and
C.T. Vaughan. A Dynamic Runtime with Co-Scheduling of Work and
Communication Tasks for Hybrid MPI+X Applications. Under review.

[24] R. Thakur et al. MPI at Exascale. In Scientific Discovery through
Advanced Computing (SciDAC 2010), July 2010.

[25] S. Tomov, J. Dongarra, and M. Baboulin. Towards dense linear algebra
for hybrid GPU accelerated manycore systems. Parallel Computing,
36(5-6):232–240, 2010.

[26] K.B. Wheeler, R.C. Murphy, and D. Thain. Qthreads: An API for pro-
gramming with millions of lightweight threads. In IPDPS 2008: Proc.
22nd IEEE Intl. Symposium on Parallel and Distributed Processing,
MTAAP Workshop, pages 1–8. IEEE, 2008.

	I Introduction
	II Related Work
	III A Task Parallel Over-Decomposition Strategy for Finite Difference Stencils
	III-A Code Discussion
	III-B MPI+X Discussion

	IV Experimental platforms
	V Experiments
	VI Summary and Future Work
	References

