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Abstract—Anomaly detection refers to identifying the pat-
terns in data that deviate from expected behavior. These non-
conforming patterns are often called outliers, malware, anoma-
lies or exceptions in different application domains. This paper
presents a novel, generic real-time distributed anomaly detection
framework for multi-source stream data. As a case study, we
have decided to detect anomalies for a multi-source VMware-
based cloud data center. The framework monitors streaming
VMware performance data (e.g., CPU load, memory usage,
etc.) continuously. It collects data simultaneously from all the
VMware instances connected to the network and notifies the
resource manager to dynamically reschedule its resources when
it identifies any abnormal behavior from its collected data.
We have utilized Apache Spark, a distributed framework for
processing stream data and making predictions without any
delay. Spark is chosen over a traditional distributed framework
(e.g., Hadoop and MapReduce, Mahout, etc.) that is not ideal for
stream data processing. We have implemented a flat incremental
clustering algorithm to model the benign characteristics in our
distributed Spark-based framework. We have compared the
average processing latency of a tuple during clustering and
prediction in Spark with Storm, another distributed framework
for stream data processing. We experimentally find that Spark
processes a tuple much quicker than Storm on average.

Index Terms—Anomaly detection; Real-time anomaly detec-
tion; Incremental clustering; Resource scheduling; Data center

I. INTRODUCTION

Anomalies deviate from the normal behavior of a system.
Typically, the anomalous items indicate warnings or exceptions
such as system malfunctions, system overloads, malicious
attacks in a network, structural defects or errors in a program.
Sometimes they are called intrusions, malware or outliers, etc.
An online system generates data continuously. The volume
of data is so large that it is not possible to monitor the
behavior of the data with traditional means. Moreover, the
data may be complex in nature and have several attributes to
monitor. That is why a real-time anomaly detection [1], [2]
system is so crucial. It monitors the data and automatically
takes the corrective actions when an anomaly is detected, thus
preventing it from causing any damage to the system.

A data center builds a private cloud-based infrastructure
as a service (IaaS) [3], [4]. These centers provide a secure,
on-demand ability for end users to deploy their workloads.
Resource management for data centers requires examining user
requirements and available resources to fulfill its customer

demands. As the user demands may vary, the system must
scale its infrastructure resources dynamically. To accomplish
this, a data center must have a real-time monitoring system.
The system monitors the resource’s performance data contin-
uously and detects abnormal behavior. It then reschedules its
resources to keep the system in balance. For example, a data
center allocates a fixed amount of CPU and memory for a
number of users. After a certain time, if the users run more
computationally expensive programs, the CPU or memory
usage will be high and require more resources to do their
job. The real-time monitoring system of the data center detects
these abnormal resource statistics and allocates more resources
dynamically.

Online data processing is a time-sensitive operation. It must
convert continuous high volume, high velocity data into real-
time, actionable information. Furthermore, these “Big Data”
volumes should be processed with ease, and delivered with
low latency, even when data velocity is high. To build such a
system, a scalable real-time operational capability is needed.
Recently, several Big Data frameworks have been introduced
(e.g., Hadoop [5], MapReduce [6], HBase [7], Mahout [8],
Google Bigtable [9], etc.) that address the scalability issue.
However, they excel at batch-based processing. Apache Storm
[10] and Apache S4 [11] are distributed frameworks that
process stream data. Apache Spark [12], [13] is another
distributed framework that offers streaming integration with
time-based in-memory analytics for live, real-time data. Spark
runs a streaming computation as a series of micro-batch jobs,
using a batch size as low as possible to achieve low latency.
It keeps the states between batches in memory so that it
can recover quickly. Spark has an advanced DAG (Direct
Acyclic Graph) execution engine that supports cyclic data flow
and in-memory computing. These features make Spark faster
than other distributed frameworks (100X faster than Hadoop
MapReduce in memory, or 10x faster on disk) [12]. It is
also faster than Storm and S4 [14]. Overall, it generates low
latency, real-time results. It has instant productivity and no
hidden obstacles. It also has an easy cluster setup procedure.

In this paper, we make the following contributions:

« We have developed a novel generic real-time framework
for multi-source stream data using Apache Spark [12],
[13] and Kafka [15] (a message broker). Kafka provides
guaranteed message delivery with proper ordering. This



means messages sent by a producer to a particular topic
partition will be delivered in the order they are sent,
and a consumer will see messages in the order they are
stored. Moreover, Kafka can form a cluster to handle
a high volume of data with low processing latency
and server failures without losing messages. As a case
study, we attempt to detect anomalies for a VMware-
based data center. Our real-time framework is generic
so that it can handle continuous performance data (CPU
load, memory usage, disk storage information, etc.) from
multiple VMware instances simultaneously. This means
that all VMwares can send their performance data to
our framework, which collects them as a data “chunk”.
Kafka ships this continuous multi-source stream data
from all VMwares to a Spark cluster. Inside Spark,
machine learning techniques are applied to analyze the
data.

« A flat incremental clustering technique [16] has been used
to model online benign data. The model is built on benign
training data only, and the number of clusters are not
fixed before building the model, rather they are generated
dynamically.

o We experimentally show that our real-time framework
detects anomalies without sacrificing accuracy. It also
has a low latency to analyze data. We have reduced
the prediction time subsequently so that the overall data
processing time is reduced.

o We have also implemented our framework using Apache
Storm [10]. We have compared the average processing
latency of a tuple during training and testing for both a
Spark and Storm-based implementation. We found that
Spark outperforms Storm substantially.

The rest of the paper is organized as follows: Section
IT describes key concepts used in the paper. Section III
describes details about our anomaly detection framework.
Section IV shows more technical details of our novel Spark-
based anomaly detection framework. Section V shows the
experimental results using our framework. Section VI covers
the related works. Finally, Section VII states the conclusion
and future work.

II. BACKGROUND

The following topics are the basic building blocks of our
real-time anomaly detection framework.

A. Data Center

A data center is the store house of data. It provides computer
systems and associated components, such as telecommunica-
tions and storage systems. A data center has a cloud storage
appliance for its storage infrastructure. It also has resource
management software to manage its storage and infrastructure
with VMware, OpenStack and Microsoft. Some advanced data
centers have a dynamic and compatible operating environment
allowing users to leverage internal and external resources to
mitigate their extra demands.

In this paper, we design a real-time framework to detect
anomalies on a VMware-based data center.

B. Dynamic Resource Scheduling

VMware Dynamic Resource Scheduling (DRS) [17] allows
users to define the rules and policies that decide how virtual
machines share resources and how these resources are priori-
tized among multiple virtual machines. Some other rules like
affinity and anti-affinity rules [18] have also been defined to
improve the scheduling. All the rules are static and cannot be
changed dynamically. In order to do real-time scheduling, we
need machine learning techniques. In the core of the scheduler,
unsupervised (no training data), and supervised (training data)
learning can be used to analyze stream data.

For unsupervised learning, data instances associated with
normal load must first be gathered. Then, a clustering al-
gorithm (e.g., k-means [19], incremental clustering, etc.) is
applied to these instances. Finally, to classify new, unseen
instances (e.g., a “normal” VM or a “resource intensive” VM),
an outlier detection approach can be applied. For example, for
each test instance, if it is inside any cluster, then it can be
treated as a VM “normal” load. Otherwise, it is classified as
a “resource intensive” VM. An instance is considered inside a
cluster if the distance to its centroid is smaller than its radius.

For supervised learning, first, training data is collected for
classes of interest namely, “normal” and “resource intensive”
categories. Next, a classification model (or rules) is built from
these training data using a supervised learning algorithm (e.g.,
support vector machines, decision trees, k-nearest neighbor).
Finally, testing (unseen) instances are predicted using the
classification model.

C. VMware Performance Stream Data

The performance metrics of VMware reflect its resources
usage. If a user runs a resource intensive application (e.g., CPU
or memory hungry), the respective counters in the performance
metrics rise beyond their threshold. As a result, the application
requires more resources to complete its task smoothly. Our
real-time distributed framework should diagnose this event and
reschedule the appropriate resources dynamically.

VMware has some administrative commands like [TOP],
and [ESXTOP], which provide performance data of the virtual
machines (VMs). Periodically, we capture these statistics as a
snapshot. After preprocessing and feature selection, a feature
vector is generated that acts as a data point for the proposed
data analytics algorithm.

We have used [ESXTOP] for collecting VMware statistics.
It gives several performance statistics for CPU, Memory, and
Disk storage. Our performance metrics contain average CPU
load, percentage CPU usage of the physical cores (%Processor
Time), percentage utilization of the logical cores (%Util Time),
and percentage utilization of the physical cores (%Core Util
Time).



D. Apache Spark and Real-time Issues

Data center automation [20] (e.g., dynamic resource man-
agement) may require analyzing the performance data in real-
time to identify anomalies. As the stream data comes contin-
uously and is voluminous, we require a scalable distributed
framework. To address the scalability issue, we can use a dis-
tributed solution like Hadoop, MapReduce, etc. Hadoop runs
in batch-mode and cannot handle real-time data. As we are
looking for real-time data analysis in a distributed framework,
we have decided to use Apache Spark [12], which is fault-
tolerant, and supports distributed real-time computation system
for processing fast, large streams of data.

Apache Spark [12] is an open-source distributed framework
for data analytics with a simple architecture. It uses Hadoop
[5] for the distributed file system and can work on the top of
YARN, a next generation Hadoop cluster [21]. Spark avoids
the I/0O bottleneck of conventional two-stage MapReduce
programs. It also provides in-memory cluster computing that
allows a user to load data into a cluster’s memory and query
it efficiently. This increases the performance up to 100 times
faster than Hadoop MapReduce [12].

Spark has two key concepts: Resilient Distributed Dataset
(RDD) and directed acyclic graph (DAG) execution engine.

o Resilient Distributed Dataset (RDD) [22] - a distributed
memory abstraction. It allows in-memory computation on
large distributed clusters with high fault-tolerance. Spark
has two types of RDDs: parallelized collections that are
based on existing programming collections (like list, map,
etc.) and files stored on HDFS. RDD performs two kinds
of operations: transformations and actions. Transforma-
tions create new datasets from the input or existing RDD
(e.g. map or filter), and actions return a value after
executing calculations on the dataset (e.g. reduce, collect,
count, saveAsTextFile, etc.). Transformations are the lazy
operation that define only the new RDD, while actions
perform the actual computation and calculate the result
or write to the external storage.

o Directed acyclic graph (DAG) execution engine - when
the user runs an action on the RDD, a directed acyclic
graph is generated that considers all the transformation
dependencies. This eliminates the traditional MapReduce
multi-stage execution model and improves performance.

Spark supports both batch and stream processing [23]. Its
streaming component is highly scalable, and fault-tolerant. It
uses a micro-batch technique which divides the input stream
as a sequence of small batched chunks of data from a small
time interval. It then delivers these small packed chunks of
data to a batch system for processing.

Spark Streaming has two types of operators:

o Transformation operator - creates a new DStream [14]
from one or more parent streams. It can be either stateless
(independent on each interval) or stateful (share data
across intervals).

o Output operator - an action operator that allows the
program to write data to external systems (e.g., save or

print DStream).

Like MapReduce, map is a transformation function that
takes each dataset element and returns a new RDD. On the
other hand, reduce is an action function that aggregates all the
elements of the RDD and returns the final result (reduceByKey
is an exception that returns a RDD).

Spark Streaming inherits all the transformations and actions
operations of typical batch frameworks, including map, reduce,
groupBy, and join, etc.

III. REAL-TIME ANOMALY DETECTION FRAMEWORK

A real-time anomaly detection framework consists of data
preprocessing, model training, prediction, model updating, and
resource scheduling.

The stream data comes in a raw format, which needs to
be processed in order to be analyzed. After processing, it is
converted to multi-dimensional time series data, such as the
CPU usage or load of user programs in a data center over time.
Sometimes preprocessing needs data normalization and noise
elimination. The real-time framework applies machine learn-
ing algorithms to analyze stream data. It uses unsupervised
clustering algorithms (e.g., k-means, incremental clustering)
to build clusters on training data. Furthermore, the clustering
applies only to benign data. After clustering, it predicts data
using its cluster information. If any data fails to fall in any
cluster, it is considered an anomaly; otherwise, it is considered
benign. As the stream data evolve in nature, the training model
should be updated periodically. Finally, the framework sends
a request to the resource scheduler to update its resources if
it detects any abnormal behavior.

Algorithm 1 Real-time framework
1: procedure IDENTIFYANOMALY (dataChunk, operation)
2: if operation == MODEL_BUILD then
m <— BuildModelWithClustering(dataChunk)
if operation == PREDICT_DATA then
hasAnomaly <— PredictData(dataChunk, m)
NotifyManagerForScheduning(hasAnomaly)
if operation == MODEL_UPDATE then
m <— UPDATEModelWithClustering(dataChunk)

A

Algorithm 1 describes the basic flow of the real-time
framework. Initially we build the training model from the
incoming stream data (line 2-3). After building the model, it
predicts (line 4-5) data using that model. Here, it is important
to periodically update the training model (line 7-8) because
of the dynamic nature of data. For example, after building
the training model, some new applications might be executed
in the VMs which are not anomalous, but still change the
CPU metrics. These altered CPU metrics may not fit into any
clusters in the existing model, causing them to be treated as
anomalous during prediction. Therefore, the model need to be
updated periodically to accommodate these changes. Finally,
after prediction, if the framework finds any deviation from the
usual behavior, it notifies (line 6) the resource scheduler for
rescheduling.



A. Incremental Clustering

Formally, the clustering problem is defined as follows:
we are given N points and we have to group these N
points into k clusters so that points of similar behavior
group together. A similarity or distance measure (like cosine
similarity, Euclidean distance, etc.) is used to assign the points
to each cluster. Each cluster has some attributes like centroid,
maximum distance or radius, etc. The centroid is the center
point of each cluster. The radius is the maximum-distanced
point to its centroid. In this paper, we will use these properties
to detect anomalies.

Incremental clustering [16] works on continuous stream
data. It processes each data point sequentially and incremen-
tally assigns them to their respective clusters. The following
algorithm, described in [16], shows incremental clustering that
is generated from N data points while maintaining a collection
of k clusters. For each data point, it is either assigned to one of
the current % clusters or it starts a new cluster. If the number
of clusters exceeds k, then two existing clusters are merged
into one to fix the number of clusters to k. In this paper, we
have also implemented a flat incremental clustering algorithm
where the cluster size may vary according to the input data.

Algorithm 2 Incremental clustering
1: procedure CLUSTERING

2: k < numO fcluster
3: totalCluster <0
4 for each data point n do

isFit « FitsInAnyCluster(n)

5: if isF'it == false then

6: CreateCluster()

7: totalCluster < totalCluster + 1.

8: if totalCluster > k then

9: MergeTwoNearestClusterToOne()
10: else

11: UpdateClusterInfo()

For data center automation in virtual environments [20] ,
we envision the following framework. The virtual resource
management software consists of an additional dynamic load
balancing decision module. This module will be connected
to our proposed Spark framework. It monitors the real-time
performance data generated from virtual machines. It collects
the data and splits it to DStream [23], [14]. It builds the
model by applying transformation and action operations to the
input DStream. After building the training model, it passes the
model for prediction. In the prediction unit, again transforma-
tion and action operations have been performed to identify
the anomalies in the input stream data. We will implement
machine learning algorithms (described in algoritms 3, 4) here
to analyze data. After analyzing, the framework will report
the result to the virtual center resource manager. Finally, the
resource manager will allocate the resources (network band-
width, storage capacity) to the overused VMware machines
on-the-fly.
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Fig. 1. Dynamic Resource Management using Apache Spark

In Fig. 1, we have shown the data flow for VMware
dynamic resource management. The resource manager peri-
odically reads the VMware performance data and sends it to
the Spark cluster model to analyze it. The resource manager
then sends the data analysis information to the resource pool
[17] to dynamically allocate resources, if necessary.

IV. SPARK-BASED ANOMALY DETECTION
FRAMEWORK

Our VMware cluster consists of 5 VMware ESXi [24]
(VMware hypervisor server) 5.x systems. Each of the systems
has a Intel(R) Xeon(R) CPU E5-2695 v2 2.40GHz processor,
64 GB DDR3 RAM, a 4 TB hard disk and a dual NIC
card. Each processor has 2 sockets and every socket has 12
cores. So, there are 24 logical processors in total. All of
the ESXi systems contain 3 virtual machines. Each of the
virtual machines is configured with 8 vCPU, 16 GB DDR3
RAM and 1 TB Hard disk. As all the VMs are sharing the
resources, performance may vary during runtime. We have
installed Linux Centos v6.5 64 bit OS in each of the VMs
along with Java JDK/JRE v1.7. We have designed a real-
time outlier detection system on this distributed system using
Apache Spark version 1.0.0. We have also installed Apache
Hadoop NextGen MapReduce (YARN) [21] with Hadoop
v2.2.0 to form a cluster. Apache Spark uses this YARN cluster
for the distributed file system.

Our framework is divided into two components. The first
one is the message broker and the second is the stream data
mining module.

A. Message Broker

We are continuously monitoring the performance data from
each VMware ESXi server [24]. The VMware utility tool
[EXSTOP] is utilized to continuously write the performance
data of its server to a CSV (Comma Separated File) file. Those
CSV files are read and the data is sent to the message broker.
Several message brokers (e.g., Apache Kafka [15], RabbitMQ
[25], etc.) are available to integrate with Spark. We have
chosen Kafka 3.3.4 because it is stable and also compatible
with Apache Spark. Kafka creates a dedicated queue for
message transportation. It supports multiple source and sink



on the same channel. It ships (in Fig. 2) the performance
data to Spark’s streaming framework. It provides guaranteed
message delivery with proper ordering and a Kafka cluster can
be formed to handle large volumes of data.
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B. Stream Data Mining Module

As in Fig. 2, we have implemented a clustered network
using Apache Spark. The VMware performance data is trans-
ported through a Kafka queue continuously as a stream. It is
split into small micro-batches (DStreams). Several transforma-
tion and action operations are performed on these DStreams
to build the training model and predict anomalies. At each
micro-batch processing step, the generated immutable dataset
is stored in-memory and the results are propagated to the
next micro-batch processing module. The framework builds
the model from the benign stream. After that, it predicts the
incoming stream data to identify anomalies.

Algorithm 3 Training

1: procedure TRAINING(InputDStream)
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trainingModel < InputD Stream.map(Tuple t){
n < t.getDataPoint()
closestCluster < FINDNEARESTCLUSTER(n)
if closestCluster == E'mpty then

return Map(n, n)
else

return M ap(closestCluster.Centroid, n)

}.reduced ByK ey(centroid, [dPointl, dPoint2..]){
index <+ FITSINANYCLUSTER(centroid)
if index == —1 then
CREATECLUSTER (centroid)
else
UPDATE(index, [dPointl, dPoint2..])

}

16: procedure UPDATE(index, [dPointl, dPoint2..])

cluster <+ FINDCLUSTER(index)
CALWGTAVGCENTER(cluster, [dPointl, dPoint2..])
CALNEWRADIUS(cluster)

(i) Training

Algorithm 4 Testing

1: procedure TESTING(InputDStream)

2:

R A

testingModel < InputDStream.map(Tuple t){
n + t.getDataPoint()
for each cluster k do
distance < EuclideanDistance(n, centroid(k)
if distance > Radius(k) then
n is anomaly
else
n is benign

testingM odel.print()

The Spark framework builds the initial training model.
Algorithm 3 shows that it has two components: map and
reducedByKey. The map function (lines 3-8) takes each
instance of the DStream (called a tuple) and extracts data
points from this tuple. Later, it finds the nearest cluster
for that data point. If there is no nearest cluster, then it
uses the data point as a new cluster’s centroid. It uses this
nearest cluster’s centroid (line 8) or new centroid (line 6)
as a key and the data point as a value. The reducedByKey
acts as a reducer. It receives the centroid as a key and
a list of data points as a value. If the centroid does not
belong to any cluster, then it creates a new cluster with
that centroid. Otherwise, it updates the cluster. Lines 9-
15 describes this process. All the data points with the
same centroid go to the same reducer. Data points with
different centroids will go to different reducers. In the
UPDATE function (line 16-19), the cluster is fetched from
its index. After that, the cluster’s centroid is updated by
taking a weighted average of the list of data instances.
As Spark has a stateful property, all the clusters generated
in training should be kept in memory. Furthermore, it
does not need to explicitly store the data points, only
cluster information. Here, a flat incremental clustering
algorithm is used for training the model, and the number
of clusters is not fixed. For each data point, if it fits
to any cluster, then the cluster is updated. Otherwise, a
new cluster is created with that point as the centroid.
So, the number of clusters is not fixed and may vary
according to the training data. Moreover, the Euclidean
distance is used to measure the distance of two data
points, which can be converted to a similarity measure
via the following:

. ()
+ Distance

The above similarity function has a lowest value of zero
(when Distance = oo) and a highest value of one (when
Distance = 0). It is easy to see that the more distant
points would have lower similarity and closer points
would have higher similarity. A threshold of 70% is
used when assigning points to a cluster. Furthermore, a
weighted average is used when calculating the centroid

Similarity =



of the cluster.
(i1) Testing

During testing, each data point is extracted from the
DStream and checked against the model. If any data point
does not fit in any cluster, it is considered anomalous,
otherwise it is benign. If the distance between the data
point and the centroid of the clusters is less than the
cluster’s radius, then it is considered as belonging to that
cluster. A detailed algorithm is given from line 1-11 in
the algorithm 4.

C. Update Training Model

The stream data is dynamic in nature. Therefore, to maintain
accuracy, it is necessary to update the prediction model. At a
fixed interval, the predictor signals the clustering model to
update the model. When the clustering model receives this
signal, it uses the incoming tuples to modify its clustered
model. It updates the cluster’s centroids or it may add new
clusters. We also save the whole cluster model information to
HDFS for backup.

D. Generating Anomalous Data

Generating anomalous behavior is very tedious. As we
are using CPU performance data, we have to find when the
VMware instances become more CPU hungry. By conducting
several experiments, we have found that they become CPU
hungry when CPU metrics in a VMware increases. We have
pragmatically increased CPU load to simulate anomalous
behavior in the data. For example, a program with an infinite
loop may increase the CPU load to 100%. Again we have also
done some expensive database read/write operations which
also increases the value of several counters in CPU metrics
(e.g., CPU usage, processor time, core utility time, etc.).

E. Design Challenge

We faced some design challenges like gathering domain
knowledge of VMware performance data, integrating a stable
message broker into the framework, and handling message
synchronization and message ordering, etc.

F. Scalability

Our framework is more generic. We can build a message
broker cluster using Kafka [15]. It is highly available and
scalable. It helps us to add more VMware sources to collect
their performance data. Moreover, we can add more threads
to Spark executors/workers to increase parallelism. Thus we
can accommodate these large volumes of data.

V. EXPERIMENTAL RESULTS
A. Dataset

We have used two different datasets for our experiments.
For the first dataset D1, we run several jobs on a Spark cluster
in several VMware instances. We then monitor the real-time
CPU performance metrics from all the VMware instances.
We capture the stream and build the benign model. We
then programmatically increase the CPU metrics to generate
anomalous stream data.

For the second dataset D2, we utilize a benchmark analysis
framework called Yahoo Cloud Serving Benchmark (YCSB)
[26]. We run the benchmark with different workloads and
runtime properties continuously to capture stream data and
build our benign model. The database system is a simple
MySQL database with billions of rows inserted. Data is loaded
in the load phase of the YCSB run. Later, transactions such
as read and update are run on the database system to increase
the workload. The client data is the performance data that
captures the network, I/O, CPU and memory usages during the
workload run. We have used millions of read/write operations
on the database to generate anomalous stream data.

B. Result

In this section, we present the accuracy of our real-time
framework. TABLE I shows the Apache Spark cluster setup.

TABLE I
SPARK CLUSTER

Component Number of parallelism
Worker for emitting tuples 05
Worker for clustering 08
Worker for prediction 08

As data arrive continuously, a time window is used to
collect the training instances for building the model. The
flat incremental clustering algorithm is run on 10,000 data
instances. At the end, there are 63 clusters for dataset 1
(D1) and 134 for dataset 2 (D2). These clusters are generated
dynamically. TABLE II shows the training data model.

TABLE II
TRAINING
DIl D2
Number of data points 10,000 10,000
Number of clusters 63 134
TABLE III
TESTING
Dataset TPR FNR TNR FPR
D1 98.0% 2.00% 99.83% 0.17%
D2 99.20% 0.80%  99.06%  0.94%

TABLE III shows the accuracy of the framework. A total of
3,500 held-out testing instances for both datasets are used for
evaluation (3,000 benign and 500 anomalous). Our framework
correctly predicts 2,995 benign data out of 3,000 and also
identifies 490 anomalous data out of 500 for dataset 1 (D1).
It also correctly predicts 2,972 benign data out of 3,000 and
also identifies 496 anomalous data out of 500 for dataset 2
(D2). TABLE 1III reflects the overall accuracy statistics. So
our framework has higher accuracy to identify anomalies.
In this table, the true positive rate (TPR) is the proportion
of actual anomalies which are correctly identified and the
true negative rate (TNR) is the proportion of actual benign



instances which are correctly identified. Moreover, the false
negative rate (FNR) is the proportion of actual anomalies
which are misclassified as benign and the false positive rate
(FPR) is the proportion of actual benign instances which are
misclassified as anomalous.

C. Comparison with Storm

We have also implemented this framework using Storm with
the same environment and the same data.
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Fig. 3 shows the average process latency of a tuple for
clustering during training for both the Spark and Storm
implementations. We have taken the average process latency
of a tuple after a certain number of training instances have
been processed and plotted them. The graph shows that the
clustering takes almost 5.85 ms (dataset 1) and 5.30 ms
(dataset 2) on average for Storm and almost 0.6 ms (dataset 1)
and 0.4 ms (dataset 2) on average for Spark. From the result
we see that for dataset 1 Spark is almost 10 times faster than
Storm and for dataset 2, Spark is almost 13 times faster than
Storm.

Fig. 4 shows the average process latency of a tuple for
predicting anomalies during testing for both the Spark and

Storm implementations. We have taken the average process
latency of a tuple after a certain number of training instances
have been processed and plotted them. The graph shows that
the prediction takes almost 0.78 ms (dataset 1) and 0.55 ms
(dataset 2) on average for Storm (when the graph reaches
saturation) and almost 0.038 ms (dataset 1) and 0.03 ms
(dataset 2) on average for Spark. From the result we see that
for dataset 1 Spark is almost 20 times faster than Storm and
for dataset 2, Spark is almost 18 times faster than Storm.
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Fig. 5. Average Tuple Processing Latency for Different Input VM Instances

D. Experiment of Parallelism

We vary the number of input VMware instances when
collecting the data. From Fig. 5, we see that the average
process latency of a tuple during clustering does not increase
when the number of input VMware instances increases. For a
single VM, the latency is almost 0.61 ms and then it decreases
to almost 0.52 ms for double and triple VMs. The average
process latency during prediction is almost 0.04 ms for all
three cases.

The limitation of this framework is using the appropriate
threshold. We have experimentally selected the similarity
threshold at 70% during clustering. Finally, as we do not
fix the number of clusters, it might be possibile to generate
many clusters consisting of single data points. However, these
clusters would not be influential during testing because they
do not have a radius. Unless an exact match to these data
points occurs, no testing data points will fall in these clusters.
Additionally, these single point clusters can be easily removed.

VI. RELATED WORK

Our related work covers anomaly detection techniques, then
the scalability issue with existing distributed frameworks.

Clustering has been widely used for the anomaly detection
problem. K-means has generally produced better accuracy, but
it also has a greater time complexity for very large data sets.
K -means also has an initial centroid problem. K -medoids [27]
can overcome this problem. It initially selects k centers but the
centers are repeatedly changed randomly and thus it improves
the sum of the squared error. Assent et al. [28] have proposed
an AnyOut algorithm for detecting outliers on stream data.
They use hierarchical clustering and determine an outlier score
based on the deviation between the object and the cluster. They
can smoothly detect outliers but they are not addressing the



scalability issue. As hierarchical clustering has a complex data
structure, it is time consuming when deployed in a distributed
system.

Yu et al. [29] have proposed a non-parametric cluster-
based anomaly detection framework for distributed systems. It
uses Hadoop[5] and MapReduce. It outperforms existing static
anomaly detection techniques. Gupta et al. [30] also propose
a framework for an anomaly detection system using Hadoop
and MapReduce. They extract context from system operational
log files. After that, they use k-means to build a context-based
cluster and generate an anomaly score. Apache Mahout [8] is
a machine learning tool that uses Hadoop and MapReduce. It
has k-means and StreamingKMeans implementations. These
implementations run in batch-mode and are time consuming.
Therefore, these implementations are not ideal for clustering
real-time data.

All of the above distributed techniques use Hadoop and
MapReduce. Hadoop works well in batch-mode where we
have the data in advance. It does not work well with real-time
systems where data comes continuously. If Hadoop is used
for building the training model, then for each new instance it
must rebuild the model using all data instances, which is a
waste of time and resources. So, we cannot use Hadoop with
streaming or real-time data. Similar distributed systems like
HBase [7], BashReduce [31], etc. also have the same problem.
Furthermore, although Apache Storm [10] and Apache S4 [11]
are also available for stream data processing, Spark is much
faster than these [23]. So, we have decided to use Spark [10]. It
is scalable and fault tolerant. It has guaranteed data processing
and finally it is quite faster than other frameworks like Hadoop,
Storm, etc.

No work has been done before on real-time anomaly
detection for VMware performance data using a distributed
framework. Our real-time anomaly detection framework using
Spark is the first development. There has been a lot of work
on anomaly detection, which has mainly been focused on
accuracy in batch data sources while ignoring potential perfor-
mance issues (speed). Moreover, they have not considered dis-
tributed frameworks with real-time data. Furthermore, Spark
has a StreamingKMeans implementation. It generates initial
centroids randomly. In a real-time framework, these randomly
generated centroids may lead to a corrupted training model
that may not correctly identify anomalous data. Moreover, if in
order to randomly generate the centroids, domain knowledge
of the data is necessary. In our real-time framework, we have
no idea about the VMware’s performance data. We know only
the state of the VMwares (“normal” or “resource intensive’)
when we build the training model. So, we prefer to use our flat
incremental clustering instead of Spark’s StreamingKMeans.

VII. CONCLUSION AND FUTURE WORK

In this paper we have implemented a real-time anomaly
detection framework using Apache Spark. It has the ability to
manage streaming data and guarantees data delivery. It is also
fault tolerance and is flexible to increasing parallelism.

We envision our real-time system to be the key part of
a dynamic resource management system for VMware. Our
framework is generic and can be integrated into other systems
such as monitoring system logs to measure a system’s opera-
tional performance, analyzing sensor data from the embedded
devices, etc.

In the future, we will implement other machine learning
algorithms in our framework. Moreover, we will also consider
other performance metrics (e.g., memory and storage statistics,
etc.) and try to correlate them for detecting anomalies.
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