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§  Develop	
  a	
  simple	
  infrasound	
  model	
  for	
  underground	
  explosions	
  
§  Determine	
  if	
  spall	
  imparts	
  a	
  unique	
  signature	
  on	
  the	
  acous4c	
  signal	
  
§  Used	
  surface	
  accelera4ons	
  and	
  the	
  Rayleigh	
  Integral	
  to	
  produce	
  

synthe4c	
  infrasound	
  traces	
  
§  Modeled	
  SPE	
  2	
  and	
  SPE	
  3	
  (GJI	
  Publica4on)	
  

§  Generate	
  synthe4c	
  surface	
  accelera4ons	
  
§  Simple	
  surface	
  accelera4on	
  and	
  spall	
  models	
  [Stump	
  (85),	
  Pa[on	
  (90)]	
  
§  Full	
  finite-­‐difference	
  hydrodynamic	
  solu4on	
  for	
  surface	
  accelera4ons	
  

(GEODYNE-­‐L)	
  

§  Con4nue	
  to	
  use	
  the	
  Rayleigh	
  Integral	
  	
  
§  Fast	
  and	
  efficient	
  with	
  very	
  good	
  results	
  (input	
  dependent)	
  



SPE	
  Infrasound	
  Array	
  and	
  	
  
Surface	
  Accelerometer	
  Loca4ons	
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§  Spall	
  occurs	
  when	
  layer(s)	
  of	
  rock	
  above	
  explosion	
  separate	
  and	
  are	
  
sent	
  in	
  free	
  fall	
  

§  Describes	
  the	
  force	
  or	
  accelera4on	
  near	
  explosion	
  ground	
  zero	
  
§  Uplid	
  =	
  ini4al	
  pulse,	
  uplid	
  of	
  spall	
  layer	
  
§  Dwell	
  =	
  free	
  fall,	
  -­‐g	
  
§  Slapdown	
  =	
  spall	
  layer	
  reconnects	
  

§  Spall	
  model	
  follows	
  	
  
§  Stump	
  (1985)	
  for	
  the	
  4me-­‐dependence	
  
§  Pa[on	
  (1990)	
  for	
  the	
  scaling	
  of	
  peak	
  velocity,	
  accelera4on,	
  dwell	
  4me,	
  etc…	
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§  Peak	
  accelera4ons	
  decay	
  away	
  from	
  GZ	
  
§  Dwell	
  4me	
  decreases	
  away	
  from	
  GZ	
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§  Modeled	
  SPE-­‐2	
  and	
  SPE-­‐3	
  
§  Fundamentally	
  similar	
  shots	
  in	
  the	
  same	
  borehole	
  
§  SPE-­‐2	
  45.7	
  m	
  DOB,	
  363	
  SDOB,	
  997	
  kg	
  TNT	
  equiv.	
  
§  SPE-­‐3	
  45.8	
  m	
  DOB,	
  376	
  SDOB,	
  905	
  kg	
  TNT	
  equiv.	
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p(x, y, z, t) = pressure at observation point 
x, y, z = location of observation point 
x’, y’ = location on baffle (2D) 
S’ = baffle surface 
uz(x’, y’, t) = baffle element velocity, 
vertical component 
ůz(x’, y’, t) = baffle element acceleration, 
vertical component 
r = range from baffle element to 
observation point 
ρ0 = density of air 
c0 = sound speed of air 
 

! !,!, !; ! = !!
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SPE 2 Observed vs. Synthetic Waveforms − Filtered [1−5 Hz] 
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SPE 3 Observed vs. Synthetic Waveforms − Filtered [1−5 Hz] 
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SPE 3 Observed vs. Synthetic Waveforms − Filtered [1−5 Hz] 
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§  LLNL	
  computed	
  this	
  model	
  for	
  SPE-­‐3	
  
§  W	
  =	
  905.0e-­‐6	
  	
  #	
  yield	
  in	
  kiloton	
  
§  DOB	
  =	
  45.8	
  	
  	
  	
  #	
  depth-­‐of-­‐burial	
  in	
  meters	
  
§  TR	
  =	
  0.0156	
  	
  	
  #	
  rise	
  4me,	
  half	
  dura4on	
  of	
  ini4al	
  accelera4on	
  pulse	
  
§  C	
  =	
  4500	
  	
  	
  	
  	
  	
  #	
  compressional	
  wave	
  speed,	
  m/s	
  
§  RHO	
  =	
  1970	
  	
  	
  	
  #	
  density,	
  kg/m**3	
  
§  Computed	
  the	
  accelera4on	
  in	
  m/s/s	
  at	
  ranges	
  =	
  0,	
  100	
  m,	
  step	
  =	
  5	
  m	
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§  Domain	
  
§  1x1	
  km2	
  x	
  ½	
  km	
  
§  Rayleigh	
  patch	
  (surface	
  gauges)	
  	
  

§  (½	
  km)2	
  

§  100	
  x	
  100	
  sta4ons	
  
§  5	
  m	
  apart	
  

§  SPE3	
  geological	
  seong	
  
§  2	
  grani4c	
  layers	
  (weak	
  &	
  strong)	
  
§  Joints	
  are	
  included	
  no	
  faults	
  
§  Yield	
  =	
  SPE3	
  	
  

§  Outputs	
  
§  Velocity	
  profiles	
  
§  Accelera4on	
  profiles	
  
§  Displacement	
  profiles	
  

Domain 
1km x 1km x 1/2km 

Rayleigh patch 
500m x 500m 
100x100 pts 

Source box  
patch for far field 
simulations 
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SPE - 2 SPE - 3 

SPE – 3 Simple Model SPE – 3 GEODYNE –L Model 
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§  Geong	
  the	
  spall	
  (rise	
  4me,	
  dwell	
  4me	
  and	
  slapdown)	
  correct	
  is	
  
impera4ve	
  and	
  greatly	
  impacts	
  the	
  generated	
  acous4c	
  signal	
  

§  RI	
  does	
  a	
  good	
  job	
  of	
  reproducing	
  the	
  acous4c	
  signal	
  from	
  surface	
  
accelera4on	
  data	
  but	
  is	
  highly	
  input	
  dependent	
  

§  The	
  simple	
  and	
  GEODYNE	
  –	
  L	
  models	
  aren’t	
  yet	
  capturing	
  the	
  physics	
  
of	
  the	
  underground	
  explosion	
  to	
  accurately	
  reproduce	
  the	
  acous4c	
  
signal	
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§  More	
  hydrodynamic	
  modeling	
  with	
  our	
  simple	
  model	
  and	
  GEODYNE-­‐
L	
  
§  Need	
  to	
  determine	
  the	
  correct	
  parameters	
  that	
  match	
  the	
  observed	
  signals	
  

and	
  amplitudes	
  

§  Knowing	
  that	
  spall	
  greatly	
  effects	
  the	
  acous4c	
  waveform	
  we	
  need	
  to	
  
con4nue	
  to	
  vary	
  the	
  spall	
  parameters	
  and	
  observe	
  the	
  changes	
  to	
  
the	
  acous4c	
  waveform	
  

§  SPE	
  4’	
  –	
  Explosion	
  to	
  minimize	
  spall	
  
§  Use	
  Hexacopter	
  airborne	
  infrasound	
  plauorm	
  to	
  directly	
  measure	
  

ver4cal	
  waveform	
  during	
  future	
  shots	
  
§  GJI	
  Publica4on	
  

§  “Modeling	
  infrasound	
  signal	
  genera/on	
  from	
  two	
  underground	
  explosions	
  at	
  
the	
  Source	
  Physics	
  Experiment	
  using	
  the	
  Rayleigh	
  integral“	
  

	
  



Ques4ons?	
  

22	
  Arrowsmith et. al 2014 (in review) 


