AEM Accepted Manuscript Posted Online 15 April 2016 Appl. Environ. Microbiol. doi:10.1128/AEM.00478-16 Copyright © 2016, American Society for Microbiology. All Rights Reserved.

- 1 Title: Ultrastructural and single-cell level characterization reveals metabolic versatility in a
- 2 microbial eukaryote community from an ice-covered Antarctic lake

3

- Wei Li¹, Mircea Podar², Rachael M. Morgan-Kiss¹* 4
- ¹ Miami University, Department of Microbiology, Oxford, Ohio, USA 5
- ² Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 6

7

- 8 *Correspondence:
- 9 Rachael M. Morgan-Kiss
- 10 Miami University
- 11 Department of Microbiology
- 12 700 E High St., 32 Pearson Hall
- 13 Oxford, OH 45056, USA
- 14 morganr2@miamioh.edu
- 15 phone: (513) 529-5434

- 17 Running Head: Metabolic strategies of Antarctic lake protists
- 18 Key words: Antarctica, McMurdo Dry Valleys, microbial eukaryotes, mixotrophy, parasitism

19 ABSTRACT

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

The McMurdo Dry Valleys (MCM) of Southern Victoria Land, Antarctica, harbor numerous icecovered bodies of water that provide year-round liquid water oases for isolated food webs dominated by the microbial loop. Single-celled microbial eukaryotes (protists) occupy major trophic positions within this truncated food web ranging from primary producers (e.g., chlorophytes, haptophytes, cryptophytes) to tertiary predators (e.g., ciliates, dinoflagellates, choanoflagellates). To advance understanding of MCM protist ecology and their roles in nutrient and energy cycling, we investigated potential metabolic strategies and microbial interactions of key MCM protists isolated from a well described lake (Lake Bonney). Fluorescence-activated cell sorting (FACS) of enrichment cultures combined with single-amplified genomics/amplicon sequencing and fluorescence microscopy revealed that MCM protists possess diverse potential metabolic capabilities and interactions. Two metabolically distinct bacterial clades (Flavobacteria and Methylobacteriaceae) were independently associated with two key MDV lake microalgae (*Isochrysis* and *Chlamydomonas*, respectively). We also report on the discovery of two heterotrophic nanoflagellates belonging to the Stramenopila supergroup, one of which lives as a parasite of Chlamydomonas, a dominate primary producer in the shallow, nutrient-poor layers of the lake. Single-celled eukaryotic cells called "protists" play critical roles in the cycling of organic matter in aquatic environments. In ice-covered lakes of Antarctica, protists occupy key roles in the aquatic food web, providing the majority of organic carbon to the rest of the food web (photosynthetic protists) and acting as the major consumers at the top of the food web (predatory

Applied and Environmental Microbiology

- 42 protists). In this report, we utilized a broad combination of techniques (microscopy, cell sorting,
- 43 genomics) to describe the trophic abilities as well as potential interactions between Antarctic
- 44 lake protists and other microbes. Our work reveals that Antarctic lake protists rely on metabolic
- 45 versatility for their energy and nutrient requirements in this unique and isolated environment.
- 46

INTRODUCTION

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

The microbial loop links the transfer of nutrients and carbon between the microorganisms of the food web, and includes complex ecological interactions between microbial Eukaryotes, Bacteria, Archaea and Viruses. Microbial activity is influenced by bottom-up (e.g., availability of nutrient and energy sources) and top-down (e.g., predation, parasitism, viral lysis) controls, as well as microbe-microbe interactions (e.g., bacterial consortia). Interaction partnerships between microorganisms lead to combinations of win, loss or neutral outcomes for each microbial partner. For example, parasitism or predation are examples of win-loss outcomes (1), while mutualistic interactions within biofilms and syntrophic interactions (cross-feeding of metabolic products between two species) between an alga and a heterotrophic bacterium are examples of win-win partnerships (2). Understanding microbial interactions and the influence of environmental factors on microbial distribution patterns is a critical component of deciphering global nutrient fluxes

and biogeochemical cycles.

Single-celled eukaryotic microorganisms (i.e., protists) are ubiquitous in every ecosystem on earth and play critical ecological roles in food web dynamics and global carbon and nutrient cycles (3). Diverse protist lineages possess multiple nutritional modes; playing key roles as producers, decomposers, parasites, and predators. Phototrophic protists are important producers that contribute to global primary production and incorporate a significant portion of inorganic carbon into the food web (4). Predatory protists are major consumers of planktonic phytoplankton and bacteria, providing control over the abundance of these organisms as well as

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

linking primary producers/consumers with higher trophic levels (i.e., metazoans) (5). Mixotrophic protists (combined ability for photosynthesis and phagotrophic ingestion of food particles) are widespread in aquatic ecosystems (6, 7). Recent molecular surveys from marine and freshwater environments have revealed a high diversity of 18S rRNA sequences which are unrelated to existing cultured protists (8, 9). The application of high-throughput sequencing has begun to reveal protist biogeography (10-12) as well as seasonal variability (13, 14). The McMurdo Dry Valleys (MCM) of Southern Victoria Land, Antarctica, is a polar desert: with average air temperatures of -20°C and precipitation rates of <10 cm per year (15, 16). Numerous marine-derived, perennially-ice covered lakes are the only source of year-round liquid water for life on the Antarctic continent. Permanent ice caps prevent wind mixing and significant nutrient inputs: MCM lake chemistry is vertically stratified in the water column and lakes exhibit oxygen-rich/ultra-oligotrophic surface waters which are separated by permanent chemoclines from ancient, anoxic/saline waters (17). Thus, the MCM lakes represent aquatic environments with strong selective pressures on microbial evolution including low temperatures, low annual levels of photosynthetically active radiation (PAR), and limited nutrient (N and P) availability (18). Salinity, oxygen and light appear to play important roles in the biogeography of Antarctic lake microorganisms (19). Each lake supports simple food webs which harbor little to no metazoans, with the exception of low numbers of copepods and rotifers in a few lakes (20). Protists play dominating roles in carbon and nutrient cycling in the MCM microbial food web. The majority of dissolved organic carbon is autochthonous (i.e., derived from new photosynthetic activity within the water column). Protists represent the major producers of

organic matter in the MCM lake food web (21, 22), while heterotrophic nanoflagellates and

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

ciliates are the top predators of bacteria and smaller protists (23, 24). Despite the energetic cost of maintaining and regulating both photosynthetic and heterotrophic cellular apparatus, mixotrophy appears to be very prevalent in MCM aquatic food webs (23, 25). Mixotrophic metabolism is a survival strategy for MCM protists to exploit alternate sources of either nutrients (i.e., under oligotrophic conditions) or energy (i.e., in the absence of light) (26). As part of the NSF Long Term Ecological Research (LTER) Program, several lakes within the MCM have been the focus of more than two decades of intensive study. Lake Bonney is one of the most well-studied MCM lakes, and the lake physical and chemical characteristics have been thoroughly described by Spigel and Priscu (27). Lake Bonney is divided into two basins (west and east lobes) which are separated by a narrow passage which allows mixing of the upper photic zones for a few weeks in the summer. The shallow waters of both lobes are generally freshwater; however, salinity levels increase steeply at the permanent chemocline (18-20 m depth for the)east lobe). Below the chemocline, the deep anoxic zone is hypersaline (maximum salinity 125-150 PSU). Photosynthetically active radiation (PAR) is relatively low under the ice (<50 µmol m⁻² s⁻¹) due to the attenuation of the ice cover and declines below detectable levels at depths >25 m (29). Recently, the diversity and spatial distribution of the planktonic microbial eukaryotic communities residing in Lake Bonney has been reported (28-31). Protist populations residing in the MCM lakes are vertically stratified and exhibit lake-specific differences in their distribution patterns. The water column of Lake Bonney is dominated by large chlorophytes (Chlamydomonas) in the shallow, nutrient-poor depths, while the dominant photosynthetic protists are nanoplankton (haptophytes, stramenopiles) which exhibit peak abundances within the

permanent chemocline where PAR is extremely limited (28). While these studies have begun to

117

118

119

120

138

describe the biogeographic distribution of the protist communities residing in these ice-covered polar lakes, a full understanding of the trophic abilities of MCM protists and potential interactions with other MCM microorganisms is currently lacking.

The vast diversity of microbial eukaryotes has been largely inaccessible by conventional 121 cultivation methods. Over the past decade the technology of single-cell genomics has been 122

exploited to recover genomic information from single uncultivated cells from their natural 123 habitats, and has revealed cell-specific interactions such as symbioses, predation and parasitism 124 (32-34). In this study, single cells of protists originating from an enrichment culture from the 125 zone of maximum primary production in the permanent chemocline of Lake Bonney (east lobe) 126 were isolated on the basis of fluorescent properties which related to their potential nutritional 127 mode (photosynthetic, heterotrophic, mixotrophic). We chose to utilize an enrichment cultivation 128 approach to allow us to work with live organisms and avoid the logistical issues associated with 129 preserving and shipping natural protist communities from Antarctica to our US laboratory. Our 130 hypothesis is MCM lake protists possess wide metabolic versatility which drives nutritional 131 mode-dependent microbial interactions. Specifically, we addressed these open questions 132 regarding the ecology of the MCM lake microbial eukaryote communities: What is the range of 133 trophic versatility in the MCM planktonic protist communities? Do MCM phototrophic and 134 heterotrophic protists interact with specific microbial partners? In this study, whole genome 135 amplification (WGA) was performed to produce single amplified genomes (SAGs) from a 136 variety of the sorted eukaryote cells (with their microbial partners). Combining Illumina® 137 sequencing with various microscopic methods, we were able to 1) identify nutritional mode and

metabolic potential of several key MCM protists; 2) reveal a diversity of potential microbial

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

interactions, including predation, parasitism and endosymbiosis; 3) provide new information to understand microbial metabolic strategies for survival under permanent light limiting and nutrient poor conditions. MATERIALS AND METHODS Site description, sample collection and enrichment cultures Samples were collected from the water column of the east lobe of Lake Bonney, an ice-covered meromictic lake located in the Taylor Valley, McMurdo Dry Valleys. Samples were collected through the ice hole located in the middle of the lake (77°42.825S, 162° 26.832E) during the austral summer on December 21, 2012. A sampling depth (13 m piezometric depth) was selected to reflect the depth of maximum phytoplankton biomass (28), which was verified by in situ chlorophyll fluorescence with a submersible FluoroProbe (BBE Moldaenke GmbH) (29). Lake water samples were collected with a 5 L Niskin bottle (General Oceanics), transferred to 1-L amber bottles, and stored at 4 °C in the dark until processing. An enrichment cultivation approach was employed to allow for the transport of live cultures with higher biomass to our US laboratory (Miami University, Ohio). To ensure maximum recovery of protist diversity, a series of enrichment cultures were started in the presence of a number of autotrophic media types (35-37) and growth media concentration (10 - 100%). Lake water was

inoculated into 25-mL sterile culture flasks and incubated in a photoincubator at 5 °C /25 µmol

photons m⁻² s⁻¹ in McMurdo Station, Antarctica, for 2 weeks prior to shipment. Cultures were

regularly inspected under the microscope for growth and the presence of microbial eukaryotes. Cultures were then shipped to our US laboratory at Miami University at 4 °C in the dark. Upon arrival, enrichment cultures were transferred to a photoincubator set at the same temperature/light regime until cell sorting. Last, while cryopreservation in the presence of glycerol buffer works well for preserving bacterial communities (38, 39), preliminary experiments showed that this preservation approach failed to preserve internal structures of eukaryotic cells and caused lysis of some wall-less protists.

170 Single cell sorting

171

172

173

174

175

176

177

178

179

180

181

182

183

184

162

163

164

165

166

167

168

169

Prior to cell sorting, all enrichment cultures were visually inspected by light microscopy for growth and morphological diversity of the protist communities. Based on these microscopic observations, one enrichment culture (grown in 10% F medium) which exhibited relatively high protist morphological diversity was chosen to be shipped to Oak Ridge National Laboratory for single-cell sorting. Protist food vacuoles were stained using a pH-sensitive probe, LysoTracker Green DND-26 (Invitrogen, Carlsbad, CA, USA) (40). A 2mL aliquot of the culture was gently homogenized by several inversions and incubated in the dark on ice for 15 min in the presence of 75 nmol L⁻¹ of LysoTracker. Microbial eukaryotic cells of various size, morphology and trophic ability (phototrophic, heterotrophic, mixotrophic) were identified and sorted with a Cytopeia INFLUX sorter (BD, Franklin Lakes, NJ, USA) in a Class 1000 clean room using a 488 nm argon laser for excitation. Green (528-538 nm) and red (670-730 nm) fluorescent emission indicated LysoTracker green fluorescence and chlorophyll autofluorescence, respectively. Targeted single eukaryotic cells were sorted into four 96-well plates which contained 3 µL UV-

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

Sanger sequencing

sterilized TE buffer in each well (32). Individual cells were sorted from discrete sectors using the three criteria. Plate 1 (P1) contained cells showing high LysoTracker fluorescence only (ie., heterotrophic/phagotrophic); Plate 2 (P2) contained cells exhibiting high red fluorescence (ie., photosynthetic) and the absence of green fluorescence; and Plates 3 and 4 (P3, P4) contained smaller cells that exhibited intermediate levels of red and green fluorescence (ie., mixotrophic; Fig. 1). Plates were stored at -80 °C until whole genome amplification. DNA template preparation for PCR For DNA preparation, single-sorted eukaryote cells were lysed using alkaline treatment by the addition of 3 µL of buffer that consisted of 0.13 M KOH, 3.3 mM EDTA pH 8.0 and 27.7 mM Dithiothreitol, heated to 95°C for 30 sec, and immediately placed on ice for 10 min, followed by addition of 3 µL neutralization buffer (0.13 M HCl, 0.42 M Tris pH 7.0, 0.18 M Tris 8.0). Genomic DNA from the cell lysates was amplified using multiple displacement amplification (MDA) by the addition of 11 µL of MDA master mix containing 90.9 µM random hexamers with two protective, phosporothioate bonds on the 3' end (Integrated DNA Technologies, Coralville, IA, USA), 1.09 mM dNTPs (Roche Indianapolis, IN, USA), 1.8X phi29 DNA polymerase buffer (New England BioLabs, Ipswich, MA, USA), 4 mM DTT and ~100 U phi29 DNA polymerase enzyme (purified in house) (41). Whole genome amplification was performed for 10 hrs at 30°C followed by inactivation at 80°C for 20 min. MDA products were diluted 100fold in sterile 1X TE buffer, then screened by PCR and sequencing.

209	A fragment of the 18S rRNA gene was amplified from each of the SAGs using universal
210	eukaryote primers [EK-82F (5' -GAAACTGCGAATGGCTC) and EK-1520R (5' -
211	CYGCAGGTTCACCTAC)] (42) to generate PCR products for sequencing. PCR was performed
212	in triplicate using 25 cycles of 95°C for 1 min, 52°C for 1 min, and 72°C for 2 min. Sequencing
213	reactions were performed using the BigDye Terminator v3.1 cycle sequencing kit (ABI, CA)
214	with M13R primer and the fragments were sequenced on an Applied Biosystems 3730×1 DNA
215	Analyzer (ABI, CA) located in the Center for Bioinformatics and Functional Genomics (CBFG)
216	at Miami University.
217	
218	Illumina sequencing
219	
220	Following successful identification of the individual eukaryote SAGs, 79 samples were selected
221	for sequencing of the associated bacterial communities on an Illumina® MiSeq Platform in the
222	CBFG. 16S rRNA genes from the SAGs were amplified using the primer set (F515/R806) which
223	encoded sequence against the highly variable V4 region of 16s rRNA, barcodes and linkers. PCR
224	reactions and MiSeq sequencing reactions were strictly followed the protocol provided by the
225	Earth Microbiome Project (http://www.earthmicrobiome.org) (42-45). Samples were sequenced
226	according to the manufacturer's recommendations using a 300-cycle MiSeq Reagent Kit v2
227	(Illumina®) in a 2 X 150 bp paired-end run in the presence of 25 % PhiX DNA.
228	
229	Analysis of the sequences

252

232 sequences were selected from GenBank and aligned using MUSCLE. A maximum-likelihood 233 tree was generated using MEGA6 software. Bootstrapping was used to estimate node support of 234 1,000 replicate trees. 235 236 16S rRNA gene sequences generated on the MiSeq instrument were analyzed with QIIME 237 (v1.8.0). OTUs were identified at 97% cutoff using Greengenes database (v13.8) (46). All OTUs 238 with one sequence per sample were discarded. Samples were 120 times rarefied based on the 239 number of sequences in the library with the lowest sequence number. Alpha diversity (number of 240 OTUs, chao1 and Shannon index) was assessed (data not shown). Beta-diversity was integrated 241 using weighted unifrac distance metric (47, 48). Principal coordinates analysis (PCoA) and 242 ANOSIM similarity analysis was performed to identify co-existence of eukaryotic and 243 prokaryotic organisms in the single-cell samples (49-52). 244 245 Confocal Laser Scanning Microscopy 246 247 Isochrysis sp. MDV and Chlamydomonas sp. ICE-MDV cultures were treated with LysoTracker 248 Green DND-26 probe using the same procedure previously described for FACS. A Zeiss LSM-249 710 (Carl Zeiss Microscopy GmbH, Germany) confocal laser scanning microscope was used for 250 images in Fig. 3. A 488 nm argon ion laser was used as elimination/excitation source. 251 LysoTracker and chlorophyll fluorescence were detected within 520-540 nm and 650-750 nm

For 18S rRNA gene sequences derived from Sanger sequencing, representative and closest

respectively. Differential interference contrast (DIC) images were also generated using

253	transmission light mode. Images were pseudocolored in Zeiss ZEN 2011 (Carl Zeiss Microscopy
254	GmbH, Germany) software.
255	
256	Scanning Electron Microscopy
257	
258	Samples from the original enrichment culture were fixed with 1% paraformaldehyde and 1.25%
259	glutaraldehyde, and a secondary fixation was applied in 1% osmium tetroxide. Specimens were
260	dehydrated through an ethanol series, critical-point dried with CO ₂ , and sputter-coated with gold
261	Micrographs were generated with a Zeiss SUPRA-35 FEG SEM (Carl Zeiss Microscopy GmbH
262	Germany).
263	

RESUL	TS	AND	DISC	USSION	V
KESUL		$\Delta \Pi D$	DIDC	UBBIOI	٦.

267

264

265

Identities and trophic modes of sorted eukaryotes

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

To overcome the logistical constraints of transporting fresh samples from Antarctica to our US laboratory as well as low biomass issues associated with MCM planktonic communities, we used an enrichment cultivation-based approach to test FACS/ single cell sorting on McMurdo Dry Valley lake protist communities. A series of enrichment cultures were started in Antarctica using a range of growth media as described in the Experimental Procedures and incubated for 2 weeks prior to shipment to our US laboratory. Upon arrival in our US laboratory, we monitored algal diversity using a bbe FluoroProbe (see Table S2 in Supplemental Material) and visually inspected each culture using bright-field and fluorescence microscopy to qualitatively assess protist diversity. Inspection of one of the cultures (Enrichment MCM87) revealed large (>15 μm) biflagellate chlorophytes, several nanophytoplankton identified as haptophytes and cryptophytes (~5 μm), as well as dinoflagellates cells exhibiting variable pigmentation (owing to the presence or absence of phytoplankton prey) and several non-pigmented heterotrophic nanoflagellates (2-5 μm). Based on our recent work on natural protist diversity in Lake Bonney (28), we concluded that MCM87 harbored representatives of several key members of the Lake Bonney protist community, including chlorophytes, haptophytes, choanoflagellates, dinoflagellates, and nanoflagellates, all of which have been detected in environmental sequence libraries generated from the photic zone of the east lobe of Lake Bonney.

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

Based on LysoTracker and chlorophyll fluorescence signals combined with cell size information, we gated four eukaryote populations for single cell sorting: a group with high LysoTracker fluorescence (i.e., presence of protist food vacuole; Fig. 1, Plate 1 – green group), a group with high red fluorescence (i.e., presence of chlorophyll; Fig. 1, Plate 2 – red group) and two groups with smaller cells that exhibited intermediate levels of red and green fluorescence (Fig. 1, Plates 3 and 4 – blue groups). Targeted single cells were deposited into four 96-well plates according to distinct gates that separated various types of organisms based on the size and fluorescent characteristics mentioned above. Following cell lysis and whole genome amplification using phi29 DNA polymerase, 65% (250 out of 384 samples) of the SAGs were successfully amplified using 18S rRNA primers based on electrophoretic separation of the PCR products on a 1% agarose gel. All SAGs which exhibited a band of the correct size (~1400 bp) were Sangersequenced. We recovered 79 high quality partial 18S rRNA sequences (~600bp) for phylogenetic analysis (GenBank accession numbers: KU196097- KU196166). Representative sequences were aligned with SILVA and GenBank databases using SINA and BLAST. Phylogenetic analysis revealed that the SAGs library harbored a total of 16 OTUs (based on a cut-off of 97% similarity) related to the Stramenopila supergroup and several other major phyla, including Chlorophyta, Choanoflagellida, Dinoflagellata, Cryptophyta and Haptophyta. The majority of SAG 18S rRNA sequences were identical to uncultivated eukaryote clones recovered in an earlier study on natural protist populations residing in Lake Bonney (28). All SAGs recovered from the photosynthetic group (i.e., high autofluorescence, low LysoTracker fluorescence; Fig. 1; SAG Plate 2; n=13) were related to a large biflagellate Chlorophyte,

Chlamydomonas, which was closely related (99% identity) to an Antarctic marine species,

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

Chlamydomonas sp. Antarctic 2E9, and two Antarctic ice algal strains, Chlamydomonas sp. ICE-W and ICE-L (53). The Chlamydomonas SAGs were also closely related to sequences from clone libraries generated from the depth of maximum productivity (13 m depth) in the east lobe of Lake Bonney (28) (Fig. 2). Recent studies on phylogenetic and functional genes indicated that this organism is the dominant chlorophyte in the east and west lobes of Lake Bonney (28, 30). Last, our FACS results which suggest that this organism is photoauotrophic were supported by earlier physiological studies on Chlamydomonas ICE sp. (53) as well as a highly studied Lake Bonney chlorophyte, Chlamydomonas sp. UWO241 (22, 54). SAG sequences related to a nanoflagellate haptophyte (*Isochrysis galbana*; 97% identity) represented a significant proportion of samples (80 %) recovered from SAG Plate 4 (n=17; Fig. 2), which represented one of two plates with intermediate levels of green and red fluorescence (Fig. 1, SAG Plate 4). 18S rRNA sequences from these SAGs were very similar to sequences recovered from clone libraries generated from 13 m-deep waters from east and west lobe Lake Bonney (28), and recent reports suggest that haptophytes communities related to this organisms are key primary producers in this lake (29, 30, 55). Communities of *Isochrysis* dominate the chemoclines of the east and west lobes of Lake Bonney (29) Several recent studies using quantitative PCR to monitor abundance of photosynthetic functional genes (rbcL, psbA) indicates that in contrast with chlorophyte populations, abundance (DNA) and activity (RNA) of haptophyte populations is not correlated with light availability (29, 55). These data suggest that the dry valley *Isochrysis* may rely on alternative metabolic strategies, such as mixotrophy.

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

Stramenopiles represent a poorly understood supergroup of microbial eukaryotes that exhibit broad trophic ability (e.g., phototrophy, mixotrophy, predation, parasitism). The marine stramenopiles (MASTs) lineage is a diverse group of microbial eukaryotes and represent a large proportion of heterotrophic nanoflagellates (HNFs) in marine environments (56). HNFs are small microbial eukaryotes (2 to 20 μm) which graze on bacteria and picophytoplankton and are recognized as the dominant consumers of picoplanktonic biomass in marine environments (7, 57). Our 18S rRNA gene sequence library contained several SAGs that were related to stramenopiles (Fig. 2). The most abundant stramenopile SAGs were closely related to *Pteridomonas danica* (SAG Plate 4; 99% identification, n=22) and Pirsonia verrucosa (SAG Plate 3; 94-100% identification, n=22). Sequences related to both stramenopiles were recovered in clone libraries from the west and east lobes of Lake Bonney (28) (Fig. 2). Recent work has reported that stramenopiles make up a significant proportion of the protist population (up to 60%) in both lobes of Lake Bonney (29, 31). Pirsonia is a phycovorous nanoflagellate which feeds on marine centric diatoms (58). Pteridomonas is a ubiquitous marine heterotrophic nanoflagellate (5). In addition, two OTUs within the Stramenopile supergroup (SAG clones P3E2 and P4C7) exhibited very low similarity (<81%) to the closest related identified sequence in the database (Thraustochytrium sp.). Both OTUs were, however, closely related to the sequences generated in Lake Bonney clone libraries from a previous study (28). Several other protists groups were represented in the SAG libraries at low abundance. A single SAG was recovered for two choanoflagellates and one dinoflagellate. One SAG related to a psychrophilic marine cryptophyte Geminigera cryophila was also recovered. G. cryophila is

abundant in the shallow layers of Lake Bonney (28, 29). Dinoflagellates have been detected in

relatively high abundance in the west lobe of Lake Bonney, while sequences related to choanoflagellates were less abundant (28, 31). All low abundance SAGs were recovered from the two mixotrophic groups (SAG plates 3 and 4; Fig. 1) and were closely related to sequences recovered from clone libraries generated from east or west lobe Lake Bonney, with the exception of one choanoflagellate sequence (SAG P4B8; Fig. 2).

360

361

355

356

357

358

359

Isolation and description of two key photosynthetic protists

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

Recent work on the natural communities of Lake Bonney suggested that a chlorophyte related to Chlamydomonas sp. ICE-L and a haptophyte related to Isochrysis galbana occupy important yet distinct roles in the Antarctic lake food web (28-31). Our FACS analyses indicated that the chlorophyte is a pure photoautotrophic species while the haptophyte may possess the ability to combine photosynthetic metabolism with heterotrophic activity, such as digestion of captured bacterial prey or particulate carbon. To confirm our hypotheses regarding the trophic capability of these key MCM protists, we purified isolates of both organisms from enrichment cultures. A culture of the Chlamydomonas sp. (hereafter named Chlamydomonas sp. ICE-MDV) was recovered by plating of an enrichment culture on Bold's Basal Medium (59) with 1.5% agar. The Isochrysis strain (hereafter named Isochrysis sp. MDV) was isolated by dilution to extinction of an enrichment culture in 0.5X seawater supplemented with F/2 medium. The identity of both strains was confirmed by 18S rRNA gene sequencing (data not shown). Confocal microscopy showed that Chlamydomonas sp. ICE-MDV is a large (15 - 20 µm) biflagellate cell exhibiting high autofluorescence (Fig. 3a, d and e). As LysoTracker probe is fluorescent acidotrophic; therefore, we wondered if the acidic compartment (lumen) of chloroplasts (60) might cause false

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

positive fluorescence signal under flow cytometry. We did not detect green fluorescence in the presence of LysoTracker in Chlamydomonas sp. ICE-MDV cells, despite the presence of a large chloroplast (Fig. 3d and e). This also confirms that it is unlikely that any of the SAGs sorted in the mixed SAG plates (Plates 2 and 3; Fig. 1) were a product of spurious chloroplast staining. Isochrysis sp. MDV is a small (2 - 5 µm) brown-pigmented biflagellate alga. It possesses bilobed chloroplasts which exhibited high autofluorescence (Fig. 3i and j). In contrast with the chlorophyte strain, when cells of *Isochrysis* sp. MDV were treated with LysoTracker probe, green fluorescence was localized to a single vacuole (Fig. 3g). The presence of green fluorescence was associated only with LysoTracker-stained cells, as neither strain exhibited green fluorescence in the absence of LysoTracker (see Figs. S1 and S2 in supplemental material). We have also confirmed in growth experiments that Isochrysis sp. MDV can grow either in the dark (heterotrophic) or the light (phototrophic), but grows optimally in the presence of a variety of organic carbon sources and low irradiance (mixotrophic). In contrast, Chlamydomonas ICE-MDV cannot grow in the dark in the presence of organic carbon, but exhibits ability to grow under a broader range of light intensities (see Table S1 in supplemental material for description of basic growth physiology). Therefore, the chlorophyll and LysoTracker staining fluorescence information from confocal microscopy combined with growth physiology confirmed results from the FACS analyses that *Chlamydomonas* sp. ICE-MDV is a pure photosynthetic protist while Isochrysis sp. MDV is likely capable of mixotrophic metabolism. These results fit well with data from functional gene analyses that Lake Bonney chlorophyte populations that occupy the underice layers of the water column are strongly correlated with light availability on spatial and seasonal scales (55). By contrast, haptophyte populations dominating planktonic communities in

401 dependent photosynthesis with ingestion of bacterial prey or particulate carbon. 402 403 Community composition of organisms co-sorted with Lake Bonney eukaryotes 404 405 To gain further insight into the trophic modes as well as potential microbial partners of the MCM 406 microbial eukaryotes, we selected a number of eukaryote SAGs of varying trophic potential for 407 16S rRNA amplicon community sequencing. From the population of successfully amplified and 408 sequenced SAGs, we sequenced a fragment of the 16S rRNA gene from 79 eukaryote SAGs 409 using the Illumina® MiSeq platform (NCBI BioProject ID PRJNA304193). We recovered both 410 bacterial 16S and plastid SSU rRNA genes from these sequencing libraries. The plastid 411 sequences were filtered from the 16S rRNA gene libraries of all SAG OTUs known to be 412 photosynthetic, including *Chlamydomonas* sp. ICE-MDV, *Isochrysis* sp. MDV, and *Geminigera*. 413 To assess both the diversity and co-occurrence patterns of organisms that co-sorted with the 414 individual eukaryote SAGs, we generated a heat map of 16S rRNA genes associated with each 415 individual SAG sample (see Fig. S3 in supplemental material). The distribution of recovered 16S 416 rRNA gene sequences was highly variable and dependent upon both the trophic mode and 417 identity of the microbial eukaryote partner. Bacterial sequences associated with the 418 photosynthetic Chlamydomonas sp. ICE-MDV and the mixotrophic Isochrysis sp. MDV were 419 generally diverse, with a predominance of the phyla Actinobacteria and Bacteriodetes. In 420 contrast, 16S rRNA gene sequences recovered from the two stramenopile SAGs related to 421 Pteridomonas and Pirsonia, which dominated the heterotrophic (Plate 1) and one of the

the permanent chemocline are not influenced by light availability but can supplement light-

444

423 S3 in supplemental material). 424 425 Principal Coordinates Analysis (PCoA) based on UniFrac distance metrics of 16S rRNA OTUs 426 from the four most abundant SAGs (*Isochrysis* sp. MDV, *Chlamydomonas* sp. ICE-MDV, 427 Pteridomonas and Pirsonia) exhibited clustering by protist trophic mode (Fig. 4). Similarity 428 analysis using ANOSIM method indicated that bacterial OTUs associated with individual 429 eukaryote SAGs were significantly different to each other (p<0.001, R²=0.40). Bacterial OTUs 430 associated with Isochrysis sp. MDV and Chlamydomonas sp. ICE-MDV were clustered 431 separately from each other, but were more closely related compared with either of the 432 straemophile SAGs. 16S rRNA gene libraries generated from SAGs of the heterotrophic 433 nanoflagellates (Pteridomonas and Pirsonia) were more related to each other than to either of the 434 photosynthetic protists or the environmental samples (Fig. 4). 435 436 Potential interactions between Dry Valley protists and bacteria 437 438 Complex ecological interactions exist between protists and other microorganisms, including 439 predation of bacteria by heterotrophic protists and syntrophic interactions between 440 photosynthetic algae and heterotrophic bacteria (2, 61). Traditionally, heterotrophic protists were 441 identified via culture-dependent and microscopic methods (62-65). Recent studies have shown 442 that a single-cell genomic approach can provide direct evidence of specific predator-prey 443 interactions (66, 67). We recovered 22 samples that had high LysoTracker probe-associated

mixotrophic (Plate 4) populations, respectively, were enriched with plastid sequences (see Fig.

fluorescence and were closely related to the stramenopile *Pteridomonas danica* (Figs. 1 and 2).

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

linkage between bacteria and higher trophic levels in the food web (68-70). Interestingly, we observed that more than 90% of 16S rRNA gene sequences from *Pteridomonas* SAGs were closely related to a stramenopile chloroplast sequence that was neither reported in environmental sequence libraries (28, 31) nor detected in other SAG 16S rRNA libraries in this study. A previous study reported that Pteridomonas danica harbors non-pigmented non-photosynthetic plastids or vestigial chloroplasts (71); therefore, it is likely that the chloroplast sequences we recovered in 16S rRNA gene sequence libraries generated from Pteridomonas SAGs represent plastid sequences from vestigial chloroplasts. This interpretation was supported by a lack of pigmentation under light microscopy in *Pteridomonas* cells (data not shown). We removed the stramenopile plastid sequences from the 16S rRNA gene libraries generated from *Pteridomonas* SAGs and investigated the remaining 16S rRNA gene sequences in the *Pteridomonas* libraries (Fig. 5a). The most abundant sequences were related to a haptophyte plastid rRNA gene (32 \pm 23% in total OTUs) and a firmicute, Streptococcus (13±8% in total OTUs) (Figure 6a). HNFs represent a diverse ecological group cable of various trophic preferences (e.g., bacteriovorous, phycovorous or omnivorous). P. danica feeds on both bacteria and picophytoplankton and is therefore an omnivore (72); however, we did not find any reports of this genus predating on haptophytes. Picocyanobacteria are largely absent from the water column of the MCM lakes (29, 30); therefore, we suggest that in addition to heterotrophic bacteria, the haptophyte population which dominates the photic zone of Lake Bonney could be the natural prey for the MCM Pteridomonas.

Pteridomonas is a ubiquitous heterotrophic nanoflagellate in marine systems, and is an important

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

of food particles with an array of radial pseudopodia or tentacles or direct interception of prey by flagella. In addition, flagellates are often attached to particles such as marine snow when feeding (73, 74). Examination of the Lake Bonney *Pteridomonas* by scanning electron microscopy revealed the presence of a single long flagellum surrounded by a radial array of tentacles (Fig. 5 b-d) which are characteristic morphological features of *Pteridomonas* species (68). In addition, we observed particles attached to the tentacles and cells were often attached to a surface of particle by a stalk (Fig. 5b). To our knowledge, our images are some of the first published SEMs of this genus. Thus, the Lake Bonney *Pteridomonas* appears to rely on a filter feeding mechanism and may be particle-attached within the water column. This would be an advantageous strategy within the permanent chemocline where potential prey would be abundant and particulate organic carbon from the upper photic zone may accumulate. In support of this suggestion, Roberts et al. (24) reported that HNF dominated heterotrophic protozoa in Lake Bonney and peaked within the permanent chemocline of the west lobe of Lake Bonney. A second highly abundant SAG (n=22) within the Stramenopile supergroup exhibited a relatively high proportion of chloroplast sequences within the 16S rRNA gene sequence libraries (Figs. 6 and S3 in supplemental material). These SAGs were recovered from Plate 4, which exhibited relatively high green fluorescence and intermediate levels of autofluorescence, and were closely related to a parasitoid nanoflagellate, *Pirsonia* sp. (Figs. 1 and 2). Parasitoid protists comprise a diverse taxonomic group which are thought play major roles in controlling their prey abundance; however, their role in microbial food webs is poorly understood (75). Plastid sequences

A number of feeding strategies have been reported for heterotrophic flagellates such as filtration

recovered from the Pirsonia SAGs were all related to Chlamydomonas chloroplast sequences

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

Therefore, the presence of plastid sequences within the 16S rRNA gene sequencing libraries suggested that *Pirsonia* potentially interacts with *Chlamydomonas* in a predator-prey relationship. However, microscopic examination indicated that the average size of *Pirsonia* was ~5 µm which was noticeable smaller than *Chlamydomonas* (~15 μm; Fig. 6b, c). Past studies have observed Pirsonia species are host specific for marine centric diatoms. The feeding mechanism involved attachment to a host diatom cell, formation of a trophosome inside the host cell and transfer of digested material into the parasite cell (58, 76). We observed an extracellular organelle on the Dry Valley *Pirsonia* which likely functions as part of this feeding mechanism (Fig. 6b, arrow). While Diatoms are abundant in the ephemeral streams and microbial mats around the Dry Valleys (77-79), they are rare in MCM lake water columns (28, 29, 31). To our knowledge there are no reports of *Pirsonia* interacting with chlorophytes; however, we observed numerous Pirsonia cells attached to Chlamydomonas cells (Fig. 6 d and e), which is a critical step for infection of host cells. Phytoplankton-bacteria interactions are well known in aquatic environments and are largely driven by the dependence of heterotrophic bacteria on the production of alga-derived organic substrates in the form of extracellular phytoplankton products or decaying algal biomass. There is clear evidence that phytoplankton community distribution and dynamics influences specific bacterial assemblages (80-82). Algal-bacteria interactions involve either free-living, non-particle attached communities of heterotrophic bacteria or cell-to-cell contact between specific bacteria and algal hosts: bacteria groups associated with either interaction appear to be significantly

(Fig. 6a); however, unlike *Pteridomonas*, *Pirsonia* is not known to harbor a vestigial plastid.

different from each other (83, 84). Bacterioplankton can exhibit differential abilities for

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

incorporation of specific algal-derived substrates (85). The Dry Valley lakes are essential closed systems for most of the year, and thus heterotrophic bacteria are heavily reliant on newly fixed carbon from phytoplankton production. Recent studies based on environmental sequencing of phytoplankton and bacterial communities have shown that spatial distribution of planktonic communities strongly varies within and between lakes (28, 29, 31); however, interactions between MCM phytoplankton and heterotrophic bacteria have not been resolved. In this present study, SAGs of either the chlorophyte Chlamydomonas sp. ICE-MDV or the haptophyte Isochrysis sp. MDV were associated with a number of bacterial OTUs (Figs. 5 and S3 in supplemental material). In general, the evidence for strong algal-bacteria interactions was lacking. However, we did note two potential bacterial associations with the Lake Bonney phototrophic SAGs. First, a significant proportion of *Chlamydomonas* ICE-MDV single cells were associated with OTUs related to the Methylobacteriaceae. Members of this group are obligate methylotrophs that can oxidize a number of methylated compounds including methanol and methylamines. These organisms are relatively abundance in marine environments, particularly during phytoplankton blooms (86, 87). Many marine microalgae produce a number of single-carbon compounds as osmolytes (88); however, less is known about algal-methylotroph interactions in freshwater environments (89). While the presence of methylotrophy in the MCM lakes has not been reported, it seems probable that algal production of osmolytes would be a likely adaptation to survive harsh conditions such as low temperatures combined with high salinity. In contrast with the Chlamydomonas sp. ICE-MDV SAGs, Isochrysis sp. MDV SAGs were not

generally associated with methylotrophic bacterial sequences. Instead, the majority of haptophyte

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

single cells were associated with a number of bacterial sequences from Flavobacteriaceae (see Fig. S3 in supplemental material). In the marine environment, Flavobacteria represent a dominant Bacteriodetes which breakdown complex organic matter and biopolymers by either direct attachment to algal cells or algal-derived detritus (90, 91). Haptophyte blooms in the Southern ocean are associated with peaks in abundance in *Flavobacteria* (92), and sequences related to Flavobacteria are highly abundant in the bacterioplankton communities residing in the chemocline of Lake Bonney (31). Our work supports a putative interaction between Lake Bonney haptophytes and Flavobacteria. The relatively high number of bacterial OTUs associated with the phototrophic SAGs could also represent evidence of low algal-bacterial coupling in the MCM lakes. Phytoplankton exudate quantity and composition are influenced by environmental factors including nutrient limitation, light availability and temperature (91, 93). The conditions of the MCM lakes (e.g., limited light and nutrients, low temperatures) may have selected for algal species which excrete a low fraction of algal-derived compounds, and thus bacterioplankton rely more heavily upon exudate release during algal lysis or death. In support of this latter hypothesis, we have observed heavy recruitment and colonization of bacteria on dead and dying algal cells in our enrichment cultures; an interaction which would have been excluded in the FACS sorting. There is also evidence that natural bacterioplankton communities obtain a significant fraction of organic carbon from ancient, relict pools of organic matter (94).

CONCLUSIONS

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

cytometry cell sorting.

capable of complex metabolic modes and interactions. While important in marine ecosystems, their influence reaches profound levels in aquatic systems where the microbial loop dominates. In our current study, we discovered that the MCM protists possess a diverse array of metabolic capabilities (pure photosynthetic, to mixotrophy, heterotrophy and parasitism) which likely contributes to the strong vertical layering of key protists communities in the water column of Lake Bonney. Metabolic versatility of MCM protists underpins specific microbe-microbe interactions in some cases (e.g., Pteridomonas-chlorophyte), while for other protists (e.g., haptophytes), interactions with heterotrophic bacteria do not appear to be an important survival strategy. ACKNOWLEDGEMENTS: The authors thank the McMurdo LTER, Antarctic Support Contract and PHI helicopters for logistical assistance in the field. We thank Andor J. Kiss and the Center for Bioinformatics and Functional Genomics at Miami University for assistance with Illumina sequencing. We thank Richard E Edelmann, Matthew Duley and Center for Advanced Microscopy and Imaging at Miami University for assistance with microscopy and image analysis. This work was supported by NSF Office of Polar Programs Grant OPP-1056396. MP has been supported by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. We thank Steven Allman for technical assistance with the flow

Microbial eukaryotes represent the majority of diversity across the eukaryotic tree of life and are

583 REFERENCES

- Faust K, Raes J. 2012. Microbial interactions: from networks to models. Nature 584 1. 585 Reviews in Microbiology 10:538-550.
- 586 2. Amin SA, Parker MS, Armbrust EV. 2012. Interactions between diatoms and 587 bacteria. Microbiol Mol Biol Rev 76:667-684.
- 588 Montagnes D, Roberts E, Lukeš J, Lowe C. 2012. The rise of model protozoa. Tren 3. 589 Microbiol 20:184-191.
- Caron DA, Worden AZ, Countway PD, Demir E, Heidelberg KB. 2009. Protists are 590 4. 591 microbes too: a perspective. ISME J 3:4-12.
- 592 5. Sherr EB, Sherr BF. 2002. Significance of predation by protists in aquatic microbial 593 food webs. A Van Leeuw J Microb 81:293-308.
- 594 6. Moorthi S, Caron DA, Gast RJ, Sanders RW. 2009. Mixotrophy: a widespread and 595 important ecological strategy for planktonic and sea-ice nanoflagellates in the Ross 596 Sea, Antarctica. Aquat Microb Ecol **54**:269-277.
- 597 Sanders RW, Berninger U-G, Lim EL, Kemp PF, Caron DA. 2000. Heterotrophic 7. 598 and mixotrophic nanoplankton predation on picoplankton in the Sargasso Sea and 599 on Georges Bank. Mar Ecol Prog Ser 192:103-118.
- 600 8. Caron DA, Countway PD, Brown MV. 2004. The growing contributions of 601 molecular biology and immunology to protistan ecology: molecular signatures as 602 ecological tools. J Eukarvot Microbiol 51:38-48.
- 9. 603 **Epstein S, Lopez-Garcia P.** 2008. Missing protists: a molecular perspective. Biodiv 604 Conserv 17:213-218.
- 605 10. Lara E, Mitchell EA, Moreira D, Lopez Garcia P. 2011. Highly diverse and 606 seasonally dynamic protist community in a pristine peat bog. Protist **162**:14-32.
- 11. **Zinger L, Gobet A, Pommier T.** 2012. Two decades of describing the unseen 607 608 majority of aquatic microbial diversity. Mol Ecol 21:1878-1896.
- 609 12. Simon M, Jardillier L, Deschamps P, Moreira D, Restoux G, Bertolino P, Lopez-Garcia P. 2015. Complex communities of small protists and unexpected occurrence 610 611 of typical marine lineages in shallow freshwater systems. Environ Microbiol 612 **17:**3610-3627.
- 613 13. Simon M, Lopez-Garcia P, Deschamps P, Moreira D, Restoux G, Bertolino P, 614 **Jardillier L.** 2015. Marked seasonality and high spatial variability of protist communities in shallow freshwater systems. ISME J 9:1941-1953. 615
- 616 14. Nolte V, Pandey RV, Jost S, Medinger R, Ottenwalder B, Boenigk J, Schlotterer C. 617 2010. Contrasting seasonal niche separation between rare and abundant taxa 618 conceals the extent of protist diversity. Mol Ecol **19**:2908-2915.
- 619 Reynolds RT, Squyres SW, Colburn DS, McKay CP. 1983. On the habitability of 15. 620 Europa. Icarus **56:**246-254.
- 16. Chela-Flores J. 2011. On the possibility of biological evolution on the moons of 621 622 Jupiter, p 151-170, The Science of Astrobiology. Springer.
- 623 17. Green W, Lyons W. 2009. The saline lakes of the McMurdo Dry Valleys, Antarctica. 624 Aguat Geochem 15:321-348.

- 625 18. Laybourn-Parry J. 2009. No place too cold. Science 324:1521-1522.
- 626 19. Cavicchioli R. 2015. Microbial ecology of Antarctic aquatic systems. Nat Rev 627 Microbiol **13:**691-706.
- 628 20. **Laybourn-Parry J. Pearce DA.** 2007. The biodiversity and ecology of Antarctic 629 lakes: models for evolution. Philos Trans R Soc Lond B Biol Sci 362:2273-2289.
- 630 21. **Neale PJ, Priscu JC.** 1995. The photosynthetic apparatus of phytoplankton from a 631 perennially ice-covered Antarctic lake: acclimation to an extreme shade 632 environment. Plant Cell Physiol 36:253-263.
- 633 22. Morgan-Kiss RM, Priscu JP, Pocock T, Gudynaite-Savitch L, Hüner NPA. 2006. 634 Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev 70:222-252. 635
- 636 23. **Roberts EC, Laybourn-Parry J.** 1999. Mixotrophic cryptophytes and their 637 predators in the Dry Valley lakes of Antarctica. Freshwat Biol 41:737-746.
- 638 24. Roberts EC, Priscu JC, Wolf C, Lyons WB, Laybourn-Parry J. 2004. The 639 distribution of microplankton in the McMurdo Dry Valley Lakes, Antarctica: 640 response to ecosystem legacy or present-day climatic controls? Polar Biol 27:238-641 249.
- 642 25. Bell EM, Laybourn-Parry J. 2003. Mixotrophy in the Antarctic phytoflagellate 643 Pyramimonas aelidicola, I Phycol **39**:644-649.
- 644 26. Laybourn-Parry J. 2002. Survival mechanisms in Antarctic lakes. Philos Trans R Soc 645 Lond B Biol Sci **357**:863-869.
- 646 27. **Spigel RH, Priscu JC.** 1998. Physical limnology of the McMurdo Dry Valleys lakes. 647 Wiley Online Library.
- 648 28. Bielewicz S, Bell E, Kong W, Friedberg I, Priscu JC, Morgan-Kiss RM. 2011. Protist diversity in a permanently ice-covered Antarctic lake during the polar night 649 650 transition. ISME J 5:1559-1564.
- 29. 651 Dolhi JM, Teufel AG, Kong W, Morgan-Kiss RM. 2015. Diversity and spatial 652 distribution of autotrophic communities within and between ice-covered Antarctic 653 lakes (McMurdo Dry Valleys). Limnol Oceanogr 60:977-991.
- 654 30. Kong W, Ream DC, Priscu JC, Morgan-Kiss RM. 2012. Diversity and expression of 655 RubisCO genes in a perennially ice-covered Antarctic lake during the polar night 656 transition. Appl Environ Microbiol 78:4358-4366.
- 657 31. Vick-Majors TJ, Priscu JC, Amaral-Zettler LA. 2014. Modular community structure suggests metabolic plasticity during the transition to polar night in ice-covered 658 659 Antarctic lakes. ISME | 8:778-789.
- 660 32. Campbell AG, Campbell JH, Schwientek P, Woyke T, Sczyrba A, Allman S, Beall 661 CJ, Griffen A, Leys E, Podar M. 2013. Multiple single-cell genomes provide insight 662 into functions of uncultured Deltaproteobacteria in the human oral cavity. PLoS One 663 **8:**e59361.
- 664 33. Yoon HS, Price DC, Stepanauskas R, Rajah VD, Sieracki ME, Wilson WH, Yang EC, 665 **Duffy S, Bhattacharya D.** 2011. Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science **332:**714-717. 666
- 667 34. Marcy Y, Ouverney C, Bik EM, Lösekann T, Ivanova N, Martin HG, Szeto E, Platt 668 D, Hugenholtz P, Relman DA. 2007. Dissecting biological "dark matter" with singlecell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. 669 670

- 671 35. Guillard RR, Ryther JH. 1962. Studies of marine planktonic diatoms. I. Cyclotella 672 nana Hustedt and Detonula confervacea Cleve. Can J Microbiol 8:229-239.
- 673 36. Bischoff HW, Bold HC. 1963. Some soil algae from Enchanted Rock and related 674 algal species, Phycological studies IV. University of Texas Press, Austin.
- 37. Stanier R, Kunisawa R, Mandel M, Cohen-Bazire G. 1971. Purification and 675 676 properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 677 **35:**171.
- 678 38. Rinke C, Lee J, Nath N, Goudeau D, Thompson B, Poulton N, Dmitrieff E, 679 Malmstrom R, Stepanauskas R, Woyke T. 2014. Obtaining genomes from 680 uncultivated environmental microorganisms using FACS-based single-cell genomics. 681 Nat Protoc 9:1038-1048.
- Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T, Lamy D, 682 39. 683 Reinthaler T, Poulton NJ, Masland EDP, Gomez ML, Sieracki ME, DeLong EF, 684 Herndl GJ, Stepanauskas R. 2011. Potential for Chemolithoautotrophy Among 685 Ubiquitous Bacteria Lineages in the Dark Ocean. Science 333:1296-1300.
- 686 40. Rose JM, Caron DA, Sieracki ME, Poulton N. 2004. Counting heterotrophic 687 nanoplanktonic protists in cultures and aquatic communities by flow cytometry. 688 Aquat Microb Ecol 34:263-277.
- Blainey PC. Ouake SR. 2011. Digital MDA for enumeration of total nucleic acid 689 41. 690 contamination. Nucleic Acids Res 39:e19.
- 691 42. López-García P, Rodríguez-Valera F, Pedrós-Alió C, Moreira D. 2001. 692 Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 693 409:603-607.
- 694 43. Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM. 2009. A method for 695 studying protistan diversity using massively parallel sequencing of V9 696 hypervariable regions of small-subunit ribosomal RNA genes. PLoS One 4:e6372.
- 697 44. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh 698 PJ, Fierer N, Knight R. 2011. Global patterns of 16S rRNA diversity at a depth of 699 millions of sequences per sample. Proc Natl Acad Sci U S A 108:4516-4522.
- 700 45. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens 701 SM, Betley J, Fraser L, Bauer M. 2012. Ultra-high-throughput microbial community 702 analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621-1624.
- 703 46. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO. 2007. 704 SILVA: a comprehensive online resource for quality checked and aligned ribosomal 705 RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188-7196.
- 706 47. Hamady M, Knight R. 2009. Microbial community profiling for human microbiome 707 projects: Tools, techniques, and challenges. Genome Res 19:1141-1152.
- 708 48. Lozupone CA, Hamady M, Kelley ST, Knight R. 2007. Quantitative and qualitative 709 β diversity measures lead to different insights into factors that structure microbial 710 communities. Appl Environ Microbiol **73:**1576-1585.
- Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK. 49. 711 712 Fierer N, Pena AG, Goodrich JK, Gordon JI. 2010. QIIME allows analysis of high-713 throughput community sequencing data. Nature Meth 7:335-336.
- 714 50. Kuczynski J, Stombaugh J, Walters WA, González A, Caporaso JG, Knight R. 2012. 715 Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr 716 Protoc Microbiol:1E. 5.1-1E. 5.20.

- 717 51. **Anderson MJ.** 2001. A new method for non-parametric multivariate analysis of 718 variance. Austral Ecol 26:32-46.
- 719 52. Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders 720 NI, Cornell HV, Comita LS, Davies KF, Harrison SP, Kraft NI, Stegen JC, Swenson 721 **NG.** 2011. Navigating the multiple meanings of beta diversity: a roadmap for the 722 practicing ecologist. Ecol Lett **14:**19-28.
- 723 53. Liu C, Huang X, Wang X, Zhang X, Li G. 2006. Phylogenetic studies on two strains 724 of Antarctic ice algae based on morphological and molecular characteristics. 725 Phycologia 45:190-198.
- 726 54. Dolhi JM, Maxwell DP, Morgan-Kiss RM. 2013. Review: The Antarctic 727 Chlamydomonas raudensis: An emerging model for cold adaptation of 728 photosynthesis. Extremophiles 17:711-722.
- 729 55. Kong W, Li W, Romancova I, Prasil O, Morgan-Kiss RM. 2014. An integrated study 730 of photochemical function and expression of a key photochemical gene (psbA) in 731 photosynthetic communities of Lake Bonney (McMurdo Dry Valleys, Antarctica). 732 FEMS Microbiol Ecol 89:293-302.
- 733 56. Massana R, Castresana J, Balagué V, Guillou L, Romari K, Groisillier A, Valentin 734 K, Pedrós-Alió C. 2004. Phylogenetic and ecological analysis of novel marine 735 stramenopiles. Appl Environ Microbiol **70**:3528-3534.
- 736 57. Fenchel T. 1982. Ecology of heterotrophic microflagellates. IV. Quantitative 737 occurrence and importance as bacterial consumers. Mar Ecol Prog Ser 9:35-42.
- 738 58. Kuhn S, Medlin L, Eller G. 2004. Phylogenetic position of the parasitoid 739 nanoflagellate Pirsonia inferred from nuclear-encoded small subunit ribosomal DNA 740 and a description of Pseudopirsonia n. gen. and Pseudopirsonia mucosa (Drebes) 741 comb. nov. Protist 155:143-156.
- 742 59. Nichols HW, Bold HC. 1965. Trichosarcina polymorpha gen. et sp. nov. J Phycol 743 **1:**34-38.
- 744 60. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. 2002. Chloroplasts 745 and Photosynthesis, Molecular Biology of the Cell, 4 ed. Garland Science, New York.
- 746 61. Buchan A, LeCleir GR, Gulvik CA, Gonzalez JM. 2014. Master recyclers: features 747 and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol 748 **12:**686-698.
- 749 62. Sherr EB, Caron DA, Sherr BF. 1993. Staining of heterotrophic protists for 750 visualization via epifluorescence microscopy. Handbook of methods in aquatic 751 microbial ecology:213-228.
- 752 63. Pernthaler J. 2005. Predation on prokaryotes in the water column and its ecological 753 implications. Nat Rev Microbiol 3:537-546.
- 754 Auinger BM, Pfandl K, Boenigk J. 2008. Improved methodology for identification 64. 755 of protists and microalgae from plankton samples preserved in Lugol's iodine 756 solution: combining microscopic analysis with single-cell PCR. Appl Environ 757 Microbiol **74:**2505-2510.
- 758 65. **Jezbera J, Hornak K, Simek K.** 2005. Food selection by bacterivorous protists: 759 insight from the analysis of the food vacuole content by means of fluorescence in 760 situ hybridization. FEMS Microbiol Ecol **52:**351-363.

- 761 66. Heywood JL, Sieracki ME, Bellows W, Poulton NJ, Stepanauskas R. 2011. 762 Capturing diversity of marine heterotrophic protists: one cell at a time. ISME I 763 **5:**674-684.
- 764 67. Martinez-Garcia M, Brazel D, Poulton NJ, Swan BK, Gomez ML, Masland D, 765 Sieracki ME, Stepanauskas R. 2012. Unveiling in situ interactions between marine 766 protists and bacteria through single cell sequencing. ISME 1 6:703-707.
- 767 68. Caron D, Gast R, Lim E, Dennett M. 1999. Protistan community structure: 768 molecular approaches for answering ecological questions, p 215-227, Molecular 769 Ecology of Aquatic Communities. Springer.
- 770 Pelegr S, Christaki U, Dolan J, Rassoulzadegan F. 1999. Particulate and Dissolved 69. Organic Carbon Production by the Heterotrophic Nanoflagellate Pteridomonas 771 772 danica Patterson and Fenchel. Microb Ecol 37:276-284.
- 773 70. **Zubkov MV, Sleigh MA.** 2005. Assimilation efficiency of Vibrio bacterial protein 774 biomass by the flagellate Pteridomonas: assessment using flow cytometric sorting. 775 FEMS Microbiol Ecol 54:281-286.
- 776 71. Sekiguchi H, Moriya M, Nakayama T, Inouye I. 2002. Vestigial chloroplasts in 777 heterotrophic stramenopiles Pteridomonas danica and Ciliophrys infusionum 778 (Dictyochophyceae). Protist 153:157-167.
- 779 72. Zwirglmaier K. Spence E. Zubkov MV. Scanlan DI. Mann NH. 2009. Differential 780 grazing of two heterotrophic nanoflagellates on marine Synechococcus strains. 781 Environ Microbiol **11**:1767-1776.
- 782 73. Christensen-Dalsgaard KK, Fenchel T. 2003. Increased filtration efficiency of 783 attached compared to free-swimming flagellates. Aquat Microb Ecol 33:77-86.
- 784 74. Kiørboe T, Grossart H-P, Ploug H, Tang K, Auer B. 2004. Particle-associated 785 flagellates: swimming patterns, colonization rates, and grazing on attached bacteria. 786 Aguat Microb Ecol 35:141-152.
- 787 75. **Skovgaard A.** 2014. Dirty tricks in the plankton: Diversity and Role of Marine 788 Parasitic Protists: diversity and role of marine parasitic protists. Acta Protozool 789 **53:**51-62.
- 790 76. Schweikert M, Schnepf E. 1997. Light and electron microscopical observations on 791 Pirsonia punctigerae spec, nov., a nanoflagellate feeding on the marine centric 792 diatom Thalassiosira punctigera. Eur J Protistol **33:**168-177.
- 793 77. Sumner DY, Hawes I, Mackey TJ, Jungblut AD, Doran PT. 2015. Antarctic 794 microbial mats: A modern analog for Archean lacustrine oxygen oases. Geology 795 **43:**887-890.
- 796 78. Doran PT, Wharton Jr RA, Lyons WB. 1994. Paleolimnology of the McMurdo dry 797 valleys, Antarctica. J Paleolimnol 10:85-114.
- 798 79. Spaulding S, McKnight D, Stoermer E, Doran P. 1997. Diatoms in sediments of 799 perennially ice-covered Lake Hoare, and implications for interpreting lake history in 800 the McMurdo Dry Valleys of Antarctica. J Paleolimnol 17:403-420.
- 801 80. Murray A, Arnosti C, De La Rocha C, Grosart H-P, Passow U. 2007. Microbial 802 dynamics in autotrophic and heterotrophic seawater mesocosms. II.
- 803 Bacterioplankton community structure and hydrolytic enzyme activities. Aquat 804 Microb Ecol 49:123-141.

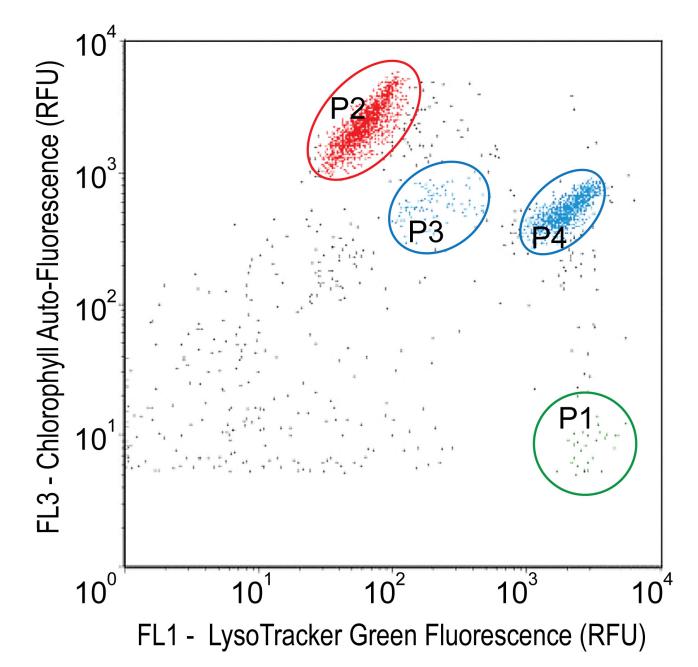
- 805 81. Paver SF, Hayek KR, Gano KA, Fagen JR, Brown CT, Davis - Richardson AG, 806 Crabb DB, Rosario - Passapera R, Giongo A, Triplett EW. 2013. Interactions 807 between specific phytoplankton and bacteria affect lake bacterial community 808 succession. Environ Microbiol 15:2489-2504.
- 809 82. Simek K, Hornak K, Jezbera J, Nedoma J, Znachor P, Hejzlar J, Sed'a J. 2008. 810 Spatio-temporal patterns of bacterioplankton production and community 811 composition related to phytoplankton composition and protistan bacterivory in a 812 dam reservoir. Aquat Microb Ecol **51**:249-262.
- 83. 813 Grossart HP, Levold F, Allgaier M, Simon M, Brinkhoff T. 2005. Marine diatom 814 species harbour distinct bacterial communities. Environ Microbiol 7:860-873.
- 815 84. Rösel S, Grossart H-P. 2012. Contrasting dynamics in activity and community 816 composition of free-living and particle-associated bacteria in spring. Aquat Microb 817 Ecol **66:**169-181.
- 818 85. Salcher MM, Posch T, Pernthaler J. 2013. In situ substrate preferences of 819 abundant bacterioplankton populations in a prealpine freshwater lake. ISME I 820 **7:**896-907.
- 821 86. Sekar R, Fuchs BM, Amann R, Pernthaler J. 2004. Flow sorting of marine 822 bacterioplankton after fluorescence in situ hybridization. Appl Environ Microbiol 823 **70:**6210-6219.
- 824 87. Morris RM, Longnecker K, Giovannoni SJ. 2006. Pirellula and OM43 are among the 825 dominant lineages identified in an Oregon coast diatom bloom. Environ Microbiol 826 **8:**1361-1370.
- 827 88. Sieburth JM, Keller MD. 1989. Methylaminotrophic bacteria in xenic nanoalgal 828 cultures: incidence, significance, and role of methylated algal osmoprotectants. Biol 829 Oceanogr 6:383-395.
- 830 89. Salcher MM, Neuenschwander SM, Posch T, Pernthaler J. 2015. The ecology of 831 pelagic freshwater methylotrophs assessed by a high-resolution monitoring and 832 isolation campaign. ISME J 9:2442-2453.
- 833 90. **Kirchman DL.** 2002. The ecology of Cytophaga–Flavobacteria in aquatic 834 environments. FEMS Microbiol Ecol 39:91-100.
- 835 91. Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, 836 Kassabgy M, Huang S, Mann AJ, Waldmann J. 2012. Substrate-controlled 837 succession of marine bacterioplankton populations induced by a phytoplankton 838 bloom. Science 336:608-611.
- Williams TJ, Wilkins D, Long E, Evans F, DeMaere MZ, Raftery MJ, Cavicchioli R. 839 92. 840 2013. The role of planktonic Flavobacteria in processing algal organic matter in 841 coastal East Antarctica revealed using metagenomics and metaproteomics. Environ 842 Microbiol **15:**1302-1317.
- 843 93. Eckert EM, Salcher MM, Posch T, Eugster B, Pernthaler J. 2012. Rapid 844 successions affect microbial N-acetyl-glucosamine uptake patterns during a 845 lacustrine spring phytoplankton bloom. Environ Microbiol 14:794-806.
- 846 94. Priscu JC, Wolf CF, Takacs CD, Fritsen CH, Laybourn-Parry J, Roberts EC, Sattler 847 **B**, Lyons WB. 1999. Carbon transformations in a perennially ice-covered Antarctic 848 lake. Bioscience 49:997-1008.

Applied and Environmental Microbiology

872

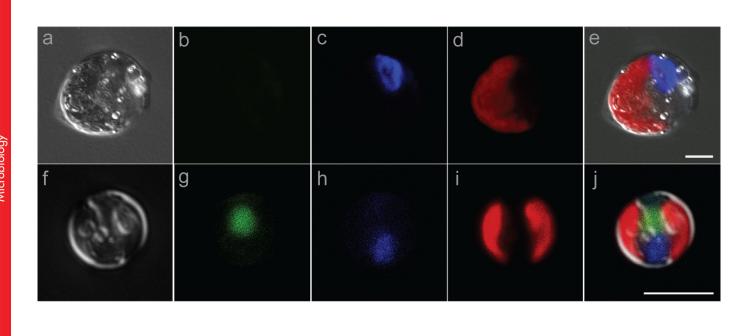
873

852 Figure Legends: 853 Figure 1. Sample cytogram showing flow cytometric sort regions for microbial eukaryotes from 854 an enrichment culture (MCM87) generated from the Antarctic Dry Valley Lake Bonney. Prior to 855 sorting the sample was stained with LysoTracker and samples were gated on green fluorescence 856 (LysoTracker-stained food vacuoles) vs. red fluorescence (chlorophyll autofluorescence). Ovals 857 indicate groups that were selected for single cell sorting. Colors represent high chlorophyll 858 autofluorescence (red), high LysoTracker fluorescence (green) or intermediate of either (blue). 859 P1 - P4, sorted 96-well plates 1 to 4. 860 861 Figure 2. Maximum-likelihood tree (1000 bootstrap) showing identity of Lake Bonney microbial 862 eukaryote single amplified genomes (EUK-SAGS) recovered from enrichment culture MCM87. 863 SILVA and GenBank data bases were used to assign phylogenetic position of EUK-SAGS. 864 Colors of the SAG sequences are correlated with Figure 1 sorting parameters. * indicates 865 sequences from the natural eukaryote populations in Lake Bonney generated in a previous study 866 (28). Genbank accession numbers for EUK-SAG 18S rRNA gene sequences are: KU196097-867 KU196166. 868 869 Figure 3. Confocal microscopic images of Chlamydomonas sp. ICE-MDV (a - e) and Isochrysis 870 sp. MDV (f - j) isolates stained with LysoTracker Green and DAPI. a and f, DIC images; b and g, 871 LysoTracker fluorescence; c and h, DAPI fluorescence; d and i, chlorophyll autofluorescence; e


and j, overlays of a – d and f – i respectively. Bars indicate 5 μ m.

890

875 genes associated with EUK-SAGs of Isochrysis sp. MDV (crosses), Chlamydomonas sp. ICE-876 MDV (diamonds), Pteridomonas (squares) and Pirsonia (circles). Each data point represents one 877 SAG sample. Ovals represent the 50% similarities within each sample group. 878 879 Figure 5. SEM micrographs and the diversity of microbial partners associated with the 880 heterotrophic nanoflagellate *Pteridomonas* (n=22). a. Diversity of 16S rRNA gene OTUs 881 recovered from Pteridomonas EUK-SAGs. b-d, SEM images of Pteridomonas sp. cells from the 882 enrichment culture. Bars: 1µm. 883 884 **Figure 6**. Evidence of parasite-host interactions between Lake Bonney microbial eukaryotes. a, 885 Diversity of 16S rRNA gene OTUs recovered from *Pirsonia* EUK-SAGs (n=22). b, c, SEM 886 images showing the size comparison of *Pirsonia* vs. *Chlamydomonas* sp. ICE-MDV, 887 respectively. The arrow indicated the extrusive organelle of Pirsonia. d, e, SEM images showed 888 Pirsonia cells attached to Chlamydomonas sp. ICE-MDV. Bars: 5 μm. 889


Figure 4. Principle Coordinates Analysis (PCoA) of weighted UniFrac distances of 16S rRNA

