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Motivation i) fat

= Develop a simple infrasound model for underground explosions

= Determine if spall imparts a unique signature on the acoustic signal

= Used surface accelerations and the Rayleigh Integral to produce
synthetic infrasound traces

= Modeled SPE 2 and SPE 3 (GJI Publication)
= Generate synthetic surface accelerations

= Simple surface acceleration and spall models [Stump (85), Patton (90)]

= Full finite-difference hydrodynamic solution for surface accelerations
(GEODYNE-L)

= Continue to use the Rayleigh Integral
= Fast and efficient with very good results (input dependent)




SPE Infrasound Array and i
Surface Accelerometer Locations

Infrasound Station Locations for SPE

Laboratories
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= Spall occurs when layer(s) of rock above explosion separate and are
sent in free fall
= Describes the force or acceleration near explosion ground zero
= Uplift = initial pulse, uplift of spall layer
= Dwell =free fall, -g
= Slapdown = spall layer reconnects
= Spall model follows

= Stump (1985) for the time-dependence
= Patton (1990) for the scaling of peak velocity, acceleration, dwell time, etc...
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SPALL ) 5,
" Peak accelerations decay away from GZ
= Dwell time decreases away from GZ
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Rl Modeling with Observed
Acceleration Data

Modeled SPE-2 and SPE-3

= Fundamentally similar shots in the same borehole
= SPE-245.7 m DOB, 363 SDOB, 997 kg TNT equiv.
= SPE-345.8 m DOB, 376 SDOB, 905 kg TNT equiv.
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DTRA Surface Accelerometers
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Rl Modeling with Observe
Acceleration Data
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X, V¥, Z, t) =— 0 dS, z observation

p( y ) 21T S r 7 point

p(x, v, z, t) = pressure at observation poi
X, ¥, z = location of observation point
x’, y' = location on baffle (2D)

S’ = baffle surface

u(x’, y’, t) = baffle element velocity,
vertical component

u(x’, y’, t) = baffle element acceleratior
vertical component

r = range from baffle element to
observation point

P, = density of air

c, = sound speed of air




Rl Modeling with Observed

Acceleration Data

Normalized Amplitudes

SPE 2 Observed vs. Synthetic Waveforms - Filtered [1-5 Hz]
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SPE 3 Observed vs. Synthetic Waveforms - Filtered [1-5 Hz]

Sandia
National _
Laboratories

IS1.1p | 1S 12 1S1.3n |

IS 2.1 IS 2.2

\3 \J

IS2.3 \ IS 2.4

1S3.2 .

\]

52

IS 4.1

IS 6.1 1S 6.2

\S

©
7

Fed

~

»

e

W
N

IS71 1S 7.2

r1S 5.1

2,

r Observed T 1s

0.25 km

0.24 km

0.26 km

0.35 km

1 km

~ 1 km

2 km

5 km




RI Modeling with Observed =
Acceleration Data

Laboratories
SPE 3 Observed vs. Synthetic Waveforms - Filtered [1-5 Hz]
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Acceleration/Spall Model

LLNL computed this model for SPE-3

W =905.0e-6 # yield in kiloton

DOB =45.8 # depth-of-burial in meters

TR =0.0156 # rise time, half duration of initial acceleration pulse
C=4500 # compressional wave speed, m/s

RHO =1970 # density, kg/m**3

Computed the acceleration in m/s/s at ranges =0, 100 m, step =5 m
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Rl Modeling with Simple
cceleration/Spall Model
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Rotated Acceleromter Line for Simple Model
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Rl Modeling with Simple
Acceleration/Spall Model
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RI Modeling with GEODYNE-L =
Hydrodynamic Model

Laboratories

= Domain
= 1x1 km?x % km _
= Rayleigh patch (surface gauges) l‘:l)li)rrr?iIka « 1/2km ?Sg:ﬁig%ggtﬁh
* (%2 km)? a 100x100 pts
= 100 x 100 stations -
= 5 mapart

= SPE3 geological setting
= 2 granitic layers (weak & strong)
= Joints are included no faults
= Yield =SPE3

=  Qutputs
= Velocity profiles

Source box <
patch for far field
= Acceleration profiles simulations

= Displacement profiles
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RI Modeling with GEODYNE-L =
Hydrodynamic Model

Laboratories
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Rl Modeling with GEODYNE-L
Hydrodynamic Model
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Interpolated/Extrapolated Acceleration Surface for GEODYNE-L Model
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Rl Modeling with Observed
Surface Accelerations (SPE — 3)

Interpolated/Extrapolated Acceleration Surface at Time: 0.025 s
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Acceleration Surfaces
SPE-2
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Acceleration Surfaces e
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Observations (so far) 1) .

" QGetting the spall (rise time, dwell time and slapdown) correct is
imperative and greatly impacts the generated acoustic signal

= Rl does agood job of reproducing the acoustic signal from surface
acceleration data but is highly input dependent

= The simple and GEODYNE — L models aren’t yet capturing the physics
of the underground explosion to accurately reproduce the acoustic
signal
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Future Work )

= More hydrodynamic modeling with our simple model and GEODYNE-
L

= Need to determine the correct parameters that match the observed signals
and amplitudes

= Knowing that spall greatly effects the acoustic waveform we need to
continue to vary the spall parameters and observe the changes to
the acoustic waveform

= SPE 4’ — Explosion to minimize spall

= Use Hexacopter airborne infrasound platform to directly measure
vertical waveform during future shots

= @GJI Publication

= “Modeling infrasound signal generation from two underground explosions at
the Source Physics Experiment using the Rayleigh integral”
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Questions?

Arrowsmith et. al 2014 (in review) 22
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