
Strategies for Probing Incomplete Graphs

Sucheta Soundarajan† Tina Eliassi-Rad† Brian Gallagher‡ Ali Pinar∗
†Rutgers University ‡Lawrence Livermore Nat’l Laboratory §Sandia Nat’l Laboratories

†{s.soundarajan, eliassi}@rutgers.edu ‡bgallagher@llnl.gov §apinar@sandia.gov

Abstract

Given a partially observed (a.k.a. incomplete) graph,
which potential nodes or edges should we actively probe
in order to accurately estimate the value of some statis-
tic (such as the size of the largest connected compo-
nent, LCC) or perform better in some task (such as
community detection)? For example, consider a cyber-
network administrator who has access to an incomplete
graph at time t and needs to have an accurate esti-
mate of the size of the LCC on the complete graph for
situational-awareness purposes. She has a limited bud-
get for probing the graph. Of all the nodes in her in-
complete graph, which ones should she probe to improve
her estimate of the LCC’s size? We propose a novel
and scalable algorithm, called AGP (short for Active
Graph Probing); and run experiments w.r.t. three statis-
tics/tasks: (i) the size of the largest connected compo-
nent (LCC), (ii) PageRank (PR), and (iii) community
detection (Comms). We consider 9 probing strategies in
both batch and incremental forms, various budget sce-
narios, and apply AGP to a variety of network datasets
from different domains. We show that certain strategies
(such as probing low degree nodes under an edge-budget
scenario to improve the LCC estimate) consistently out-
perform the other strategies. Additionally, we show
that incremental probing far outperforms batch prob-
ing; and conduct an analysis of which sampling methods
are preferable to others for probing incomplete graphs.

1 Introduction

Suppose that one has an incomplete portion Gsamp

of some larger complete network Gorig; and to learn
more about the structure of Gorig, one can probe
nodes from Gsamp. The problem that we address
in this paper is: Which nodes should be probed to
reveal the most useful information about the structure
of Gorig? Our work is motivated by problems in
cybersecurity and other domains, where one only has

∗Pinar’s work is supported by the DARPA GRAPHS program.

Sandia National Laboratories is a multi-program laboratory man-
aged and operated by Sandia Corporation, a wholly owned sub-
sidiary of Lockheed Martin Corporation, for the U.S. Department

of Energy’s National Nuclear Security Administration under con-
tract DE-AC04-94AL85000.

a partial observation of the complete network; but
for situational awareness purposes, one must get the
most accurate and informative picture of the complete
network. With a limited query budget on probing nodes
or edges, how can this be done?

We consider two basic versions of the aforemen-
tioned problem in our approach, called Active Graph
Probing (AGP): one in which we have a fixed budget
to probe nodes, and another in which we have a fixed
budget to probe edges. In both cases, we start with
a sample network Gsamp and must decide which nodes
from Gsamp to probe in order to learn the most about
the structure of Gorig. Whenever we probe a node, we
learn all of its edges in Gorig. This is meant to replicate
the situation in which, for example, one learns all of an
individual’s Twitter followers. In the fixed node-budget
version of the problem, we use one unit of budget for
each node that is probed. In the fixed edge-budget ver-
sion of the problem, we use one unit of budget for each
new edge that is added to the network.

This is a novel problem that is related to previous
work on graph sampling. However, unlike much of
the work in graph sampling, we are not attempting
to generate a sample from scratch. Instead, we are
studying how one can enhance an existing sample,
regardless of how that sample was generated.

We present a variety of strategies based on impor-
tant network features. We evaluate these strategies with
respect to various tasks such as finding the nodes in
the largest connected component of the network (LCC),
identifying the highest PageRank nodes (PR), and de-
tecting community structure (Comms). Beginning with
a network sample Gsamp, we conduct probes according
to some strategy, and thus obtain an enhanced sample
G′samp. We apply each task to both G′samp and Gorig.
The success of a probing strategy is then defined by
how well the results of the task on G′samp match the
results of that task on Gorig. Our experiments demon-
strate that in almost every case, a simple strategy such
as probing based on node degree tends to produce the
best outcome.

The contributions of our paper are as follows:

• We introduce the problem of determining which k
nodes in an incomplete network to probe in order to

SAND2014-18717C



obtain a network structure that is more accurate with
respect to a specific task such as the size of the LCC.

• We present Active Graph Probing (AGP), an general
approach for addressing the above problem. We
describe 9 probing strategies covering both batch and
incremental probing, plus both fixed node- and edge-
budget scenarios.

• We perform an extensive set of experiments spanning
7 network datasets, 3 tasks, and 5 sampling methods
(which generate the initial incomplete graph).

• We show that for the problem of identifying nodes in
the LCC, if one is given a fixed node budget, probing
high degree nodes is the best strategy. If one is given
a fixed edge budget, probing low degree nodes is the
best strategy.

• We show that for the problem of identifying the
highest PageRank nodes, probing high degree nodes
is the best strategy regardless of whether one has a
fixed node or fixed edge budget.

• We show that for the problem of community detec-
tion, probing random nodes from throughout the en-
tire network is the best strategy regardless of whether
one has a fixed node or fixed edge budget.

We describe AGP next. Sections 3 and 4 present our
experiments and a discussion of our results, respectively.
In Section 5, we discuss related work; and conclude the
paper in Section 6.

2 Proposed Method: Active Graph
Probing

Given a graph Gsamp that is an incomplete (possibly
sampled) graph of an unknown larger complete graph
Gorig, our approach AGP selects nodes from Gsamp

for probing. We assume that when a node is probed,
we learn all neighbors of that node (e.g., by querying
Twitter for all followers of an individual). By probing
nodes, we add new nodes and edges to Gsamp, resulting
in graph G′samp. We can then run some task on graph
G′samp (such as community detection). Our goal is to
select probes such that the results of the task on G′samp

are as close as possible to the results of the task on
Gorig. See Figure 1 for an overview of this process. We
refer to this process as Active Graph Probing, or AGP.

We consider two basic versions of the above prob-
lem. In the first version, we are given a fixed node
budget kv, which can be used for probing k nodes and
learning all of their neighbors. In the second version, we
are given a fixed edge budget ke, which is again used
for probing nodes and learning their neighbors, but we
lose a unit of budget for each new edge that is observed.
We consider a variety of strategies: simple strategies,

Figure 1: Overview of probing process. One is given a
sample of a larger complete graph, then AGP suggests which
nodes should be probed for more information. After probing,
one can terminate or continue.

Figure 2: An illustration of a sample graph before probes are
conducted. Red nodes have been probed. Yellow nodes are
adjacent to red nodes, so they are in the sample but have not
been probed (i.e., we do not know their full neighborhood).
Green nodes are outside the incomplete graph but are in the
complete graph.

which follow a single rule; and combination strategies,
which use multiple rules. See Table 1 for a list.

Figure 2 depicts what a sample graph might look
like. Red nodes have been probed, so we know all of
their edges. Yellow nodes are adjacent to red nodes:
we know that these nodes exist, but do not have their
full neighborhood information. The sample has no
knowledge of the green nodes.

2.1 Intuitions Behind Designing Probing
Strategies A successful probing strategy selects nodes
that, when probed, give structural information about
the network that is useful for the task under considera-
tion. Examples of tasks include identifying of LCC in
Gorig, finding the highest PageRank nodes from Gorig,
and detecting the community structure of Gorig.

Intuitively, for LCC, a probing strategy can be suc-
cessful if it brings many new nodes into the incomplete
network. If a node selected for probing is in the LCC,



Category Sub-Category Strategy Names Description

Simple Exploit Degree HighDeg, LowDeg Select the highest or lowest degree nodes.

Strategies Structural Hole HighDisp, LowDisp Select the highest or lowest dispersion nodes. Dispersion is a measure of how

well a node’s neighbors are connected to each other. It is an edge-based measure.

For each node, we average the dispersion of each of its adjacent edges [2].

CrossComm Identify communities using the Louvain modularity algorithm [4], and pick

nodes with the highest fraction of neighbors in communities other than their own.

Explore Random Randomly select nodes from the sample.

AllRand Randomly select nodes from the complete graph. This strategy assumes that

a list of all nodes in the graph is available.

Combination Explore/ AllRand/HighDeg Alternately probe according to both strategies.

Strategies Exploit AllRand/LowDeg

Table 1: AGP’s Current Probing Strategies. We group the strategies into ‘Explore’ and ‘Exploit’ categories, and further
subdivide them into degree-based, structural hole-based, or random. See text for details.

then by probing it we will learn all of its neighbors,
which are also in the LCC. In terms of Figure 2, a good
probing strategy will select yellow nodes that are adja-
cent to many green nodes.

For PageRank, if one believes that many of the high-
est PageRank nodes are already in the sample, getting
more information about those nodes is important, re-
gardless of how many new nodes are added to the in-
complete network by such probes.

For the Comms tasks, we expect that a balance
might be best: while learning about new nodes is
important, getting a more accurate picture of the nodes
in the incomplete graph is also relevant.

2.2 Simple and Combination Strategies AGP
considers a variety of simple strategies for selecting
which nodes to probe. Each of these simple strate-
gies ranks all of the nodes in the incomplete (sampled)
graph Gsamp. At the highest level, these strategies can
be grouped into the ‘Exploit’ and ‘Explore’ paradigms:
‘Exploit’ strategies attempt to learn more about im-
portant nodes within the sample, while the ’Explore’
strategy randomly probes nodes outside of the sample.
Within the category of ‘Exploit’ strategies, we consider
sub-categories of strategies based on degree, as well as
the general concept of structural holes, or identifying
nodes that act as bridges between different parts of the
network.

The degree-based methods are based on the intu-
ition that high-degree nodes in Gsamp are also connected
to many nodes outside of Gsamp. With the structural
hole methods, AGP targets nodes that “fill” structural
holes; and thus, connect different parts of the graph. By
probing such nodes, AGP learns about many new nodes.
In addition to filling structural holes, AGP probes nodes
by selecting those that are on ‘borders’ of communities
(a.k.a. the CrossComm strategy). The intuition is that
with CrossComm we will gain more accurate informa-

tion about community memberships. We considered a
variety of other strategies in the Structural Hole cat-
egory, including those based on clustering coefficient.
We found that their performance was poor, or mim-
icked that of a listed strategy. We also considered a
random-walk based strategy, which performed poorly.
For brevity, we have omitted these.

AGP also includes various combination strategies,
in which it selects two simple strategies and alternately
probes nodes according to these strategies. These
strategies are based on the ‘Explore/Exploit’ paradigm.

Note that the ‘Explore’ AllRand strategy, as well as
the combination strategies, require that one has a list
of nodes in the complete network Gorig.

For both the simple and combination strategies,
we consider batch and incremental implementations.
In the batch version, AGP first orders the nodes
in Gsamp based on the selected probing strategy, and
queries are made in this order until the budget is
exhausted. In this case, the node ordering is not
updated as new information is obtained. AGP also
includes an incremental version, in which nodes are
probed one at a time, and as new graph information
is learned, the ordering is modified. Note that in this
case, the same strategy is used for ordering the nodes,
but the ordering changes because of the new structural
information. Because this method is computationally
intensive, AGP uses a much faster implementation that
performs only one update, halfway through the budget.
That is, it selects one probing strategy S, select b/2
nodes according to S, and then updates the graph with
the new information. It then performs the remaining
b/2 probes using the same strategy S, but selects these
probes using the updated graph.

2.3 Assumptions AGP makes two assumptions. (1)
it assumes that the complete network is static. (2) it
assumes that when one probes a node, one learns all of



its neighbors. This is the only information that can be
learned; there is no oracle to answer other questions.

3 Experiments

We present results on a series of experiments in which
AGP was applied to datasets from a variety of domains.
We evaluate the different probing strategies, and con-
clude with a discussion of sample strategies. We are
interested in the following questions: Which probing
strategies perform the best? How does the type of bud-
get (node vs. edge) affect the probing strategies? Is
incremental probing better than batch probing?

3.1 Experimental Setup We test each of the meth-
ods described in the previous section on a variety of
datasets. Given a sample graph Gsamp that represents
a portion of some unknown larger graph Gorig, we sup-
plement Gsamp by probing nodes according to strategy
S, and learn all of their neighbors. We thus obtain graph
GS

samp. We apply a task to GS
samp, with the goal that

the results should be as close as possible to the results
of the task on Gorig.

Our experimental set-up contains three main steps.

1. Given a graph Gorig, a sample graph Gsamp is
generated. This is done by performing some number
p of sample probes, each of which tells us all of
the neighbors of the probed nodes. This sample
represents the incomplete graph data that one might
have in a real-world task.

2. Next, we apply each probing strategy S to Gsamp,
thus obtaining GS

samp. These strategic probes are at
the heart of our method, and should not be confused
with the sample probes from the first step.

3. Finally, we run a task on Gorig and GS
samp, and

compare the results of the task on these graphs. A
successful probing strategy produces similar results
on both the original graph as well as the probed
sample graph. To evaluate S, we compare to the
case if we had probed random nodes.

Algorithm 1 contains a more detailed overview of
these steps. In the next several sections, we give more
details for various stages in this process.

3.1.1 Tasks We consider three tasks. For each task
A, we define a quality function QA(Gorig, Gsamp) that
defines how well the task performed on a sample graph
relative to how it performed on the original graph.

• PageRank (PR): The goal of the PR task is to identify
the highest PageRank nodes in the network [9]. The
quality function QPR(Gorig, Gsamp) is calculated by
identifying the 1000 highest PageRank nodes in Gorig

and Gsamp, and calculating the fraction of nodes that

Algorithm 1 Overview of our experimental set-up,
divided into sample generation, probing, and evaluation.
Sample size and budget values are the values that we
used, but other values are also possible.

function experimentalOverview(Gorig, App)
Create a Sample
Select a sampling method ∈ {RandNode, RWJ, SBJ-

25, SBJ-50, SBJ-75}
Select a sample size ∈ {1%, 2%, 5%, 10% of nodes in

Gorig}
Generate sample Gsamp

Select and Conduct Probes
Select B ∈ { fixed node budget or fixed edge budget}
Select budget ∈ {1%, 2%, 3%, 4%, 5%, 10%}
Select a probing strategy S
Select A ∈ {batch or incremental probing}
GS

samp = conductProbes(Gsamp, S, B, budget)
GR

samp = conductProbes(Gsamp, Random, B,
budget)

Evaluation
Qualsamp = QApp(Gorig, Gsamp)
QualS = QApp(Gorig, G

S
samp)

QualR = QApp(Gorig, G
R
samp

ImproveS = QualS −Qualsamp

ImproveR = QualR −Qualsamp

return ImproveS
ImproveR

function conductProbes(Gsamp, S, B, budget)
Probe Gsamp using strategy S, subject to B and budget

are in both lists.1

• Largest Connected Component (LCC): The goal of
the LCC task is to identify the nodes in the largest
connected component of the graph. The quality
function QLCC(Gorig, Gsamp) is defined the Jaccard
similarity between the largest connected components
of the Gorig and Gsamp.

• Community Detection (Comms): The goal of the
Comms task is to identify communities in the graph.
We apply the Louvain method for greedy modularity
optimization to GS

samp and Gorig [4]. This results
in two sets of communities, Csamp and Corig. The
quality function QComms(Gorig, Gsamp) is calculated
as follows: For each community C in Csamp, we find
the most similar community D in Corig, as measured
by Jaccard similarity. We assign each such C a
score corresponding to this Jaccard similarity value.
Let Ssamp be the average of all of these scores over
each community C in Csamp. We calculate Sorig by

1For the small network LBL, described later, we use 100 nodes.



performing the same procedure for communities in
Corig. The value of QComms(Gorig, Gsamp) is the
harmonic mean of Ssamp and Sorig.

These tasks are roughly ordered from easiest to
hardest. Finding the top PageRank nodes is related to
finding the highest degree nodes, which does not require
detailed structure. Similarly, the largest connected
component is typically easy to identify. Community
detection, on the other hand, often requires nuance, and
so can be much more challenging.

3.1.2 Sampling Methods and Sizes We consider
five sampling methods to create graph Gsamp. In each
case, we are given a budget of p sample probes (not to
be confused with the strategic probes that will later be
performed on Gsamp). For each sampled node, we learn
all of that node’s neighbors. Thus, the total number of
nodes that exist in the sample graph is much larger than
p. We consider values of p equal to 1%, 2%, 5%, and 10%
of the total number of nodes in the network. For each
sampling method and size, we generate 3 independent
samples. The sampling strategies are as follows:

• Random Node Selection: (RandNode) p nodes are
randomly selected from Gorig for probing.

• Random Walk with Jump (RWJ): We performing
a random walk beginning at a randomly selected
node. In each step, the random walk transitions to
a neighbor (selected with equal probability), or, with
15% chance, jumps to a random node. This process
is continued until p different nodes have been visited.

• Snowball Sampling with Jump (SBJ- 25, SBJ-50,
SBG-75): These models are similar to breadth-first-
search sampling, in which all of a node’s neighbors are
added. However, instead of adding all neighbors of
the current node, we add k fraction of its neighbors,
where k is in [0.25, 0.50, 0.75]. As with the random
walk sampling method, at each step there is a 15%
chance of jumping to a random node in the graph.

We are not attempting to downsample a network
given full access to the full network, as this would require
probing every node to learn its neighbors. This is why
we do not consider sampling methods that are known
to preserve aspects of network structure.

3.1.3 Budgets Given a sample graph Gsamp, we
consider budget values b that are defined as a frac-
tion f of the total number of nodes (for the case
of a fixed node budget) or edges (for the case of a
fixed edge budget) in Gorig, where f takes values in
[0.01, 0.02, 0.03, 0.04, 0.05, 0.1]. Given a probing strat-
egy S and a budget b, we probe b nodes (or edges) ac-
cording to that strategy, and thus obtain GS

samp.

Type Network # Nodes # Edges Clust. Coef. # Comps

Commun- Enron 84,429 325,564 0.15 950
ications Yahoo 100,000 594,988 0.20 360

Replies 260,830 308,490 0.004 11,315
Retweets 39,546 45,796 0.14 3,896
LBL 3,055 8,769 0.09 9

Likes Amazon 270,347 741,124 0.40 3840
Youtube 166,763 1,037,988 0.09 1

Table 2: Statistics for the network datasets that we consider.

3.1.4 Evaluation Methodology We are interested
in calculating how well a strategy P performs on net-
work samples generated by a specific sampling method
M , with respect to a specific task. To do this, we
consider many different samples generated by sampling
method M across different network datasets and sample
sizes. We also consider several probing budgets.

We first choose a network Gorig, and fix a sample
graph Gsamp and a probing budget b. To quantify the
success of strategy S, which we call EvalA(S, b,Gsamp),
we compare how well S performs after b probes to the
case in which we randomly probed b nodes: how much
better is S than random?

Let GS
samp be the graph obtained by perform-

ing b probes using strategy S on Gsamp, and let
GR

samp be the graph obtained by performing b random
probes on Gsamp . Let Qualsamp = QA(Gorig, Gsamp),
let QualS = QA(Gorig, G

S
samp), and let QualR =

QA(Gorig, G
R
samp), where QA is the quality function

from Section 3.1.1. qsamp, qS , and qR measure how well
the unprobed sample, strategically probed sample, and
randomly probed sample perform with task A.

The success of strategy S is then defined as
qS−qsamp

qR−qsamp
; that is, we measure how much better strategic

probing worked over random probing.
For example, suppose the largest connected compo-

nent of Gsamp has a Jaccard similarity of 0.1 with the
LCC of Gorig. By strategically probing b nodes accord-
ing to strategy S, we might raise this score to 0.3, but
by randomly probing b nods, we might only raise it to
0.2. The strategic probes improved the sample by twice
as much as the random scores, so S gets a score of 2.

To aggregate over datasets, sample sizes, and prob-
ing budgets, we do the following: Let AllEvalA(S,M)
be the set of all EvalA(S, b,Gsamp) scores on samples
that were produced by sampling method M (regardless
of sampling size, probing budget, or dataset). We elim-
inate the top and bottom 20% of scores from this set to
reduce the effect of outliers, and then take the average.

3.2 Datasets We consider 7 datasets from two cat-
egories: Communications networks and Co-Likes net-
works, which link two nodes that are commonly liked



Task:PR Probing Scenario

Sample Type Fixed Node Budget Fixed Edge Budget

Batch Probing Inc. Probing Regr. Probing Batch Probing Inc. Probing Regr. Probing

RandNode HighDegree (2.6x) HighDegree (3.4x) 2.1x HighDegree (1.6x) HighDegree (3.4x) 2.7x

RWJ HighDegree (4.2x) HighDegree (6.3x) 2.8x HighDegree (2.4x) HighDegree (4.4x) 1.8x

SBJ-25 HighDegree (4.7x) HighDegree (6.6x) 3.2x HighDegree (2.4x) HighDegree (4.2x) 1.7x

SBJ-50 HighDegree (4.2x) HighDegree (5.9x) 2.9x HighDegree (2.4x) HighDegree (4.3x) 1.7x

SBJ-75 HighDegree (4.5x) HighDegree (6.2x) 3.3x HighDegree (2.4x) HighDegree (4.3x) 1.7x

Table 3: Best performing probing strategy over different sample types for the PR task, aggregated over all datasets. Values
in parentheses indicate how much better the strategy performed over probing nodes at random.

Task:LCC Probing Scenario

Sample Type Fixed Node Budget Fixed Edge Budget

Batch Probing Inc. Probing Regr. Probing Batch Probing Inc. Probing Regr. Probing

RandNode HighDegree (1.6x) HighDegree (2x) 1.2x HighDegree (1.3x) HighDegree (2.9x) 1x

RWJ HighDegree (2.1x) HighDegree (3.4x) 1.3x LowDegree (1.3x) LowDegree (2.5x) 1x

SBJ-25 HighDegree (2.4x) HighDegree (3.5x) 1.5x LowDegree (1.2x) LowDegree (2.4x) 1x

SBJ-50 HighDegree (2.3x) HighDegree (3.3x) 1.4x LowDegree (1.2x) LowDegree (2.3x) 1x

SBJ-75 HighDegree (2.2x) HighDegree (3.3x) 1.3x LowDegree (1.2x) LowDegree (2.4x) 1x

Table 4: Best performing probing strategy over different sample types for the LCC task, aggregated over all datasets.
Values in parentheses indicate how much better the strategy performed over probing nodes at random

by the same people. See Table 2 for statistics.
The communications networks are: the Enron

email dataset,2 a Yahoo IM messaging network span-
ning four weeks,3 a network of Twitter Replies span-
ning one month and a network of Twitter Retweets
spanning one month,4 and a network collected by
Lawrence Berkeley National Laboratory (LBL) of IP-
to-IP communications during the span of one hour.5

The Co-Likes networks are Amazon, in which
nodes are books sold on Amazon.com,6 and two nodes
are linked if the corresponding books are frequently
purchased together, and Youtube, in which the nodes
are Youtube videos, which are linked together if they
are frequently watched by the same people.7

3.3 Analysis of Probing Strategies We perform
our evaluation as described in Section 3.1.4, by compar-
ing each strategy S to the Random strategy. Tables 3, 4,
and 5 contain the results for the PageRank, LCC, and
Comms tasks, respectively. Scores indicate the amount
by which S out-performs the Random strategy (scores
over 1 mean that S performs better than Random).

3.3.1 PR Results and Analysis For the PageRank
task, the High Degree probing strategy is the best
strategy for every sampling type and budget scenario
that we considered. It performs substantially better
than random probing; in some cases, we see almost a

2http://www.cs.cmu.edu/~./enron/
3http://webscope.sandbox.yahoo.com
4http://www.twitter.com
5http://www.icir.org/enterprise-tracing/download.html
6http://snap.stanford.edu/data/amazon-meta.html
7http://netsg.cs.sfu.ca/youtubedata/

five-fold improvement over random probes.
This is expected, because nodes with high PageR-

ank are often those of high degree [5]. Unlike the LCC
and Comms tasks, for which even low degree nodes are
important, for the PR task it is most important to learn
the area around the most central nodes. Because these
nodes often have many neighbors, the HighDegree strat-
egy is the most successful.

3.3.2 LCC Results and Analysis For the LCC
task, when one has a fixed node budget, the clear win-
ning strategy is to probe high degree nodes. However,
for the fixed edge budget case, one is generally better
off probing low degree nodes.

Why is the High Degree strategy successful with a
fixed node budget? Do new edges connect to new nodes,
or join two existing components? We do the following:
For each sample, we probe according to the High Degree
strategy. For each new edge that is added to the sample,
if that edge has at least one endpoint in the existing
LCC, we calculate whether the edge (1) is entirely
within the existing LCC, (2) connects to a new node
outside the sample, or (3) connects two components.

Overwhelmingly, most edges are either within the
existing LCC or connect to a single new out-of-sample
node. Very few edges connect existing components, and
most such components are a single edge. On a Yahoo
random node sample, using a probing budget of 10%, we
see that an average of approximately 300,000 edges are
added within the LCC, 50,000 edges are added from the
LCC to new nodes, and fewer than 500 edges connect
existing components. Of these latter edges, almost one-
third are joining a component of size 2 to the LCC.

http://www.cs.cmu.edu/~./enron/
http://webscope.sandbox.yahoo.com
http://www.twitter.com
http://www.icir.org/enterprise-tracing/download.html
http://snap.stanford.edu/data/amazon-meta.html
http://netsg.cs.sfu.ca/youtubedata/


Figure 3: Results of strategies on LBL and Amazon SBJ-
25 samples for the LCC task. For LBL, the High Degree
strategy is successful. For Amazon, all strategies are similar.

Do high degree nodes give us important structural
information, or are they simply adjacent to many nodes?
To answer this, we first probe the b highest degree nodes
and calculate the number of new nodes that are brought
into the network through these probes. Call this value
Nnew. We then revert to the sample before probing,
and probe as many low degree nodes as are required to
bring Nnew new nodes into the network.

These two strategies perform almost identically, so
probing high degree nodes is successful simply it brings
in many new nodes to the network.

Why is the Low Degree probing strategy successful
for the fixed edge budget case? With a fixed edge
budget, we still want to add new nodes into the network.
Because we use one unit of budget for every new edge,
we do not want to add many edges in the existing LCC,
because such edges add no new information.

We conduct probes according to both the High
Degree and Low Degree strategies on a fixed sample.
For each case, we calculate the number of edges that
are contained entirely within the LCC, as well as the
number of edges outgoing from the LCC, and take the
ratio of these two values. For High Degree probes,
this ratio is much higher than for Low Degree probes,
indicating that when we probe high degree nodes, more
resulting edges are contained within the LCC, thus
adding no new information for this task.8

For example, consider an Enron sample generated
using the SBJ-25 method, with a sample size of 10%,
and an edge budget of 15,000. When we probe high de-
gree nodes, barely 700 of the 15,000 edges are outgoing
from the LCC to new nodes. If we probe low degree
nodes, nearly 6,000 edges are outgoing from the LCC.

8These results hold for RWJ and SBJ samples; to understand
the random node sampling results, see Section 4.

3.3.3 Comms Results and Analysis For almost
all cases, AllRand is by far the best probing strategy
for the Comms task. However, this strategy requires
that the user have a list of all nodes that exist in the
complete network. Thus, it is also important to identify
the best probing strategy that does not require this sort
of global access. For the fixed node budget case, the
best probing strategy besides AllRand is HighDegree,
whereas for the fixed edge budget case, the best probing
strategy besides AllRand is LowDegree.

Of the tasks that we considered, community detec-
tion is the one for which the structure of the entire net-
work is the most important, because even small compo-
nents should be placed into the correct community. The
AllRand strategy allows one to gain information about
unexplored parts of the network. Getting information
about these parts is much more valuable than fleshing
out partially-explored sections of the network, which is
what the other strategies do.

If AllRand cannot be used because only nodes in
the sample can be accessed, then the most successful
strategies are the same as for LCC, and for the same
reasons they were successful for the LCC task: these
strategies result in the greatest number of new nodes
added to the network.

3.3.4 Performance of Other Methods We consid-
ered probing strategies based on the intuition that prob-
ing nodes that fill structural holes could add previously-
unseen parts of the network. For PageRank and LCC,
with a fixed node budget, these strategies (High Disper-
sion and CrossComm) perform substantially better than
random (though not as well as High Degree probing).
With the SBJ-25 sampling method and the LCC task,
the High Dispersion and CrossComm strategies produce
a 40% improvement over random, while the High Degree
strategy gives over a 100% improvement.

These methods do not perform as well as High De-
gree probing because they select many low degree nodes.
Consider the CrossComm strategy, for instance, which
looks for nodes with many neighbors in communities
other than the node’s own. A node with degree 2 that
has its two neighbors in different communities would
have half of its edges outgoing from its own community,
and so might be selected by this strategy. In future
work, we are looking at improving these methods to re-
move such low-degree nodes.

3.3.5 Batch vs. Incremental Probing We see
large improvements by performing probes incrementally.
For example, for RandNode samples and the LCC task,
with a fixed edge budget, batch probing using the High-
Degree strategy results in a 1.3x improvement over ran-
dom, but incremental probing using the HighDegree



Task:Comms Probing Scenario

Sample Type Fixed Node Budget Fixed Edge Budget

Batch Probing Inc. Probing Regr. Probing Batch Probing Inc. Probing Regr. Probing

RandNode

AllRand/HighDeg (1.5x)

HighDegree (1.1x) HighDegree (1.4x) 0.7x

AllRand (3.6x)

LowDegree (1.4x)

AllRand (3.6x)

LowDegree (2.6x) 0.5x

RWJ

AllRand (20x)

HighDegree (1.2x)

AllRand (20x)

HighDegree (2.1x) 0.7x

AllRand (30x)

LowDegree (1.6x)

AllRand (30x)

LowDegree (3.6x) 1.1x

SBJ-25

AllRand (20x)

HighDegree (2.2x)

AllRand (20x)

HighDegree (2.9x) 1.2x

AllRand (29x)

LowDegree (1.7x)

AllRand (29x)

LowDegree (4.1x) 1.2x

SBJ-50

AllRand (21x)

HighDegree (1.5x)

AllRand (21x)

HighDegree (2.5x) 0.9x

AllRand (32x)

LowDegree (1.7x)

AllRand (32x)

LowDegree (1.7x) 1.1x

SBJ-75

AllRand (24x)

HighDegree (1.5x)

AllRand (24x)

HighDegree (2.3x) 0.9x

AllRand (35x)

LowDegree (1.7x)

AllRand (35x)

LowDegree (3.7x) 1.1x

Table 5: Best performing probing strategy over different sample types for the Comms task, aggregated over all datasets.
Values in parentheses indicate how much better the listed strategy performed over probing nodes at random. The AllRand
strategy is only applicable if we assume that the user is able to probe any node in the original network, rather than just
nodes that are already in the sample. Because this is unrealistic under certain task scenarios, we also list the best probing
strategy that does not make this assumption.

strategy results in a 2.9x improvement.

3.3.6 Variation Across Networks Tables 4 and 5
list results aggregated over all datasets. Are they true
for every network? Across the different networks, we
typically see one of two common patterns, which are
illustrated in Figure 3. This figure shows the results
of various probing strategies at different budget levels
for the LCC task on the LBL and Amazon networks,
using the SBJ-25 sampling method with a sampling
budget of 0.1. On the LBL network, there are clear
differences between the different probing strategies.
On the Amazon network, there are no meaningful
differences between the strategies.

We see these two patterns repeated across different
sampling methods and datasets. In general across
networks, either the strategies listed in Tables 4-5 are
clearly dominant, or all strategies perform similarly.

3.4 Guidance on Selecting a Sampling Methods
Suppose when obtaining the incomplete graph, one has
control on which sampling method to choose. We found
that random walk and snowball sampling often produce
high quality samples, where quality is measured both in
terms of the number of nodes in the sample (recall that
when AGP probes a node, it learns all of its neighbors)
as well as the performance on the different tasks. An
extensive discussion of this matter is available in our
supplemental file.

3.5 Running Times The running time of a probing
strategy is dependent entirely on the amount of time
required to calculate the relevant statistic for each node.
We conducted our experiments on a PC with a 3.4
GHz processor and 32GB of memory. On Enron RWJ
samples that contain 10% of the nodes from the original
network, probing nodes based on degree (either high or
low) takes ≈ 1 second, which is similar to randomly

probing. The CrossComm strategy takes an average of
17 seconds, and the dispersion-based strategies take over
an hour. Similar patterns hold in general.

4 Discussion

Our experiments demonstrated the following results:
(1) For the LCC application, with a fixed node bud-
get, probing high degree nodes is the best, but with a
fixed edge budget, probing low degree nodes is better.
This is because high-degree nodes have more neighbors
outside the sample, but a higher fraction of neighbors
inside the sample. (2) For the PR application, probing
high degree nodes is the best strategy. This is because
high degree nodes often have high PageRank, so learn-
ing more about these nodes is the most useful. (3) For
the Comms application, randomly sampling from the
complete network is the best strategy, because knowl-
edge of the entire network is important. (4) Incre-
mental probing−in which one performs some probes,
updates the sample, and then performs the remaining
probes−far outperforms batch probing.

Why doe AGP work? Theoretical ties Why
does picking highest degree nodes to estimate LCC after
random node sampling work best? Our supplemental
material provides a detailed discussion on this question;
here we summarize. Since the sample was generated by
randomly selecting nodes, the true degree of a node can
be estimated based its degree in the sample. We rely
on empirical results [12], which show that clustering
coefficients of vertices decrease with increasing degree
and they are near zero, for the highest degree vertices.

Based these two observations, higher degree in the
sample leads expected higher degree in the entire graph,
and due to the likely low clustering coefficients, most of
these edges will reach out to new vertices as opposed
to closing wedges in the sample. Thus, probing higher
degree nodes is expected to add more vertices to the



graph in the fixed node-budget scenario.
For the fixed edge-budget case, what makes a node

better is the ratio of edges reaching out to new nodes,
as opposed to their count. Recall that higher degree
vertices tend to have lower clustering coefficients, thus
in expectation they will have proportionally more edges
outside the sample, which makes high degree nodes
again the better choice in the fixed edge budget case.

5 Related Work

Our work is most related to graph sampling and active
learning.
Sampling Graphs for Specific Tasks Much atten-
tion has been paid to the problem of graph sampling.
For instance, Maiya and Berger-Wolf [6] study the prob-
lem of online sampling for centrality measures including
PageRank. Previous literature has examined the study
of community detection from graph samples−e.g., by
using minimum spanning trees (MSTs) [14, 15], or by
expanding a graph sample [7]. Additionally, the MST
can be used to exactly calculate the size of the LCC.
The component sizes in the MST are the same as the
component sizes in the complete network. In [8], the
authors describe a single-pass algorithm for creating a
MST from streaming edge data for a weighted network.
Avrachenkov et al. [1] show how to locate high-degree
nodes with a very small number of queries. Our work
differs from the main body of sampling literature, be-
cause we are concerned with the problem of selecting
which nodes from an existing sample one should probe,
rather than constructing a sample from scratch. Ad-
ditionally, unlike most sampling methods in the litera-
ture, we are not attempting to down-sample a network
to which we have complete access, but use a limited
number of probes to improve performance on a specific
task.
Active learning. Our problem is also related to active
learning. For example, Sheng et al. [13] consider the
problem of when to get another label for elements in a
class. Bilgic et al. [3] and Pfeiffer et al. [10, 11] studied
active learning on networks for classification of nodes.

6 Conclusions

We introduced the problem of determining which nodes
in an incomplete network to probe in order to learn the
most information about the original complete network.
We presented our approach AGP with a large variety
of probing strategies and scenarios−including the cases
of having a fixed node or fixed edge budget, and batch
vs. incremental probing.

We showed that for LCC, probing high degree nodes
is the best strategy when one is given a fixed node
budget and probing low degree nodes is the best strategy

when there is a fixed edge budget. For PR, probing
high degree nodes is the best strategy regardless of the
budget type. For Comms, probing randomly nodes from
the entire network is the best strategy. We provided
theoretical bases for why these probing strategies work
for the selected tasks.

Future work. We are working on the following
problems: How many sets of probes should one conduct
in an incremental probing scenario? When do the
gains from additional probes begin to diminish? Is it
better to have a small sample size and a large probing
budget, or a larger initial sample and a smaller probing
budget? In addition, we are working on a regression-
based approach in order to learn to select appropriate
probes. Lastly, we are in the process of developing
a theoretical basis for other graph-mining tasks and
graph-sampling methods.

References

[1] K. Avrachenkov, N. Litvak, L. O. Prokhorenkova, and
E. Sayargulova. Quick detection of high-degree entities
in large directed networks. In ICDM, 2014.

[2] L. Backstrom and J. M. Kleinberg. Romantic partner-
ships and the dispersion of social ties: a network analy-
sis of relationship status on facebook. In CSCW, pages
831–841, 2014.

[3] M. Bilgic, L. Mihalkova, and L. Getoor. Active learning
for networked data. In ICML, pages 79–86, 2010.

[4] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre. Fast unfolding of communities in large
networks. J. Stat. Mech. Theor. Exp., page 10008, 2008.

[5] S. Fortunato, M. Boguna, A. Flammini, and F. Menczer.
Approximating PageRank from In-Degree, pages 59–71.
Springer-Verlag Berlin, 2007.

[6] A. S. Maiya and T. Berger-Wolf. Online sampling of
high centrality individuals in social networks. Advances
in Knowledge Discovery and Data Mining, pages 91–98,
2010.

[7] A. S. Maiya and T. Berger-Wolf. Sampling community
structure. In WWW, pages 701–710, 2010.

[8] T. C. O’Connell. A survey of graph algorithms under
extended streaming models of computation. Fundamen-
tal Problems in Computing, pages 455–476, 2009.

[9] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford InfoLab, 1999.

[10] J. J. Pfeiffer III, J. Neville, and P. N. Bennett. Active
sampling of networks. In MLG, 2012.

[11] J. J. Pfeiffer III, J. Neville, and P. N. Bennett. Active
exploration in networks: Using probabilistic relation-
ships for learning and inference. In CIKM, 2014.

[12] C. Seshadri, A. Pinar, and T. G. Kolda. Triadic
measures on graphs: The power of wedge sampling. In
SDM, pages 10–18, 2013.



[13] V. S. Sheng, F. Provost, and P. G. Ipeirotis. Get
another label? improving data quality and data mining
using multiple, noisy labelers. In KDD, pages 614–622,
2008.

[14] J. Wu, X. Li, L. Jiao, X. Wang, and B. Sun. Minimum
spanning trees for community detection. Physica A,
392(9):2265–2277, 2013.

[15] S.-Y. Yun and A. Proutiere. Community detection via
random and adaptive sampling. In COLT, pages 138–
175, 2014.


	Introduction
	Proposed Method: Active Graph Probing
	Intuitions Behind Designing Probing Strategies
	Simple and Combination Strategies
	Assumptions

	Experiments
	Experimental Setup
	Tasks
	Sampling Methods and Sizes
	Budgets
	Evaluation Methodology

	Datasets
	Analysis of Probing Strategies
	PR Results and Analysis
	LCC Results and Analysis
	Comms Results and Analysis
	Performance of Other Methods
	Batch vs. Incremental Probing
	Variation Across Networks

	Guidance on Selecting a Sampling Methods
	Running Times

	Discussion
	Related Work
	Conclusions

