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Impact of capillary transition zone on CO, dissolution into .
brine i) fers

Motivation:

= Geologic carbon storage is a technically viable technology to reduce the impact
of anthropogenic CO, emissions

= Solubility trapping is thought to be a critical step in geologic carbon storage

= Buoyantly driven convective dissolution can substantially enhance the rate of
dissolution, but is difficult to quantify in the field

= Theory and computational models have been applied but few have included the
two-phase region above the gas-water contact where dissolution actually takes
place

Objectives of this research:

= We use a numerical model which includes the two-phase region to determine:
= |mpact of capillary transition zone on long-term dissolution rate
= Role of strength of capillary forces (with entry pressure as surrogate)
= [|imiting behavior




Model Problem
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Injection with leaky caprock

Two reservoirs are modeled
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= Two-phase flow :

= Brine: 5(pw¢(1_5n)) k.
p Vel p,—ke(Vp,—p,g)|+0,

w

= CO2: a(pg‘fsn) :v.(pn o k-(VpW+Vpc—png))+Qn
H,

= Balance of dissolved CO,:

%qﬁ (S,C)+Ve(v,C~¢S,D>VC) =0

w

=  Dissolution rate:
co, __ sa —
Qw o KSn¢pw (xCOtz o xC02 ) o _Qn

= EoS:
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Initial state and capillary model ) teona
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= Hydrostatic initial condition P

= Van-Genunchten Pc model plus
hydrostatic:

5, (p.(2))= [((Pw —Pn)gz]fj +1r
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Dissolved CO, in Bravo Dome (k= 50 mD poro = 0.15) reservoir

Single phase model Pc =100 K
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Convective dissolution in a deep reservoir with Bravo Dome -
properties L

Bravo | Dome
Single Phase Pc = 20 kPa

400 m Time = 0.0 yrs

k =50 mD Poro=0.15

Approximate Convective Onset times: 85 (20 kPa) vs 120 (single
phase) yrs




Two-phase model predicts higher dissolution ) taior
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« Two phase model naturally allows Pc=5K Pc=100K
currents loops above GWC
» The extent of currents increases with
entry pressure (permeability stays high in
two-phase region)
« Single phase, closed top:
* boundary layer diffusion controlled
» Two-phase:
* current loop = convectively-
enhanced transport
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Dissolution flux history ) teona
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Flux calculation:
» Single phase
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imbalance
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Long-term quasi-steady dissolution flux ) teona
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" p, 2 0recovers the single-phase, closed
OV U RS S top dissolution rate
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Mixing Problem
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= |nclusion of the two-phase region above the GWC provides a more realistic
dissolution model:

= Allows buoyantly driven convection current loops into the two-phase region
= Dissolution of gas-phase CO, into brine is convectively assisted with current loops

= For feasible values of entry pressure, the dissolution rate can be roughly 3.5 times
the rate from a single-phase representation

=  An upper bound may be 5x based on a mixing model analog
= Single-phase, closed top model:
= Generally under-predicts dissolution rate,

= except for a reservoir with vanishing entry pressure (sand) p,, 2 0 where the two
model representations converge
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