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Abstract

Accurate prediction of fusion performance in present and future tokamaks requires taking
into account the strong interplay between core transport, pedestal structure, current profile and
plasma equilibrium. An integrated modeling workflow capable of calculating the steady-state self-
consistent solution to this strongly-coupled problem has been developed. The workflow leverages
state-of-the-art components for collisional and turbulent core transport, equilibrium and pedestal
stability. Validation against DIII-D discharges shows that the workflow is capable of robustly pre-
dicting the kinetic profiles (electron and ion temperature and electron density) from the axis to the
separatrix in good agreement with the experiments. An example application is presented, showing
self-consistent optimization for the fusion performance of the 15 MA D-T ITER baseline scenario

as functions of the pedestal density and ion effective charge Zqg.
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I. INTRODUCTION

The physical processes that govern the core and pedestal regions of tokamak plasmas
are strongly coupled. The peeling-ballooning (PB) and kinetic ballooning modes (KBM)
impose constraints on the pedestal structure, which in turn strongly affect core confinement
(or equivalently, core temperature and pressure) in H-mode plasmas. Because PB stability
is impacted by the global Shafranov shift, which is proportional to the core pressure, this
leads to a feedback cycle between core and pedestal [1, 2]. Similarly, the strength and
scaling of collisional (neoclassical) and turbulent core transport depend not only on the
temperature and density profiles, but also on the plasma equilibrium and current profiles.
Steady-state core profiles are achieved when the transport processes balance the heating
and particle sources. Thus, predictive modeling of profiles from core to edge represents
successful coupling of (a) plasma equilibrium, (b) core turbulence and transport, (c) particle

and energy sources, and (d) pedestal structure.

Although the interaction between the H-mode pedestal and the core plasma has long been
recognized as an important effect [1-3], it has not generally been accounted for in a self-
consistent way. Typical transport studies keep the pedestal shape fixed while equilibrium,
core transport and sources are iterated self-consistently. This iterative process is illustrated
in Fig. 1a. In this traditional approach, the pedestal pressure and width is most commonly
assumed to be known and fixed [4-7]. Other approaches are to calculate the pedestal pa-
rameters from scaling laws [3, 8-10] or to employ a pedestal structure model [11, 12] such
as EPED [2, 13, 14] without self-consistency. In the latter case, the stabilizing effect of the
equilibrium Shafranov shift caused by the core pressure is assumed ab initio. Although this
approach may be acceptable for transport analysis of existing experiments, for which the
pedestal boundary condition is known, it can lead to large uncertainties for true predictive
modeling of future devices [9]. The lack of self-consistency means that the predicted total
plasma pressure (labeled as 3, out in Fig. 1) changes based on the total plasma pressure that
is input to the pedestal model (Byin). In other words, the outcome of the core transport
simulation depends on the initial assumptions of the pedestal or the inputs to the pedestal

structure model.

In this paper, we will refer to two different flux-surface labels. The first is a geometric

quantity, r, which is the half-width of the flux surface measured at the elevation of the



ﬁn,outlv 5n,out2 e a) /Bmout b)

A
ﬁn,inl; Bn,in2 s /Bn,inh Bn,inZ <.
p < ‘L A l
s D e N D
Core ] Pedestal Core Pedestal

| Transport | L Structure ] L Transport | L Structure )

7/ \ | i

© N [ N\ (O N N
Sources Equilibrium Sources Equilibrium
§ \%\ J § \)\/Y J

FIG. 1. High-level schematics comparing (a) the traditional workflow used for predictive simu-
lations in which the pedestal structure is held fixed (and the outcome of the simulation depends
on the initial assumptions made in the pedestal structure calculation), and (b) the workflow pre-
sented in the present paper for which the pedestal structure calculation is part of the iteration loop
(and the simulation outcome is independent of the initial assumptions made in the initial pedestal

structure calculation).

centroid [5]. We remark that r is sometimes referred to as the Miller minor radius and is
the fundamental radial variable in numerous modeling codes. This definition is suitable for
a plasma cross-section of arbitrary shape and elevation, and in the limit of an unshifted
circular plasma, r reduces to the radius of the circle. In general it is computed numerically
after the plasma equilibrium has been determined. The second flux-surface label is the

square root of the normalized toroidal fluz,

xdr) 1)

where a is the value of r at the last closed flux surface (LCFS). The quantity p is commonly
used for plasma modeling, but it should be noted that it does not correspond to a physical
length. Throughout this paper we refer to the volume-averaged normalized plasma pressure
Bn = Bt/ Iy [15] where

B, = —>  and [, = —-. 2
t BE/QHO " (lBt ( )

Here, (p) is the volume-averaged plasma pressure in Pa, B; is the vacuum magnetic field
strength in T, I, is the plasma current expressed in MA, and a is the radius in m. In this
paper, we will always express (3, as a percentage.

As part of the SciDAC AToM project [16] we have developed an iterative workflow to

calculate the steady-state self-consistent solution to the coupled core-pedestal problem. This



new workflow, as illustrated in Fig. 1b, implements an iteration loop that couples (a) plasma
equilibrium, (b) core turbulence and transport, (¢) particle and energy sources, and (d)
pedestal structure. The key innovation is to updating the global pressure (derived from
the core-transport prediction at the previous step) that is input to the pedestal model. We
remark that for the cases presented in this paper, that the converged solution to the coupled

system is found to be unique; that is, independent of the initial guess of £,.

In Sec. II we will describe in greater detail the physics modules implemented in the new
workflow, as well as the coupling strategies used to connect them. The implementation of the
iterative workflow, which is used to find the steady-state self-consistent solution, is given in
Sec. IV. Further, in Sec. IV, we illustrate the workflow by simulating a DIII-D ITER baseline
scenario discharge. The insensitivity of the self-consistent solution to different initial guesses
for the global pressure is also clearly demonstrated. Finally, in Sec. V, we further apply the
iterative workflow to perform a self-consistent optimization of the fusion performance for
the 15 MA D-T ITER baseline scenario as function of the pedestal density nepeq and ion

effective charge Zeg ped-

II. CORE TRANSPORT CALCULATION METHODOLOGY

In the present work, profiles are determined by matching transport fluxes with heating
and particle sources using the TGYRO [5] transport module. In addition to its capabil-
ity as a transport code, TGYRO is also a parallel transport manager with the ability to
call multiple concurrent instances of the TGLF [17] transport model, or more generally,
massively-parallel GYRO [18] simulations. TGYRO can simultaneously manage the parallel
execution of kinetic NEO [19-21] simulations. The total transport fluxes are given by a
sum of the NEO neoclassical fluxes and the turbulent fluxes (via TGLF in this paper). The
TGYRO approach (combining TGLF and NEO) has been previously applied with great suc-
cess for the prediction of kinetic profiles in the core region (see Fig. 2) of tokamak plasmas

[4, 5, 22-26].



A. Neoclassical flux and bootstrap current: NEO

Although formulae exist for the neoclassical fluxes and the bootstrap current, the direct
kinetic approach used by NEO ensures the highest possible accuracy for the neoclassical

processes. NEO solves the drift-kinetic equation,
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where ¢y, is the nonadiabatic perturbed distribution function. In NEO, no approximations
beyond the drift-ordering are made. Full sonic toroidal rotation and centrifugal terms are
retained, and general flux-surface shape is treated. The full linearized Fokker-Planck collision
operator is used for the collision dynamics, with complete cross-species collisional coupling
for arbitrary mass ratio and an arbitrary number of ion species, thus strictly preserving
ambipolarity. NEO has been extensively benchmarked with analytic theories, as well as with
NCLASS [27], over a wide range of parameters and in various asymptotic limits [19, 20, 28].
With NEO, we maintain accuracy even in the case of strong plasma shaping, large trapped
fraction, multiple ions species, sonic rotation, fast particles, and high pedestal collisionality.
We note however that the cost of this approach scales with the square of the number of
species because of the complex interspecies collisional coupling. From the solution of the

distribution function, we can compute the fluxes and bootstrap current via

r, = < / d*v g1avp - w> , (4)
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B. Turbulent flux: TGLF and GYRO

Rather than attempting direct gyrokinetic simulation to determine the particle and energy
transport coefficients, we can achieve a speedup of millions by instead using the Trapped
Gyro Landau Fluid (TGLF) transport model [4]. This is a quasilinear transport model
using the same general methods as the Weiland [29] and GLF23 [30] models. The linear
eigenvalues and eigenfunctions of a system of trapped gyro-Landau fluid equations [31]

are used to evaluate the quasilinear weights of the transport fluxes. The linear growth rate



spectrum is used to compute a model amplitude for the saturated turbulence. TGLF extends
its predecessor GLF23 by having a more accurate system of equations valid at both electron
and ion scales. TGLF bridges the gap between electron and ion scale instabilities and has
a more accurate trapped particle treatment. The linear eigenvalues of TGLF have been
extensively benchmarked with gyrokinetic calculations [31]. The model for the saturation
of the turbulence has been fit to a database of nonlinear gyrokinetic turbulence simulations
with the GYRO code. It is important to emphasize that no fitting parameters have been
adjusted to experimental data. Instead, TGLF is designed for approximate validation of
gyrokinetic turbulent transport with larger datasets than is possible with full gyrokinetic
simulation. The TGLF equations are fully electromagnetic but are limited to high toroidal
mode number instabilities due to the gyrokinetic ordering assumptions. Only electron pitch
angle scattering collisions are included in TGLF at present. A new saturation model is
being developed for TGLF to more accurately represent the electron scale saturation of the

turbulence and its coupling to ion scales (Staebler 2016, in press).

C. Steady-state profile prediction: TGYRO

Evolution of the plasma profiles (density, temperature, electric field) occurs slowly, on the
tranport timescale, in reponse to the second-order collisional (NEO) and turbulent (TGLF)
radial transport of particles, energy and momentum. First, the equation for density evo-

lution solved in TGYRO is

dngy 1 0 .,
a2 9 ) =
gt Ty (Ve = Sna (™)

where V' is the volume enclosed by the flux surface, V' = 0V/0r, and r is the Miller minor

radius defined in Sec. I. The sources and fluxes, defined in Table I, are

Sna = Sy 4+ Syt (8)
L, =+ T3 9)

Typically, only the electron density n. is evolved and the ions are updated according to
quasineutrality. This is a practical approach to overcome the limitation imposed by uncer-

tainties in the ion particle sources. Next, the equation for the pressure evolution (which
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is effectively the equation for temperature evolution) of species a is

M) T v + a%_?

ot V' or
where wy is the plasma rotation, and the sources and fluxes are

= Swa , (10)
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Finally, the equation for momentum evolution (which is effectively the equation for the

radial electric field evolution) is
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where the total momentum flux is
I, =110°° + qur ) (14)

In the pressure and momentum equations, we have introduced the toroidal rotation frequency
wo = cE,/(RB,) [20] where E, is the radial electric field and B, is the poloidal magnetic
field. This approach is valid in the limit that the rotation is dominantly toroidal and sonic,
which typically requires significant beam heating power to achieve. When the rotation is
diamagnetic — that is, in the spontaneous rotation regime — an accurate calculation of the
electric field requires a higher-order treatment [32] and is therefore beyond the capabilities
of the present modeling approach.

The numerical approach used in TGYRO is motivated by an essential feature of profile
evolution. In steady-state, the time derivatives in the transport equations are exactly zero,
and the balance of transport fluxes (particle, energy and momentum) with heating sources
is a complicated nonlinear root finding problem. Obviously, for time-independent heating
sources, there is a unique set of profiles for which steady-state is achieved. Importantly, even
when the plasma is not in steady state, the physical rate of evolution of profiles typically
remains slow, so that the time-evolution should be viewed as almost quasi-static. In the
present paper we use TGYRO to compute, at every iteration level, the flux-matching profiles,
in which case the time derivatives in the TGYRO transport equations are ignored. The case

of time-dependent sources, though, is straightforward and can be retained in the general case.
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In the more general case, the steady-state solver becomes the kernel for a fully-implicit time
advance.

As described in Ref. [5], TGYRO uses a novel method to solve the problem. The transport
equations are integrated over volume to yield an algebraic equation expressing the balance

of fluxes and sources. For example, the energy equations becomes

r
Qi) = g5 | AV @) Swale) = QL) (15)
Variable Definition

[ur Turbulent particle flux

Iraee Neoclassical particle flux

QL Turbulent energy flux

Qo Neoclassical energy flux

It Turbulent momentum flux

IIhee Neoclassical momentum flux

Saux Auxiliary heating power density

Grad Radiation (loss) power density

S&  Alpha-particle heating power density
Stur Turbulent exchange power density

Seol Collisional exchange power density

TABLE I. Definitions of the sources and fluxes appearing the TGYRO transport equations.

We refer to the quantity QI as the target fluz, since that is the flux we will try to match
by adjusting parameters in the TGLF and NEO calculations. Since the latter codes require
the profile gradients as inputs, we define the logarithmic gradients z, = —(1/7,)0T,/0r.
Then, if we specify the temperature at an arbitrary matching radius r, (normally chosen in
the vicinity of the pedestal) as T,. = T,(r.), the gradients uniquely determine the smooth

temperature profiles, T}:

10) = Tovop ([ (o) (16)



where z, is taken to be piecwise-linear. On a discrete grid {r;}, the smooth temperature

profile coincides with the discrete values obtained by the trapezoidal rule

Tulry-0) = Tl { [ 20 gL (17)

To put the problem into discrete form, we define a vector of gradients (independent variables)
Zaj = Z4(rj), transport fluxes, @, ; = Q,.(r;) and target fluxes sz = QI(r;). Then, the
equations to be solved are

Qa,j = Z,j ) (18)

Note that @), ; is computationally very expensive to evaluate, whereas QaT’ ; are very fast and
take an insignificant amount of compute time. The flux-matching calculations are performed
at a few (typically less than 10) radial locations in the plasma, using a sparse Newton method
approach.

We remark that TGYRO also operates on an arbitrary (irregular) radial grid, and can
function with only a single flux-matching point 1 > 0 where the transport fluxes are matched
to the sources. TGYRO further uses a novel method to treat the magnetic axis which
allows the simulation to avoid the breakdown of the drift-ordering which occurs at r —
0. This breakdown in illustrated in Fig. 15 of Ref. [19], and is physically connected to
the transformation of banana orbits into potato orbits. In other words, the underlying
assumption that the orbit width is small compared to the gradient scale length is not valid
as p/a — 0. But, because the gradient scale-length must remain large and well-behaved, in
TGYRO we simply assume a linear profile of gradient scale-length from the magnetic axis
to the first flux-matching point. Then, the location of the first flux-matching point can be
taken just outside the thermal potato radius. This flexibility can also be used to facilitate
simulation of discharges which are affected by sawtooth instabilities. In these cases, the
g ~ 1 region of the plasma is dominated by the rapid dynamics of MHD-driven sawtooth
instabilities. But again, the gradients profiles ought to be smooth as the magnetic axis is

approached, so that first flux-matching point can be placed just outside the sawtooth region.

III. PEDESTAL STABILITY AND STRUCTURE

In the pedestal region, the very short radial scales associated with the equilibrium present

a substantial challenge to traditional theoretical approaches. Because the observed fluctu-
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FIG. 2. Illustration of radial connectivity of core (CORE), transition (TR) and pedestal (PED)
regions during self-consistent modeling, as described in detail in Sec. II. In the CORE region,
TGYRO computes the gradient scale-length profile (bottom frame) z, = —dInT,/dr using non-
linear root-finding, and obtains the smooth temperature profile (top frame) by integration. The

introduction of a finite-sized transition region (TR) allows smooth matching of core profiles to

pedestal profiles for cases in which the core model may underestimate the transport.

ation scales overlap strongly with the equilibrium scale, strictly speaking it is not possible
to rigorously employ the approach of traditional transport theory. The assumptions of the
traditional theory that are violated are 1) that the fluctuation scales are analytically sepa-
rated from the equilibrium and transport scales, 2) that the fluctuation scale is treated with
separate gyrokinetic and neoclassical codes, and 3) that transport and equilibrium scale
physics can be evaluated with transport solvers and magnetohydrodynamic (MHD) codes

Thus, a different approach is required.

A. The EPEDI1 pedestal model

Despite the theoretical challenge, there has been substantial progress in understanding
mechanisms which constrain the structure of the pedestal, and developing models to predict
this structure. Here we employ the EPED1 pedestal model [2, 13, 14], which combines two
physics constraints (calculated from sets of model equilibria that include a self-consistent

treatment of the bootstrap current) to predict the pedestal height and width.

10



____________________________________

Core-pedestal transport modeling |

| OMFIT ;
: N - Y
| Core profiles Pedestal structure |
I TGYRO IPS EPED1 .
: | |
| Turbulent Model equilibria |
. transport + pedestal profiles ||
I TGLF || TOQ w/KBM constraint |1
1A J \ R
e N s Nt
: Neoclassical Peeling-ballooning||!
: transport MHD stability |||
| NEO ELITE !
A\ 72N\ A
' g | .\ :
. | Current evolution Closed boundary |
l and sources equilibrium .
! ONETWO EFIT l
[ ) :
1 |

FIG. 3. Illustration of OMFIT integrated modeling workflow with dynamic pedestal. Coupled
modules include core transport (turbulence and neoclassical), current and source evolution, mag-
netostatic equilibrium (EFIT), and EPED1 pedestal stability. The iterative workflow starts with
the pedestal prediction from the EPED1 model. The profiles associated with the maximum pedestal
height are used as an input to the ONETWO or TRANSP transport codes to calculate the sources
of particles and heat in the plasma. The TGYRO code is then used to efficiently find the profiles
for which the neoclassical fluxes from the NEO model and turbulent fluxes predicted by the TGLF
model match those sources. The updated value of the global plasma pressure is used for a new run

of the EPED1 model, and the cycle is repeated until the solution converges.

One important physics constraint is provided by peeling-ballooning (PB) modes, which
are driven by the combination of strong pressure gradients, and resulting bootstrap current
gradients, in the edge barrier region. PB modes are highly non-local, with a structure typi-
cally extending across the edge barrier into the outer core, and generally have toroidal mode
numbers ranging from ~ 4 — 30 [33]. Special-purpose, efficient MHD codes, such as ELITE
[33, 34] have been developed to calculate PB thresholds, and, employing diamagnetic cor-
rections based on extended MHD, it has been possible to extensively compare the calculated
PB threshold to observed constraints on the pedestal structure (and conditions for the onset

of Type I edge localized modes (ELMs) or edge harmonic oscillations (EHO)), finding gener-
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FIG. 4. Evolution of the simulated kinetic profiles for a DIII-D discharge and comparison with
the experimental measurements. The profiles from the initial run of EPED are shown by the
dark blue curves. The squares in these curves indicate the radii at which TGYRO performed the
flux-matching calculations. The final step of the simulated profiles (dark red) are compared with

experimental measurements, showing agreement across the entire plasma radius.

ally good agreement across large numbers of cases on several tokamaks [2, 35, 36]. However,
the PB constraint by itself is not sufficient to self-consistently determine both the pedestal
height and width, but rather gives a constraint on the height as a function of the width,
which scales roughly with the 3/4 power of the width [2].

While, strictly speaking, the scale separation between transport and macrostability breaks
down in the pedestal, the EPED model proposes instead a separation between nonlocal
modes (such as PB) and nearly-local modes which act primarily to constrain gradients
within the electron transport barrier (ETB). We remark that the nonlocal modes are driven

by free energy across the entire pedestal region, and can act to halt the penetration of
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the edge transport barrier into the core — a process understood to be driven by strong
diamagnetic E x B shear progressively shearing apart turbulent eddies near the pedestal
top. EPED hypothesizes that, for high-performance (Type I ELM and Quiescent H-Mode)
discharges, PB modes provide the global constraint. In general, there are many possible
nearly-local modes, as well as significant levels of ion neoclassical energy transport, in the
pedestal. EPEDI1 further conjectures that, because of the very strong E x B shear and
generally strong particle sources in the ETB, the pressure gradient generally rises until it
is finally constrained by the onset of the kinetic ballooning mode (KBM). This is proposed
not because other modes do not exist or do not drive transport, but rather because they are
not expected to provide a hard stability limit. More precisely, ion-scale modes, such as the
ITG, are expected to be suppressed by the combination of ExB shear and 3’ stabilization.
And typical electron-scale modes, such as the ETG, are driven by ratios of temperature to
density gradients and are not generally expected to limit the pressure gradient by themselves

in the presence of strong plasma sources.

The KBM threshold in the EPED model is calculated using the ballooning critical
pedestal technique [13]. The KBM can be thought of as providing a constraint on the
pressure gradient, or more quantitatively, the derivative of the local 3, (plasma pressure
normalized to poloidal magnetic field pressure) with respect to the normalized poloidal flux,
dBy,/din. Because of the magnetic shear dependence of the KBM, together with the boot-
strap current dependence on collisionality (which decreases strongly moving in from the
separatrix), the KBM critical gradient generally increases moving radially inward. This im-
plies that the radial average of the KBM critical gradient across the pedestal increases with
the width of the pedestal (A), that is (df,/dyn) ~ A, or, integrated across the pedestal,
A= G\/% , where 3, peq is the poloidal beta at the top of the pedestal (and it is assumed
the poloidal beta at the separatrix is negligibly small) and G is a weakly varying function of
collisionality and geometry such that G ~ 0.07 — 0.09 (note that it is important to account
for finite-n effects at low shear, which close off access to the second stability region that ex-
ists in high-n calculations). In the simplified EPED1 version of the EPED model employed
here, G is fixed to a typical constant value, G = 0.076 [2, 13]. EPED1 then combines this
condition for KBM criticality with a self-consistent calculation of the PB constraint with the
ELITE code [1, 33, 34], using a series of roughly 100 model equilibria constructed using the
TOQ [37] equilibrium solver, to determine the predicted pedestal height and width as the

13



intersection of the conditions for KBM and PB criticality (essentially solving two numerical
equations for the two unknowns, pedestal height and width). The profiles in the pedestal
region (highlighted red in Fig. 2) are given by EPEDI1, as a final result of roughly 700 PB
calculations on 100 KBM-critical model equilibria.

The EPED1 model provides a prediction of the total pedestal pressure for a given elec-
tron density. In the pedestal and transition regions the electron and ions temperatures are
assumed to be the same, and the ion density is calculated by enforcing quasi-neutrality and
keeping their relative concentrations fixed. We note that there remain significant assump-
tions made in the coupled core-pedestal modeling done here. These include the supposition
of sufficient power for operation in high performance H-mode. That is, we do not attempt
to predict the conditions for the L-H transition or the transition into a high performance
(Type I ELM or QH mode) regime. Furthermore, we are predicting approximate time-
average conditions for the profiles, and are not explicitly accounting for transients such as

ELMs.

B. Core-pedestal transition region: TR

The integrated modeling approach described here is new and differs significantly from the
traditional methodology for predictive core transport simulations [3, 5-10, 12]. In traditional
predictive modeling, a so-called pivot radius ppivot is specified, at which the temperature and
density are held fixed, and inside which the core transport solver evolves profiles. The pivot
radius is nominally considered to represent the top of the pedestal and a typical value is
Ppivot = 0.9. In this approach, the pedestal is little more than a boundary condition for
core modeling. More importantly, in the absence of a model for the pedestal, the choice of
fixed density and temperature at the pivot radius is effectively arbitrary. Note that, in this
approach, if ppivor indeed signifies the top of the pedstal, then a transition region of zero
radial extent between core and pedestal is implied. At the pedestal boundary however, the
value of the inverse scale-length that satisfies the flux-matching constraint in TGYRO is
unlikely to be consistent with the value that satisfies the PB and KBM constraints. When
the disaccord between the two models is significant this manifests itself as an abrupt change
in slope at the interface between the core and pedestal region (see for example the change

in slope at the core-pedestal interface of the profiles in Fig. 15 of Ref. [9]; Figs. 16 and 17 of
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Ref.[10]; Fig. 3, 5 and 6 of Ref. [12]). This is an important issue since, due to the stiffness
of the core profiles, small changes in the gradients can lead to significant differences in the
overall fusion performance. Recall that a transport model is said to be stiff if the transport
fluxes increase rapidly with normalized temperature gradient, once the normalized profile
gradient exceeds a threshold value.

If we let peore denote the maximum radius for which TGYRO flux-matching procedure is

valid, then what remains is a transition region

Pcore < P < Pped (19)

where ppeq is the minimum radius for which the EPED1 model can describe the profile (i.e.
pedestal) structure. In the transition region, the H-mode kinetic profiles tend to form what
could be described as a plateau. The physics processes that govern the profile evolution in
the transition region changes from neoclassical and turbulent radial transport to PB and
KBM stability constraints, including the effects of intermittent ELMs driven by moderate
to high-n MHD instabilities. The transition region allows the gradient scale lengths that
are consistent with the transport calculation in the core to smoothly transition to the values

that are consistent with the PB and KBM dynamics of the pedestal.

IV. PROFILE PREDICTION WITH DYNAMIC EQUILIBRIUM AND PEDESTAL

The steady-state solution to the integrated simulation of pedestal structure, core trans-
port, and magnetic equilibrium is found by means of the iterative workflow show in Fig. 3.
This flow chart shows in more detail the individual components that are used for our par-
ticular implementation of the iterative workflow that was introduced earlier in Fig. 1B. In
addition to the EPED1 model and the TGYRO transport solver used for the pedestal and
core transport problem, we used the ONETWO transport code [38] for the calculation of
the heat and particle sources, as well as for the evolution of the plasma current profile.
Finally, the magnetic equilibrium calculation is performed with the EFIT equilibrium code
[39] with the constrains to reproduce the pressure and current profiles that are output from
TGYRO and ONETWO, as well as a user-prescribed plasma boundary. The separation of
these processes into discrete modules can be justified based on timescale separation of the

associated physics, and indeed these processes (for example, equilibrium and transport) have
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FIG. 5. Multiple integrated simulations of the same discharge were carried out for a broad range
of initial guesses, A5 ", for the plasma pressure. The final pressure, 3,, converges to a result inde-
pendent of the inital guess, thereby demonstrating robustness of the iterative method. Cases where
the value of the initial guess is similar to the final solution evidently result in faster convergence,

but this is not a requirement for the iteration scheme.
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FIG. 6. Evolution of the coupled core-pedestal solution in the 8, — piop plane, for different initial
guesses 5", Each update in the 3, solution (vertical shift) corresponds to a run of the core trans-
port solver TGYRO, while each update in the pedestal height piop (horizontal shift) corresponds to
a run of the pedestal workflow EPED1. The graphical solution to the nonlinear coupled problem is

constructed by connecting the points of the core and pedestal predictions. This figure shows that

SUeSS - This result demonstrates the robustness of the

the solution is unique and independent of 3

iterative scheme.
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been treated separately, with success, for decades. Although this rules out the description of
transient phenomena, in what follows we show that very close agreement with experimental

results can be obtained with the present component coupling strategy.

The present workflow was implemented, and is available [40] via a coupling of the OM-
FIT [41] and Integrated Plasma Simulator (IPS) [42, 43] frameworks. Here the user controls
the integrated simulation with OMFIT, which orchestrates the execution of the TGYRO,
ONETWO, and EFIT components, while relying on the IPS to provide the High Performance
Computing (HPC) enabled IPS-EPED1 workflow. OMFIT further handles data exchange
across distributed workstations and clusters, as well as selected post-processing tasks. For
the simulations presented herein, we required that the original EPED1 workflow [2] (yet
another nested workflow) executes sufficiently rapidly so as to enable parameter sweeping
of the entire coupled model in a few minutes. This was not practical with the original
IDL based EPED1 workflow running on a local cluster. To achieve this goal we translated
EPED1 into the IPS-EPED1 workflow, which can now take full advantage of HPC resources
by allowing the IPS to schedule and launch the individual execution of the components
internal to EPED1. This IPS-EPED1 workflow replicates the original EPED1 capability,
but at a fraction of the wall clock time. As indicated in Fig. 3, the EPED1 model [2] maps
the equilibria-stability parameter space using the TOQ and ELITE component codes. The
IPS-EPED1 nested workflow utilizes the capabilities of the IPS framework to launch these
tasks in parallel. A typical IPS-EPEDI1 iteration uses up to 700 cores on the Edison Cray
XC30 platform at NERSC [44], and simulation results are obtained in less than 2 minutes
(dominated by the time for one TOQ plus one ELITE run for the highest mode number).
The IPS-EPED1 workflow has been verified against the original EPED1 for the database of
362 runs presented in [2]. The average difference for the calculated pedestal pressure between
original EPED1 and IPS-EPED1 is 0.147 kP, which is within the algorithmic uncertainty of
EPED. This verification scan was conducted using the integrated IPS-DAKOTA optimiza-
tion and parameter sweep environment [45]. Using this environment, multiple IPS-EPED1
executions are dispatched concurrently within a single instance of the IPS, with DAKOTA

coordinating the parameterization of each run and aggregating the final results.

In this section we apply the iterative workflow to simulation of a DIII-D discharge. The
discharge — chosen because of its relevance to the ITER baseline scenario — is characterized

by low torque and dominant electron heating. Simulation results are summarized in Fig. 4.
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The inputs to the simulation are the plasma shape, B;, I,, the configuration of the heat,
particle and current sources (neutral beam and electron cyclotron radio-frequency heating),
the pedestal electron density n. peq (indicated by a red circle in Fig. 4) and the ion effective
charge Z.g¢. For the core region, we set the innermost TGYRO flux-matching radius at
p1 = 0.3 (i.e., the sawtooth inversion radius) and the last at peore = 0.8. The transition
region, next, begins at peore = 0.8 and ends at ppeq = 0.9. The pedestal region, finally,
covers the region ppeq < p < 1. To illustrate the predictive capabilities of this workflow, the
initial value of the normalized plasma beta was chosen to be 58" = 1.26, a value that is

intentionally far from the experimental value of 3, exp = 1.69.

The iterative workflow starts with the pedestal prediction from the EPED1 model. In-
ternally the EPED1 model generates a series of KBM-critical equilibria and profiles with
increasing pedestal pressure to find the maximum pedestal height pt., and width w, con-
sistent with PB stability. When PB criticality is reached it is expected that an ELM or edge
harmonic oscillation will be triggered, preventing further increase of the height and width)
2, 13]. The profiles associated with the maximum pedestal height are used as an input to
the ONETWO transport code to calculate the sources of particles and heat in the plasma.
The TGYRO code the computes the inverse scale-lengths for which the neoclassical and tur-
bulent fluxes (as predicted by the NEO and TGLF models) match those sources. Smooth
temperature and density profiles (at any desired number of flux-matching radii) for both
electron and ion are then evaluated using the integrals defined by Eq. 16. The value of 3,
from the updated equilibrium calculation is used for a new run of the EPED1 model. This
cycle is repeated until the solution converges. The final iteration of the simulated profiles
(dark red) is in good agreement with experimental measurements, and the final value of the
normalized plasma beta 8" = 1.68 closely matches the experimental value of 1.69. Note
that the final converged solution is independent of the initial guess S8"**, as illustrated in
Fig. 5. In this plot, multiple self-consistent simulations of the same discharge were carried
out for a broad range of 55" yielding the important result that all converge to the same
staedy-state solution. Cases where the value of the initial guess is similar to the final solu-
tion will of course result in faster convergence, but a very accurate initial guess is evidently

not a requirement for convergence of the iteration scheme.

A deeper understanding of the robustness of the core-pedestal coupling approach can be

obtained by visualizing the evolution of the solution in the 8, —piop plane, as shown in Fig. 6.
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We define pyp, as the value of the pressure profile evaluated at 1.5 times the pedestal width
in from the separatrix. This plane is a natural choice for studying the coupled core-pedestal
problem since 3, is modified by TGYRO for fixed piop, whereas EPED1 modifies pyop, at
fixed (,. The circles and diamonds in Fig. 6 represent the value of the global pressure at
the top of the pedestal after the execution of the pedestal and core solvers, respectively.
The dash-dotted segments mark the progression of the solution through the execution of the
two solvers at successive iterations for 55"** = 4.20. The figure also illustrates convergence
starting at a much lower value of 8" = (0.84. The graphical solution to the nonlinear
coupled problem is thus constructed by connecting the points of the core and pedestal
predictions. Values of 3, above the core prediction curve are precluded by the effect of stiff
core transport, while values of po, higher than the pedestal prediction curve are precluded
by the onset of PB modes (given KBM-critical profiles). This analysis provides confidence
that the iterative scheme is stable and that a unique solution can be found for the set of

parameters that are input to the workflow.

V. OPTIMIZATION OF ITER BASELINE FUSION PERFORMANCE

A self-consistent optimization of the fusion power of the ITER baseline scenario was
carried out based on the iterative workflow described in the previous section. The input
parameters to the workflow were taken from the ITER baseline case studied in Ref. [10]
(see Fig. 6 of Ref. [10]). In order to use the same input parameters as in Ref. [10], we
modified the iteration scheme of Fig. 3 to use the TRANSP [46] code for the evolution
of the current profile, the evaluation of the heating sources, and calculation of the Grad-
Shafranov magnetic equilibrium. For this study we varied the pedestal density nepeq and
effective ion charge Zeg ped, as input to the EPED1 model. A total of 16 simulations were
performed, with four variations both in the pedestal density and Zeg peq. Figure 7 shows
four simulations with Zeg peqa = 1.7 (the lowest value), and Fig. 8 shows four simulations
with Zeg pea = 3.4 (the highest value). In both cases we plot the predicted pressure, electron
and ion temperatures, and electron densities. We emphasize that only Z.g in the pedestal is
varied, while the core value is kept constant among all cases (See Fig. 13 of Ref. [10]). Work
to include self-consistent impurity sources and transport is underway as part of the AToM

SciDAC project.
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FIG. 7. Results of a self-consistent optimization study for the ITER baseline scenario for Zeg peq =
1.7 illustrating plasma performance for four values of the pedestal density, nepeq. Here fusion

performance improves with increased pedestal density, which confirms naive expectations.
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FIG. 8. Same as Fig. 7, except for Zeg peq = 3.4. However, in contrast to Fig. 7, fusion performance
now decreases with increasing pedestal density, illustrating the critical importance of a self-

consistent pedestal model for ITER modeling.
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FIG. 9. Illustration of fusion gain Q as a function of n, for different values of the pedestal Zg.

The counter-intuitive trend in n. for large Z.g is apparent.
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FIG. 10. Although the best performing cases of the ITER baseline optimization study occur for

different values of ne peq and Zeg ped, they exhibit nearly identical pedestal pressure and current

profile. As such, their edge MHD stability properties are also comparable.

For each of the panels, the best performing cases are highlighted with a larger marker

symbol in the legend. As a consequence of the strong core transport stiffness, the core profiles

are self-similar with respect to a rigid translation of the boundary condition at the interface

between the transition region and the core region. In all cases the density exhibits a profile

peaking of about n.,/(n.) ~ 1.3. For low values of the effective ion charge (Zeg pea = 1.7) the

fusion gain () increases with the pedestal density, which is the naive expectation. However,
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FIG. 11. The zeroth-order scaling of the bootstrap current with collisionality at fixed pressure is
such that jgg o< Zogn?2. Such scaling is consistent with the observed similar current profiles for the

best performing cases in Fig. 10.

in this case the highest fusion performance exceeds the empirical Greenwald density limit
[47], which for the ITER baseline scenario (with plasma current of 15 MA and a minor radius
of 2m) is approximately equal to ngw ~ 1.2 X 1020 m™3. As Zg peq is increased from 1.7 to
3.4, the pedestal density at which the peak fusion power is reached occurs for lower values
of Neped- And, counterintuitively, for Zeg pea = 3.4, the fusion performance decreases with
increasing pedestal density, as shown in Fig. 8. More precisely, for Zeg pea = 1.7,2.5, 3.0, 3.4,
the optimal pedestal density is ne pea[10%°/m?®] = 1.0,0.9,0.8,0.7. This fusion performance
trend is further illustrated in Fig. 9.

Although the best performing cases for the ITER baseline optimization study occur
for different values of 7 ped and Zeg ped, they share similar pedestal pressure and current
profiles (see Fig. 10). As such, their edge PB and KBM properties are also comparable.
As a consequence of the core transport stiffness, the core pressure (and thus the fusion
performance) closely correlates with the pedestal height. This trend is well-captured by the
grayscale pedestal height map of Fig. 11. As expected by the zeroth-order scaling of the
bootstrap current with collisionality at fixed pressure j,s < Zegn?, the highest values of the

pedestal height are aligned with contours of Z.gn?. This explains why the best performing
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cases shown in Fig. 10 have similar current profiles. Based on the collisional scaling of the
bootstrap current, the loss of performance at lower and higher collisionality is attributed to

the effect of primarily current and pressure-driven PB modes, respectively.

VI. CONCLUSIONS AND FUTURE PERSPECTIVES

In the work we have given an overview of a fundamentally new integrated modeling ca-
pability which includes, among other key physics modules, a dynamic pedestal component
that can be used to ensure the consistency of core and pedestal evolution. More generally,
we have described an approach to modeling that takes into account the strong interplay
between (a) core transport, (b) pedestal structure, (c) current profile evolution and (d)
magnetic equilibrium. This capability improves the accuracy and reliability of previous ap-
proaches to the prediction of fusion performance. In this iterative workflow, self-consistency
is achieved by successive iterations of pedestal model, core model, sources and equilibrium
calculation. We have shown that the coupling scheme can closely reproduce the experimental
measurements without requiring a priori knowledge of the temperature and density profiles.
Further, we have demonstrated that the self-consistent, interative solution is independent
of the initial guess that is used to initiate the pedestal calculation at the beginning of the
iterative process.

Results of a self-consistent optimization of the ITER baseline scenario show that ne peq as
well as Zeg pea are strong actuators for the fusion power, both of which will likely need to be
actively controlled during ITER operations to optimize the fusion performance, and satisfy
the requirements imposed by the density limit. The dependency with respect to Zeg ped
points to the need for coupling to a Scrape-Off-Layer (SOL) in the iterative workflow: an
important future development which is underway as part of the AToM SciDAC project. The
TGYRO transport code will also be updated to independently evolve the kinetic profile of
the individual ion species.

The coupling workflow described in this document has been implemented within the
OMFIT integrated modeling framework. As such, this tool is available to the broader fusion
community, to further validate the individual physics components of the workflow as well as
their couplings, and enable the self-consistent design of steady-state operational scenarios

from first-principles calculation.
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