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Abstract

Accurate prediction of fusion performance in present and future tokamaks requires taking

into account the strong interplay between core transport, pedestal structure, current profile and

plasma equilibrium. An integrated modeling workflow capable of calculating the steady-state self-

consistent solution to this strongly-coupled problem has been developed. The workflow leverages

state-of-the-art components for collisional and turbulent core transport, equilibrium and pedestal

stability. Validation against DIII-D discharges shows that the workflow is capable of robustly pre-

dicting the kinetic profiles (electron and ion temperature and electron density) from the axis to the

separatrix in good agreement with the experiments. An example application is presented, showing

self-consistent optimization for the fusion performance of the 15 MA D-T ITER baseline scenario

as functions of the pedestal density and ion effective charge Zeff .

∗ meneghini@fusion.gat.com
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I. INTRODUCTION

The physical processes that govern the core and pedestal regions of tokamak plasmas

are strongly coupled. The peeling-ballooning (PB) and kinetic ballooning modes (KBM)

impose constraints on the pedestal structure, which in turn strongly affect core confinement

(or equivalently, core temperature and pressure) in H-mode plasmas. Because PB stability

is impacted by the global Shafranov shift, which is proportional to the core pressure, this

leads to a feedback cycle between core and pedestal [1, 2]. Similarly, the strength and

scaling of collisional (neoclassical) and turbulent core transport depend not only on the

temperature and density profiles, but also on the plasma equilibrium and current profiles.

Steady-state core profiles are achieved when the transport processes balance the heating

and particle sources. Thus, predictive modeling of profiles from core to edge represents

successful coupling of (a) plasma equilibrium, (b) core turbulence and transport, (c) particle

and energy sources, and (d) pedestal structure.

Although the interaction between the H-mode pedestal and the core plasma has long been

recognized as an important effect [1–3], it has not generally been accounted for in a self-

consistent way. Typical transport studies keep the pedestal shape fixed while equilibrium,

core transport and sources are iterated self-consistently. This iterative process is illustrated

in Fig. 1a. In this traditional approach, the pedestal pressure and width is most commonly

assumed to be known and fixed [4–7]. Other approaches are to calculate the pedestal pa-

rameters from scaling laws [3, 8–10] or to employ a pedestal structure model [11, 12] such

as EPED [2, 13, 14] without self-consistency. In the latter case, the stabilizing effect of the

equilibrium Shafranov shift caused by the core pressure is assumed ab initio. Although this

approach may be acceptable for transport analysis of existing experiments, for which the

pedestal boundary condition is known, it can lead to large uncertainties for true predictive

modeling of future devices [9]. The lack of self-consistency means that the predicted total

plasma pressure (labeled as βn,out in Fig. 1) changes based on the total plasma pressure that

is input to the pedestal model (βn,in). In other words, the outcome of the core transport

simulation depends on the initial assumptions of the pedestal or the inputs to the pedestal

structure model.

In this paper, we will refer to two different flux-surface labels. The first is a geometric

quantity, r, which is the half-width of the flux surface measured at the elevation of the
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FIG. 1. High-level schematics comparing (a) the traditional workflow used for predictive simu-

lations in which the pedestal structure is held fixed (and the outcome of the simulation depends

on the initial assumptions made in the pedestal structure calculation), and (b) the workflow pre-

sented in the present paper for which the pedestal structure calculation is part of the iteration loop

(and the simulation outcome is independent of the initial assumptions made in the initial pedestal

structure calculation).

centroid [5]. We remark that r is sometimes referred to as the Miller minor radius and is

the fundamental radial variable in numerous modeling codes. This definition is suitable for

a plasma cross-section of arbitrary shape and elevation, and in the limit of an unshifted

circular plasma, r reduces to the radius of the circle. In general it is computed numerically

after the plasma equilibrium has been determined. The second flux-surface label is the

square root of the normalized toroidal flux,

ρ
.
=

√
χt(r)

χt(a)
, (1)

where a is the value of r at the last closed flux surface (LCFS). The quantity ρ is commonly

used for plasma modeling, but it should be noted that it does not correspond to a physical

length. Throughout this paper we refer to the volume-averaged normalized plasma pressure

βn
.
= βt/In [15] where

βt =
〈p〉

B2
t /2µ0

and In =
Ip
aBt

. (2)

Here, 〈p〉 is the volume-averaged plasma pressure in Pa, Bt is the vacuum magnetic field

strength in T, Ip is the plasma current expressed in MA, and a is the radius in m. In this

paper, we will always express βn as a percentage.

As part of the SciDAC AToM project [16] we have developed an iterative workflow to

calculate the steady-state self-consistent solution to the coupled core-pedestal problem. This
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new workflow, as illustrated in Fig. 1b, implements an iteration loop that couples (a) plasma

equilibrium, (b) core turbulence and transport, (c) particle and energy sources, and (d)

pedestal structure. The key innovation is to updating the global pressure (derived from

the core-transport prediction at the previous step) that is input to the pedestal model. We

remark that for the cases presented in this paper, that the converged solution to the coupled

system is found to be unique; that is, independent of the initial guess of βn.

In Sec. II we will describe in greater detail the physics modules implemented in the new

workflow, as well as the coupling strategies used to connect them. The implementation of the

iterative workflow, which is used to find the steady-state self-consistent solution, is given in

Sec. IV. Further, in Sec. IV, we illustrate the workflow by simulating a DIII-D ITER baseline

scenario discharge. The insensitivity of the self-consistent solution to different initial guesses

for the global pressure is also clearly demonstrated. Finally, in Sec. V, we further apply the

iterative workflow to perform a self-consistent optimization of the fusion performance for

the 15 MA D-T ITER baseline scenario as function of the pedestal density ne,ped and ion

effective charge Zeff,ped.

II. CORE TRANSPORT CALCULATION METHODOLOGY

In the present work, profiles are determined by matching transport fluxes with heating

and particle sources using the TGYRO [5] transport module. In addition to its capabil-

ity as a transport code, TGYRO is also a parallel transport manager with the ability to

call multiple concurrent instances of the TGLF [17] transport model, or more generally,

massively-parallel GYRO [18] simulations. TGYRO can simultaneously manage the parallel

execution of kinetic NEO [19–21] simulations. The total transport fluxes are given by a

sum of the NEO neoclassical fluxes and the turbulent fluxes (via TGLF in this paper). The

TGYRO approach (combining TGLF and NEO) has been previously applied with great suc-

cess for the prediction of kinetic profiles in the core region (see Fig. 2) of tokamak plasmas

[4, 5, 22–26].
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A. Neoclassical flux and bootstrap current: NEO

Although formulae exist for the neoclassical fluxes and the bootstrap current, the direct

kinetic approach used by NEO ensures the highest possible accuracy for the neoclassical

processes. NEO solves the drift-kinetic equation,

v‖b · ∇g1a −
∑
b

CL
ab(g1a, g1b) = −vD · ∇f0a −

zae

T0a

f0a~vD · ∇Φ0 , (3)

where g1a is the nonadiabatic perturbed distribution function. In NEO, no approximations

beyond the drift-ordering are made. Full sonic toroidal rotation and centrifugal terms are

retained, and general flux-surface shape is treated. The full linearized Fokker-Planck collision

operator is used for the collision dynamics, with complete cross-species collisional coupling

for arbitrary mass ratio and an arbitrary number of ion species, thus strictly preserving

ambipolarity. NEO has been extensively benchmarked with analytic theories, as well as with

NCLASS [27], over a wide range of parameters and in various asymptotic limits [19, 20, 28].

With NEO, we maintain accuracy even in the case of strong plasma shaping, large trapped

fraction, multiple ions species, sonic rotation, fast particles, and high pedestal collisionality.

We note however that the cost of this approach scales with the square of the number of

species because of the complex interspecies collisional coupling. From the solution of the

distribution function, we can compute the fluxes and bootstrap current via

Γa =

〈∫
d3v g1avD · ∇r

〉
, (4)

Qa =

〈∫
d3vmaεg1avD · ∇r

〉
, (5)

〈
j‖B

〉
=
∑
a

zae

〈
B

∫
d3vg1av‖

〉
. (6)

B. Turbulent flux: TGLF and GYRO

Rather than attempting direct gyrokinetic simulation to determine the particle and energy

transport coefficients, we can achieve a speedup of millions by instead using the Trapped

Gyro Landau Fluid (TGLF) transport model [4]. This is a quasilinear transport model

using the same general methods as the Weiland [29] and GLF23 [30] models. The linear

eigenvalues and eigenfunctions of a system of trapped gyro-Landau fluid equations [31]

are used to evaluate the quasilinear weights of the transport fluxes. The linear growth rate
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spectrum is used to compute a model amplitude for the saturated turbulence. TGLF extends

its predecessor GLF23 by having a more accurate system of equations valid at both electron

and ion scales. TGLF bridges the gap between electron and ion scale instabilities and has

a more accurate trapped particle treatment. The linear eigenvalues of TGLF have been

extensively benchmarked with gyrokinetic calculations [31]. The model for the saturation

of the turbulence has been fit to a database of nonlinear gyrokinetic turbulence simulations

with the GYRO code. It is important to emphasize that no fitting parameters have been

adjusted to experimental data. Instead, TGLF is designed for approximate validation of

gyrokinetic turbulent transport with larger datasets than is possible with full gyrokinetic

simulation. The TGLF equations are fully electromagnetic but are limited to high toroidal

mode number instabilities due to the gyrokinetic ordering assumptions. Only electron pitch

angle scattering collisions are included in TGLF at present. A new saturation model is

being developed for TGLF to more accurately represent the electron scale saturation of the

turbulence and its coupling to ion scales (Staebler 2016, in press).

C. Steady-state profile prediction: TGYRO

Evolution of the plasma profiles (density, temperature, electric field) occurs slowly, on the

tranport timescale, in reponse to the second-order collisional (NEO) and turbulent (TGLF)

radial transport of particles, energy and momentum. First, the equation for density evo-

lution solved in TGYRO is

∂〈na〉
∂t

+
1

V ′
∂

∂r
(V ′Γa) = Sn,a , (7)

where V is the volume enclosed by the flux surface, V ′ = ∂V/∂r, and r is the Miller minor

radius defined in Sec. I. The sources and fluxes, defined in Table I, are

Sn,a = Sbeam
n,a + Swall

n,a , (8)

Γa = Γneo
a + Γtur

a . (9)

Typically, only the electron density ne is evolved and the ions are updated according to

quasineutrality. This is a practical approach to overcome the limitation imposed by uncer-

tainties in the ion particle sources. Next, the equation for the pressure evolution (which
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is effectively the equation for temperature evolution) of species a is

∂〈Wa〉
∂t

+
1

V ′
∂

∂r
(V ′Qa) + Πa

∂ω0

∂ψ
= SW,a , (10)

where ω0 is the plasma rotation, and the sources and fluxes are

SW,a = Saux
W,a + Srad

W,a + SαW,a + Stur
W,a + Scol

W,a , (11)

Qa = Qneo
a +Qtur

a . (12)

Finally, the equation for momentum evolution (which is effectively the equation for the

radial electric field evolution) is

∂

∂t

(
ω0〈R2〉

∑
a

mana

)
+

1

V ′
∂

∂r

(
V ′
∑
a

Πa

)
=
∑
a

Sω,a , (13)

where the total momentum flux is

Πa = Πneo
a + Πtur

a . (14)

In the pressure and momentum equations, we have introduced the toroidal rotation frequency

ω0 = cEr/(RBp) [20] where Er is the radial electric field and Bp is the poloidal magnetic

field. This approach is valid in the limit that the rotation is dominantly toroidal and sonic,

which typically requires significant beam heating power to achieve. When the rotation is

diamagnetic – that is, in the spontaneous rotation regime – an accurate calculation of the

electric field requires a higher-order treatment [32] and is therefore beyond the capabilities

of the present modeling approach.

The numerical approach used in TGYRO is motivated by an essential feature of profile

evolution. In steady-state, the time derivatives in the transport equations are exactly zero,

and the balance of transport fluxes (particle, energy and momentum) with heating sources

is a complicated nonlinear root finding problem. Obviously, for time-independent heating

sources, there is a unique set of profiles for which steady-state is achieved. Importantly, even

when the plasma is not in steady state, the physical rate of evolution of profiles typically

remains slow, so that the time-evolution should be viewed as almost quasi-static. In the

present paper we use TGYRO to compute, at every iteration level, the flux-matching profiles,

in which case the time derivatives in the TGYRO transport equations are ignored. The case

of time-dependent sources, though, is straightforward and can be retained in the general case.
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In the more general case, the steady-state solver becomes the kernel for a fully-implicit time

advance.

As described in Ref. [5], TGYRO uses a novel method to solve the problem. The transport

equations are integrated over volume to yield an algebraic equation expressing the balance

of fluxes and sources. For example, the energy equations becomes

Qa(r) =
1

V ′(r)

∫ r

0

dx V ′(x)SW,a(x)
.
= QT

a (r) , (15)

Variable Definition

Γtur
a Turbulent particle flux

Γneo
a Neoclassical particle flux

Qtur
a Turbulent energy flux

Qneo
a Neoclassical energy flux

Πtur
a Turbulent momentum flux

Πneo
a Neoclassical momentum flux

Saux
a Auxiliary heating power density

Srad
a Radiation (loss) power density

Sαa Alpha-particle heating power density

Stur
a Turbulent exchange power density

Scol
a Collisional exchange power density

TABLE I. Definitions of the sources and fluxes appearing the TGYRO transport equations.

We refer to the quantity QT
a as the target flux, since that is the flux we will try to match

by adjusting parameters in the TGLF and NEO calculations. Since the latter codes require

the profile gradients as inputs, we define the logarithmic gradients za
.
= −(1/Ta)∂Ta/∂r.

Then, if we specify the temperature at an arbitrary matching radius r∗ (normally chosen in

the vicinity of the pedestal) as Ta∗
.
= Ta(r∗), the gradients uniquely determine the smooth

temperature profiles, Ta:

Ta(r) = Ta∗ exp

(∫ r∗

r

dx za(x)

)
, (16)
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where za is taken to be piecwise-linear. On a discrete grid {rj}, the smooth temperature

profile coincides with the discrete values obtained by the trapezoidal rule

Ta(rj−1) = Ta(rj) exp

{[
za(rj) + za(rj−1)

2

]
[rj − rj−1]

}
. (17)

To put the problem into discrete form, we define a vector of gradients (independent variables)

za,j = za(rj), transport fluxes, Qa,j = Qa(rj) and target fluxes QT
a,j = QT

a (rj). Then, the

equations to be solved are

Qa,j = QT
a,j , (18)

Note that Qa,j is computationally very expensive to evaluate, whereas QT
a,j are very fast and

take an insignificant amount of compute time. The flux-matching calculations are performed

at a few (typically less than 10) radial locations in the plasma, using a sparse Newton method

approach.

We remark that TGYRO also operates on an arbitrary (irregular) radial grid, and can

function with only a single flux-matching point r1 > 0 where the transport fluxes are matched

to the sources. TGYRO further uses a novel method to treat the magnetic axis which

allows the simulation to avoid the breakdown of the drift-ordering which occurs at r →

0. This breakdown in illustrated in Fig. 15 of Ref. [19], and is physically connected to

the transformation of banana orbits into potato orbits. In other words, the underlying

assumption that the orbit width is small compared to the gradient scale length is not valid

as ρ/a→ 0. But, because the gradient scale-length must remain large and well-behaved, in

TGYRO we simply assume a linear profile of gradient scale-length from the magnetic axis

to the first flux-matching point. Then, the location of the first flux-matching point can be

taken just outside the thermal potato radius. This flexibility can also be used to facilitate

simulation of discharges which are affected by sawtooth instabilities. In these cases, the

q ' 1 region of the plasma is dominated by the rapid dynamics of MHD-driven sawtooth

instabilities. But again, the gradients profiles ought to be smooth as the magnetic axis is

approached, so that first flux-matching point can be placed just outside the sawtooth region.

III. PEDESTAL STABILITY AND STRUCTURE

In the pedestal region, the very short radial scales associated with the equilibrium present

a substantial challenge to traditional theoretical approaches. Because the observed fluctu-
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CORE                                                     TR       PED

EPED1TGYRO

FIG. 2. Illustration of radial connectivity of core (CORE), transition (TR) and pedestal (PED)

regions during self-consistent modeling, as described in detail in Sec. II. In the CORE region,

TGYRO computes the gradient scale-length profile (bottom frame) ze = −d lnTe/dr using non-

linear root-finding, and obtains the smooth temperature profile (top frame) by integration. The

introduction of a finite-sized transition region (TR) allows smooth matching of core profiles to

pedestal profiles for cases in which the core model may underestimate the transport.

ation scales overlap strongly with the equilibrium scale, strictly speaking it is not possible

to rigorously employ the approach of traditional transport theory. The assumptions of the

traditional theory that are violated are 1) that the fluctuation scales are analytically sepa-

rated from the equilibrium and transport scales, 2) that the fluctuation scale is treated with

separate gyrokinetic and neoclassical codes, and 3) that transport and equilibrium scale

physics can be evaluated with transport solvers and magnetohydrodynamic (MHD) codes

Thus, a different approach is required.

A. The EPED1 pedestal model

Despite the theoretical challenge, there has been substantial progress in understanding

mechanisms which constrain the structure of the pedestal, and developing models to predict

this structure. Here we employ the EPED1 pedestal model [2, 13, 14], which combines two

physics constraints (calculated from sets of model equilibria that include a self-consistent

treatment of the bootstrap current) to predict the pedestal height and width.
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FIG. 3. Illustration of OMFIT integrated modeling workflow with dynamic pedestal. Coupled

modules include core transport (turbulence and neoclassical), current and source evolution, mag-

netostatic equilibrium (EFIT), and EPED1 pedestal stability. The iterative workflow starts with

the pedestal prediction from the EPED1 model. The profiles associated with the maximum pedestal

height are used as an input to the ONETWO or TRANSP transport codes to calculate the sources

of particles and heat in the plasma. The TGYRO code is then used to efficiently find the profiles

for which the neoclassical fluxes from the NEO model and turbulent fluxes predicted by the TGLF

model match those sources. The updated value of the global plasma pressure is used for a new run

of the EPED1 model, and the cycle is repeated until the solution converges.

One important physics constraint is provided by peeling-ballooning (PB) modes, which

are driven by the combination of strong pressure gradients, and resulting bootstrap current

gradients, in the edge barrier region. PB modes are highly non-local, with a structure typi-

cally extending across the edge barrier into the outer core, and generally have toroidal mode

numbers ranging from ∼ 4− 30 [33]. Special-purpose, efficient MHD codes, such as ELITE

[33, 34] have been developed to calculate PB thresholds, and, employing diamagnetic cor-

rections based on extended MHD, it has been possible to extensively compare the calculated

PB threshold to observed constraints on the pedestal structure (and conditions for the onset

of Type I edge localized modes (ELMs) or edge harmonic oscillations (EHO)), finding gener-
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FIG. 4. Evolution of the simulated kinetic profiles for a DIII-D discharge and comparison with

the experimental measurements. The profiles from the initial run of EPED are shown by the

dark blue curves. The squares in these curves indicate the radii at which TGYRO performed the

flux-matching calculations. The final step of the simulated profiles (dark red) are compared with

experimental measurements, showing agreement across the entire plasma radius.

ally good agreement across large numbers of cases on several tokamaks [2, 35, 36]. However,

the PB constraint by itself is not sufficient to self-consistently determine both the pedestal

height and width, but rather gives a constraint on the height as a function of the width,

which scales roughly with the 3/4 power of the width [2].

While, strictly speaking, the scale separation between transport and macrostability breaks

down in the pedestal, the EPED model proposes instead a separation between nonlocal

modes (such as PB) and nearly-local modes which act primarily to constrain gradients

within the electron transport barrier (ETB). We remark that the nonlocal modes are driven

by free energy across the entire pedestal region, and can act to halt the penetration of
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the edge transport barrier into the core – a process understood to be driven by strong

diamagnetic E×B shear progressively shearing apart turbulent eddies near the pedestal

top. EPED hypothesizes that, for high-performance (Type I ELM and Quiescent H-Mode)

discharges, PB modes provide the global constraint. In general, there are many possible

nearly-local modes, as well as significant levels of ion neoclassical energy transport, in the

pedestal. EPED1 further conjectures that, because of the very strong E×B shear and

generally strong particle sources in the ETB, the pressure gradient generally rises until it

is finally constrained by the onset of the kinetic ballooning mode (KBM). This is proposed

not because other modes do not exist or do not drive transport, but rather because they are

not expected to provide a hard stability limit. More precisely, ion-scale modes, such as the

ITG, are expected to be suppressed by the combination of E×B shear and β′ stabilization.

And typical electron-scale modes, such as the ETG, are driven by ratios of temperature to

density gradients and are not generally expected to limit the pressure gradient by themselves

in the presence of strong plasma sources.

The KBM threshold in the EPED model is calculated using the ballooning critical

pedestal technique [13]. The KBM can be thought of as providing a constraint on the

pressure gradient, or more quantitatively, the derivative of the local βp (plasma pressure

normalized to poloidal magnetic field pressure) with respect to the normalized poloidal flux,

dβp/dψN . Because of the magnetic shear dependence of the KBM, together with the boot-

strap current dependence on collisionality (which decreases strongly moving in from the

separatrix), the KBM critical gradient generally increases moving radially inward. This im-

plies that the radial average of the KBM critical gradient across the pedestal increases with

the width of the pedestal (∆), that is 〈dβp/dψN〉 ∼ ∆, or, integrated across the pedestal,

∆ = G
√
βp,ped, where βp,ped is the poloidal beta at the top of the pedestal (and it is assumed

the poloidal beta at the separatrix is negligibly small) and G is a weakly varying function of

collisionality and geometry such that G ' 0.07− 0.09 (note that it is important to account

for finite-n effects at low shear, which close off access to the second stability region that ex-

ists in high-n calculations). In the simplified EPED1 version of the EPED model employed

here, G is fixed to a typical constant value, G = 0.076 [2, 13]. EPED1 then combines this

condition for KBM criticality with a self-consistent calculation of the PB constraint with the

ELITE code [1, 33, 34], using a series of roughly 100 model equilibria constructed using the

TOQ [37] equilibrium solver, to determine the predicted pedestal height and width as the
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intersection of the conditions for KBM and PB criticality (essentially solving two numerical

equations for the two unknowns, pedestal height and width). The profiles in the pedestal

region (highlighted red in Fig. 2) are given by EPED1, as a final result of roughly 700 PB

calculations on 100 KBM-critical model equilibria.

The EPED1 model provides a prediction of the total pedestal pressure for a given elec-

tron density. In the pedestal and transition regions the electron and ions temperatures are

assumed to be the same, and the ion density is calculated by enforcing quasi-neutrality and

keeping their relative concentrations fixed. We note that there remain significant assump-

tions made in the coupled core-pedestal modeling done here. These include the supposition

of sufficient power for operation in high performance H-mode. That is, we do not attempt

to predict the conditions for the L-H transition or the transition into a high performance

(Type I ELM or QH mode) regime. Furthermore, we are predicting approximate time-

average conditions for the profiles, and are not explicitly accounting for transients such as

ELMs.

B. Core-pedestal transition region: TR

The integrated modeling approach described here is new and differs significantly from the

traditional methodology for predictive core transport simulations [3, 5–10, 12]. In traditional

predictive modeling, a so-called pivot radius ρpivot is specified, at which the temperature and

density are held fixed, and inside which the core transport solver evolves profiles. The pivot

radius is nominally considered to represent the top of the pedestal and a typical value is

ρpivot ' 0.9. In this approach, the pedestal is little more than a boundary condition for

core modeling. More importantly, in the absence of a model for the pedestal, the choice of

fixed density and temperature at the pivot radius is effectively arbitrary. Note that, in this

approach, if ρpivot indeed signifies the top of the pedstal, then a transition region of zero

radial extent between core and pedestal is implied. At the pedestal boundary however, the

value of the inverse scale-length that satisfies the flux-matching constraint in TGYRO is

unlikely to be consistent with the value that satisfies the PB and KBM constraints. When

the disaccord between the two models is significant this manifests itself as an abrupt change

in slope at the interface between the core and pedestal region (see for example the change

in slope at the core-pedestal interface of the profiles in Fig. 15 of Ref. [9]; Figs. 16 and 17 of
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Ref.[10]; Fig. 3, 5 and 6 of Ref. [12]). This is an important issue since, due to the stiffness

of the core profiles, small changes in the gradients can lead to significant differences in the

overall fusion performance. Recall that a transport model is said to be stiff if the transport

fluxes increase rapidly with normalized temperature gradient, once the normalized profile

gradient exceeds a threshold value.

If we let ρcore denote the maximum radius for which TGYRO flux-matching procedure is

valid, then what remains is a transition region

ρcore < ρ < ρped , (19)

where ρped is the minimum radius for which the EPED1 model can describe the profile (i.e.

pedestal) structure. In the transition region, the H-mode kinetic profiles tend to form what

could be described as a plateau. The physics processes that govern the profile evolution in

the transition region changes from neoclassical and turbulent radial transport to PB and

KBM stability constraints, including the effects of intermittent ELMs driven by moderate

to high-n MHD instabilities. The transition region allows the gradient scale lengths that

are consistent with the transport calculation in the core to smoothly transition to the values

that are consistent with the PB and KBM dynamics of the pedestal.

IV. PROFILE PREDICTION WITH DYNAMIC EQUILIBRIUM AND PEDESTAL

The steady-state solution to the integrated simulation of pedestal structure, core trans-

port, and magnetic equilibrium is found by means of the iterative workflow show in Fig. 3.

This flow chart shows in more detail the individual components that are used for our par-

ticular implementation of the iterative workflow that was introduced earlier in Fig. 1B. In

addition to the EPED1 model and the TGYRO transport solver used for the pedestal and

core transport problem, we used the ONETWO transport code [38] for the calculation of

the heat and particle sources, as well as for the evolution of the plasma current profile.

Finally, the magnetic equilibrium calculation is performed with the EFIT equilibrium code

[39] with the constrains to reproduce the pressure and current profiles that are output from

TGYRO and ONETWO, as well as a user-prescribed plasma boundary. The separation of

these processes into discrete modules can be justified based on timescale separation of the

associated physics, and indeed these processes (for example, equilibrium and transport) have
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Initial guess Iteration number

Self consistent
solution

FIG. 5. Multiple integrated simulations of the same discharge were carried out for a broad range

of initial guesses, βguess
n , for the plasma pressure. The final pressure, βn, converges to a result inde-

pendent of the inital guess, thereby demonstrating robustness of the iterative method. Cases where

the value of the initial guess is similar to the final solution evidently result in faster convergence,

but this is not a requirement for the iteration scheme.

TGYRO

EPED1

Initial guess

Self consistent
solution

Pedestal prediction

Core prediction

FIG. 6. Evolution of the coupled core-pedestal solution in the βn − ptop plane, for different initial

guesses βguess
n . Each update in the βn solution (vertical shift) corresponds to a run of the core trans-

port solver TGYRO, while each update in the pedestal height ptop (horizontal shift) corresponds to

a run of the pedestal workflow EPED1. The graphical solution to the nonlinear coupled problem is

constructed by connecting the points of the core and pedestal predictions. This figure shows that

the solution is unique and independent of βguess
n . This result demonstrates the robustness of the

iterative scheme.
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been treated separately, with success, for decades. Although this rules out the description of

transient phenomena, in what follows we show that very close agreement with experimental

results can be obtained with the present component coupling strategy.

The present workflow was implemented, and is available [40] via a coupling of the OM-

FIT [41] and Integrated Plasma Simulator (IPS) [42, 43] frameworks. Here the user controls

the integrated simulation with OMFIT, which orchestrates the execution of the TGYRO,

ONETWO, and EFIT components, while relying on the IPS to provide the High Performance

Computing (HPC) enabled IPS-EPED1 workflow. OMFIT further handles data exchange

across distributed workstations and clusters, as well as selected post-processing tasks. For

the simulations presented herein, we required that the original EPED1 workflow [2] (yet

another nested workflow) executes sufficiently rapidly so as to enable parameter sweeping

of the entire coupled model in a few minutes. This was not practical with the original

IDL based EPED1 workflow running on a local cluster. To achieve this goal we translated

EPED1 into the IPS-EPED1 workflow, which can now take full advantage of HPC resources

by allowing the IPS to schedule and launch the individual execution of the components

internal to EPED1. This IPS-EPED1 workflow replicates the original EPED1 capability,

but at a fraction of the wall clock time. As indicated in Fig. 3, the EPED1 model [2] maps

the equilibria-stability parameter space using the TOQ and ELITE component codes. The

IPS-EPED1 nested workflow utilizes the capabilities of the IPS framework to launch these

tasks in parallel. A typical IPS-EPED1 iteration uses up to 700 cores on the Edison Cray

XC30 platform at NERSC [44], and simulation results are obtained in less than 2 minutes

(dominated by the time for one TOQ plus one ELITE run for the highest mode number).

The IPS-EPED1 workflow has been verified against the original EPED1 for the database of

362 runs presented in [2]. The average difference for the calculated pedestal pressure between

original EPED1 and IPS-EPED1 is 0.147 kP, which is within the algorithmic uncertainty of

EPED. This verification scan was conducted using the integrated IPS-DAKOTA optimiza-

tion and parameter sweep environment [45]. Using this environment, multiple IPS-EPED1

executions are dispatched concurrently within a single instance of the IPS, with DAKOTA

coordinating the parameterization of each run and aggregating the final results.

In this section we apply the iterative workflow to simulation of a DIII-D discharge. The

discharge – chosen because of its relevance to the ITER baseline scenario – is characterized

by low torque and dominant electron heating. Simulation results are summarized in Fig. 4.
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The inputs to the simulation are the plasma shape, Bt, Ip, the configuration of the heat,

particle and current sources (neutral beam and electron cyclotron radio-frequency heating),

the pedestal electron density ne,ped (indicated by a red circle in Fig. 4) and the ion effective

charge Zeff . For the core region, we set the innermost TGYRO flux-matching radius at

ρ1 = 0.3 (i.e., the sawtooth inversion radius) and the last at ρcore = 0.8. The transition

region, next, begins at ρcore = 0.8 and ends at ρped = 0.9. The pedestal region, finally,

covers the region ρped < ρ < 1. To illustrate the predictive capabilities of this workflow, the

initial value of the normalized plasma beta was chosen to be βguess
n = 1.26, a value that is

intentionally far from the experimental value of βn,exp = 1.69.

The iterative workflow starts with the pedestal prediction from the EPED1 model. In-

ternally the EPED1 model generates a series of KBM-critical equilibria and profiles with

increasing pedestal pressure to find the maximum pedestal height ptop and width wtop con-

sistent with PB stability. When PB criticality is reached it is expected that an ELM or edge

harmonic oscillation will be triggered, preventing further increase of the height and width)

[2, 13]. The profiles associated with the maximum pedestal height are used as an input to

the ONETWO transport code to calculate the sources of particles and heat in the plasma.

The TGYRO code the computes the inverse scale-lengths for which the neoclassical and tur-

bulent fluxes (as predicted by the NEO and TGLF models) match those sources. Smooth

temperature and density profiles (at any desired number of flux-matching radii) for both

electron and ion are then evaluated using the integrals defined by Eq. 16. The value of βn

from the updated equilibrium calculation is used for a new run of the EPED1 model. This

cycle is repeated until the solution converges. The final iteration of the simulated profiles

(dark red) is in good agreement with experimental measurements, and the final value of the

normalized plasma beta βfinal
n = 1.68 closely matches the experimental value of 1.69. Note

that the final converged solution is independent of the initial guess βguess
n , as illustrated in

Fig. 5. In this plot, multiple self-consistent simulations of the same discharge were carried

out for a broad range of βguess
n , yielding the important result that all converge to the same

staedy-state solution. Cases where the value of the initial guess is similar to the final solu-

tion will of course result in faster convergence, but a very accurate initial guess is evidently

not a requirement for convergence of the iteration scheme.

A deeper understanding of the robustness of the core-pedestal coupling approach can be

obtained by visualizing the evolution of the solution in the βn−ptop plane, as shown in Fig. 6.
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We define ptop as the value of the pressure profile evaluated at 1.5 times the pedestal width

in from the separatrix. This plane is a natural choice for studying the coupled core-pedestal

problem since βn is modified by TGYRO for fixed ptop, whereas EPED1 modifies ptop at

fixed βn. The circles and diamonds in Fig. 6 represent the value of the global pressure at

the top of the pedestal after the execution of the pedestal and core solvers, respectively.

The dash-dotted segments mark the progression of the solution through the execution of the

two solvers at successive iterations for βguess
n = 4.20. The figure also illustrates convergence

starting at a much lower value of βguess
n = 0.84. The graphical solution to the nonlinear

coupled problem is thus constructed by connecting the points of the core and pedestal

predictions. Values of βn above the core prediction curve are precluded by the effect of stiff

core transport, while values of ptop higher than the pedestal prediction curve are precluded

by the onset of PB modes (given KBM-critical profiles). This analysis provides confidence

that the iterative scheme is stable and that a unique solution can be found for the set of

parameters that are input to the workflow.

V. OPTIMIZATION OF ITER BASELINE FUSION PERFORMANCE

A self-consistent optimization of the fusion power of the ITER baseline scenario was

carried out based on the iterative workflow described in the previous section. The input

parameters to the workflow were taken from the ITER baseline case studied in Ref. [10]

(see Fig. 6 of Ref. [10]). In order to use the same input parameters as in Ref. [10], we

modified the iteration scheme of Fig. 3 to use the TRANSP [46] code for the evolution

of the current profile, the evaluation of the heating sources, and calculation of the Grad-

Shafranov magnetic equilibrium. For this study we varied the pedestal density ne,ped and

effective ion charge Zeff,ped, as input to the EPED1 model. A total of 16 simulations were

performed, with four variations both in the pedestal density and Zeff,ped. Figure 7 shows

four simulations with Zeff,ped = 1.7 (the lowest value), and Fig. 8 shows four simulations

with Zeff,ped = 3.4 (the highest value). In both cases we plot the predicted pressure, electron

and ion temperatures, and electron densities. We emphasize that only Zeff in the pedestal is

varied, while the core value is kept constant among all cases (See Fig. 13 of Ref. [10]). Work

to include self-consistent impurity sources and transport is underway as part of the AToM

SciDAC project.
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FIG. 7. Results of a self-consistent optimization study for the ITER baseline scenario for Zeff,ped =

1.7 illustrating plasma performance for four values of the pedestal density, ne,ped. Here fusion

performance improves with increased pedestal density, which confirms naive expectations.

FIG. 8. Same as Fig. 7, except for Zeff,ped = 3.4. However, in contrast to Fig. 7, fusion performance

now decreases with increasing pedestal density, illustrating the critical importance of a self-

consistent pedestal model for ITER modeling.
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FIG. 9. Illustration of fusion gain Q as a function of ne for different values of the pedestal Zeff .

The counter-intuitive trend in ne for large Zeff is apparent.

Current

Pressure

FIG. 10. Although the best performing cases of the ITER baseline optimization study occur for

different values of ne,ped and Zeff,ped, they exhibit nearly identical pedestal pressure and current

profile. As such, their edge MHD stability properties are also comparable.

For each of the panels, the best performing cases are highlighted with a larger marker

symbol in the legend. As a consequence of the strong core transport stiffness, the core profiles

are self-similar with respect to a rigid translation of the boundary condition at the interface

between the transition region and the core region. In all cases the density exhibits a profile

peaking of about ne0/〈ne〉 ∼ 1.3. For low values of the effective ion charge (Zeff,ped = 1.7) the

fusion gain Q increases with the pedestal density, which is the naive expectation. However,
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FIG. 11. The zeroth-order scaling of the bootstrap current with collisionality at fixed pressure is

such that jBS ∝ Zeffn
2
e . Such scaling is consistent with the observed similar current profiles for the

best performing cases in Fig. 10.

in this case the highest fusion performance exceeds the empirical Greenwald density limit

[47], which for the ITER baseline scenario (with plasma current of 15 MA and a minor radius

of 2 m) is approximately equal to nGW ∼ 1.2× 1020 m−3. As Zeff,ped is increased from 1.7 to

3.4, the pedestal density at which the peak fusion power is reached occurs for lower values

of ne,ped. And, counterintuitively, for Zeff,ped = 3.4, the fusion performance decreases with

increasing pedestal density, as shown in Fig. 8. More precisely, for Zeff,ped = 1.7, 2.5, 3.0, 3.4,

the optimal pedestal density is ne,ped[1020/m3] = 1.0, 0.9, 0.8, 0.7. This fusion performance

trend is further illustrated in Fig. 9.

Although the best performing cases for the ITER baseline optimization study occur

for different values of ne,ped and Zeff,ped, they share similar pedestal pressure and current

profiles (see Fig. 10). As such, their edge PB and KBM properties are also comparable.

As a consequence of the core transport stiffness, the core pressure (and thus the fusion

performance) closely correlates with the pedestal height. This trend is well-captured by the

grayscale pedestal height map of Fig. 11. As expected by the zeroth-order scaling of the

bootstrap current with collisionality at fixed pressure jbs ∝ Zeffn
2
e, the highest values of the

pedestal height are aligned with contours of Zeffn
2
e. This explains why the best performing
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cases shown in Fig. 10 have similar current profiles. Based on the collisional scaling of the

bootstrap current, the loss of performance at lower and higher collisionality is attributed to

the effect of primarily current and pressure-driven PB modes, respectively.

VI. CONCLUSIONS AND FUTURE PERSPECTIVES

In the work we have given an overview of a fundamentally new integrated modeling ca-

pability which includes, among other key physics modules, a dynamic pedestal component

that can be used to ensure the consistency of core and pedestal evolution. More generally,

we have described an approach to modeling that takes into account the strong interplay

between (a) core transport, (b) pedestal structure, (c) current profile evolution and (d)

magnetic equilibrium. This capability improves the accuracy and reliability of previous ap-

proaches to the prediction of fusion performance. In this iterative workflow, self-consistency

is achieved by successive iterations of pedestal model, core model, sources and equilibrium

calculation. We have shown that the coupling scheme can closely reproduce the experimental

measurements without requiring a priori knowledge of the temperature and density profiles.

Further, we have demonstrated that the self-consistent, interative solution is independent

of the initial guess that is used to initiate the pedestal calculation at the beginning of the

iterative process.

Results of a self-consistent optimization of the ITER baseline scenario show that ne,ped as

well as Zeff,ped are strong actuators for the fusion power, both of which will likely need to be

actively controlled during ITER operations to optimize the fusion performance, and satisfy

the requirements imposed by the density limit. The dependency with respect to Zeff,ped

points to the need for coupling to a Scrape-Off-Layer (SOL) in the iterative workflow: an

important future development which is underway as part of the AToM SciDAC project. The

TGYRO transport code will also be updated to independently evolve the kinetic profile of

the individual ion species.

The coupling workflow described in this document has been implemented within the

OMFIT integrated modeling framework. As such, this tool is available to the broader fusion

community, to further validate the individual physics components of the workflow as well as

their couplings, and enable the self-consistent design of steady-state operational scenarios

from first-principles calculation.
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