
Re-evaluating Network Onload vs. Offload for the
Many-Core Era

Abstract—This paper explores the trade-offs between on-

loaded versus offloaded network stack processing for systems

with CPU frequencies aligned with current trends in CPU multi-

core design and many-core architectures. While current hardware

leads to similar performance between the onload and offload ap-

proaches, this study demonstrates that current offloaded network-

ing solutions can provide equivalent or superior performance to

onloading when operating at lower CPU frequencies. While the

debate between network onload vs network offload proponents

has been an active one for some time, this work is the first to

provide experimental evidence of the impact on CPU technology

trends on the future of networking stack processing.

I. INTRODUCTION

Processor core frequency gains have declined significantly
since the beginning of the multi-core era. With the transition
to many-core architecture, frequencies are expected to remain
essentially constant and may even decline. This trend has sig-
nificant implications for network subsystem design, for exam-
ple onloading versus offloading network protocol processing.
Onload systems seek to leverage excess on-chip processors for
protocol processing, while offload systems seek to leverage
specialized NIC processing; As a result, the performance and
power costs of host network protocol processing significantly
impact this tradeoff.

The onloaded approach assumes that the performance
gap between the available CPU cores and dedicated ASIC
offloading hardware is minimal, and where it is not, it can
be overcome by allocating more CPU cores. This assumes
that the performance of the networking stack can be greatly
improved through parallelization. While many networking
stack functions can be done in parallel, the semantics of MPI
enforce ordering that makes full parallelization difficult. Some
approaches have been proposed [1] for methods of improving
the parallel performance of MPI, but the current state of mutli-
threaded MPI implementations illustrates the difficulties of
such approaches. Other work has declared that multi-threaded
MPI may not be a viable approach for future HPC [2].

The emerging trend of many-core architectures does not
help address the networking issues arising from reduced core
frequencies. Using these cores for network stack processing
has further implications beyond lower core frequencies. Many-
core compute units are, by design, more simplistic than modern
x86 cores, with current generation many-core architectures like
the Intel Xeon Phi lacking support for out-of-order processing.
While future generations may include expanded core features,
such as support for out-of-order execution, it is unlikely
that the feature set supported by such cores will approach
that of the full-featured state-of-the-art server class CPUs.
Dedicating large power-hungry cores, such as a Xeon x86
or AMD equivalent core, to network processing has thus far

been an acceptable compromise. However, with increasing
concerns about the power consumption of world-class systems,
the power efficiency of such an approach deserves to be
examined. As world-class capability supercomputers begin to
encounter a power wall for practical as well as administrative
reasons, the ability to provide high performance networking,
while reducing power consumption, is a key concern for next
generation systems.

In this paper, we present an initial evaluation of the impli-
cations of host processing speed changes on onload vs. offload
network protocol processing. We do so by examining the
network performance and power consumption when running
both onloaded and offloaded networking hardware alongside a
consumer-class AMD CPU operating at different frequencies.
By using identical systems where the only changes are in the
high performance networking cards used, we isolate the dif-
ferences between the two networking approaches and quantify
the impact of processor frequency on networking performance.

The remainder of this paper is organized as follows. In
Section II, we discuss the background of onload and offload
protocol processing and architectural changes that motivate this
study. We then discuss our experimental setup and methodol-
ogy in Section III and present and analyze the results of these
experiments in Section IV. We then discuss the implications
of these results in Section V. Following this, we discuss other
related work in Section VI. Finally, we present our conclusions
and describe directions for future work in Section VII.

II. BACKGROUND

Two competing models of high-performance networking,
onloaded and offloaded networking, have been adopted by
various vendors in systems over the years. InfiniBand, one
of the primary HPC networking architectures, has both of-
fload and onload network adapter (HCA) implementations.
For example, Mellanox InfiniBand HCAs provide full featured
offload engines, while vendors such as QLogic sell onload-
based HCAs with simplified NIC hardware and a full-featured
software stack providing the remainder of the functionality
through the host CPU.

The high level differences between onload and offload are
depicted in Figure 1. The major difference is that offloaded
message processing is done by a dedicated chip on the NIC
while onloaded is done on the system’s CPU. The message
processing can include all levels of message processing, from
MPI to low level protocol processing. Offloading allows the
manufactures to make hardware optimizations to the dedicated
chip, to boost performance over onloaded NIC. It is possible
to hybrid these two approaches; for instance, some offload
infiniband cards do message matching onloaded on the CPU.

SAND2014-17733C



!

Network!Card!CPU!

Onload!Network!Request!Processing!

Message!Request!

Data!Transfer!

Message!Processing!

!

Network!Card!CPU!

Offload!Network!Request!Processing!

Message!Request!

Data!Transfer!

Message!Processing!

Fig. 1. A high-level depiction of the differences between onload and offload

During the time the onload model was developed, CPU
capabilities and speeds were increasing with each successive
generation. The end of Dennard scaling and the introduction
of multi-core CPUs lead to further arguments in favor of the
onload model. In particular, onload proponents have argued
that such a model allows the use of other cores on a system
that might not be able to be fully taken advantage of by an
application, particularly during communication periods.

However, two recent trends are also potentially working
counter to this approach:

• The gradual flattening and even regression in core
speeds in traditional processors due to power and
cooling issues

• The emergence of many-core architectures such as the
Intel Xeon Phi with dramatically reduced single-core
performance

These two trends potentially limit the ability of these host
processors to keep up with the performance demands of
onload HPC networking systems. For example, recent work has
shown that many-core Xeon Phi processors limit MPI message
processing rates in HPC systems [3].

In addition, large scale systems will be placed under
power/energy constraints in the future [4]. This further compli-
cates the offload/onload tradeoff space—general purpose pro-
cessors potentially draw more power than specialized network-
oriented offload processors, but may also be able to dynami-
cally change power draw in response to changing system power
caps. However, such changes could also cause significant
fluctuations in networking performance, to the detriment of
application performance.

As a result, it is important to understand the ramifications
that power changes will have on network performance and ex-
plore the tradeoffs between onloaded and offloaded networks.
It is similarly important to understand the potential for power
and energy savings during communication phases. If such sav-
ings can be obtained without significant performance impact,
or if the performance impact is tolerable, then leveraging the
available savings will be important to future supercomputer
efficiency.

III. EXPERIMENTAL METHODOLOGY AND SETUP

To evaluate the power and performance trade-offs between
onload and offload networking approaches, we conducted
experiments with both offload and onload InfiniBand cards.
These cards were placed in systems instrumented for power

collection, and host CPU power consumption was controlled
to understand the impact of CPU speed on network perfor-
mance and power consumption in different applications. In the
remainder of this section, we provide additional details on our
experimental setup; the hardware system on which these results
were gathered and the micro and application benchmarks we
used.

A. Hardware and Data Collection Setup

The evaluation of the onloaded vs. offloaded networking
approaches was performed on 4 nodes of a cluster Nodes
in this cluster each have a 3.8 GHz AMD Fusion APU,
16 GB of memory, and run Linux kernel version 2.6.32
(RHEL 6). For onload experiments, we installed a QLogic 4X
QDR InfiniBand HCA in each node, while we used used a
Mellanox ConnectX-3 4X QDR InfiniBand HCA for offload
experiments. In both onload and offload cases, a Qlogic 12200
36-port InfiniBand switch connected the InfiniBand HCAs.

Power measurements for the experiments were collected
using a power measurement devices installed in the cluster.
This power measurement system is an out-of-band measure-
ment device that collects fine grained samples for multiple
system components through the use of a mother measurement
board and risers on system components. They enable the inline
reading of system power on a per component basis without
impacting the performance or power consumption of the node.
All power information output by the device used a separate
out-of-band network to deliver the information to a central
collection node that was not participating in the testing. Further
detailed information on these devices can be found in [5]

B. Benchmarks and Applications

To further compare the onloaded vs. offloaded networking
approaches, we analyzed the performance and power com-
parisons on benchmarks and applications. In particular, we
compared onloaded and offloaded runs in the MILC applica-
tion [6] and the LULESH [7] benchmark. Furthermore, we ran
profiling runs, using MPIP, to determine why these applications
react to the network cards differently.

The netpipe microbenchmark suite is a tool designed to test
the bandwidth and latency of a network [8]. Of its tests, we
ran the streaming, streaming without cache effects, and send-
recv ping-pong tests over different message sizes ranging from
two bytes to one megabyte. The MIMD Lattice Computation
(MILC) application was the first application benchmark we
used [9]. It was developed to study quantum chromodynamics
and uses four dimensional lattice computation using a halo
exchange communication pattern. We used an input deck based
on the weak scaling NERSC 6 acceptance benchmarks [10].
In particular, each node has lattice of size 8x8x8x9. The Liver-
more Unstructured Lagrangian Explicit Shock Hydrodynamics
(LULESH) application is the second large benchmark we used
[11]. LULESH is designed to be a representative application
for larger hydrodynamics codes. For all of our tests, we ran a
1203 problem for 130 iterations. There is a constraint on the
number of MPI ranks used for this code; it has to equal a cube
of an integer. Because of this, we fixed the number of MPI
ranks at 8, adding an extra OMP thread to each rank in the
four node case.



All three benchmarks were run three times for combi-
nations of the following variables: InfiniBand card, number
of nodes, and CPU frequency. We used the InfiniBand cards
mentioned in section III-A to test both onload and offload. The
number of nodes varied between 1, 2, and 4 for MILC, 2 and
4 for LULESH, and was not a variable for netpipe. The CPU
frequency was modified using DVFS to the values 1.4GHz,
1.9GHz, 2.4GHz, 2.9GHz, 3.4GHz, and 3.8GHz. We collected
the overall runtime and power statistics of these applications
as well as MPI profiling information on a couple of separate
runs.

IV. EXPERIMENTAL RESULTS

A. Microbenchmark Evaluation

The netpipe microbenchmarks [8] were used to examine
the impact CPU frequency has on both the power draw and
performance of the different networking approaches. Figure 2
shows the stream bandwidths along with the power consump-
tion of both onloaded and offloaded networks. Aside from the
obvious protocol switching points (MPI eager to rendezvous)
causing plateaus and in some cases dips in performance
between messages sizes, the important observation to make
from these figures is the spread in performance between the
highest CPU frequencies and the lowest. The onloaded method
expectantly loses some performance when CPU frequency is
lowered, resulting in an near halving of bandwidth between the
3.8GHz and 1.4 GHz frequencies. For the offloaded network,
the reduction in CPU frequency impacts network performance
by a much smaller degree. The only noticeable difference in
behavior occurs when the lowest CPU frequency is used. There
is more variance in the bandwidth curve than the other scaling
points, suggesting the microbenchmark may not be able to
keep up with the network events at this speed. The performance
gaps between the CPU frequencies remains relatively similar
in terms of percentage of performance loss for all message
sizes, including the smaller message size results.

Removing caching effects from the results as shown in
Figure 3 has little impact on the offloaded case, except for
a slightly reduced throughput. This results in less of a gap
between the slowest speed (1.4GHz) and the other clock
speeds. The impact on the onloaded case is similar for large
messages. However, for small and medium sized messages,
differences in throughput exist. The drop occurring after 8KiB
message sizes is attributable to the eager-rendezvous protocol
switch-over in MPI. The drop occurring at 64KiB message
sizes is attributable to the virtual maximum transmission unit
(VMTU) maximum of 64KiB, necessitating multiple calls to
the onloaded networking stack.

Examining send-recv performance with bi-directional ping
pong (as opposed to the previous unidirectional streams) in
Figure 4, it can be observed that the results are similar to the
stream results with cache effects. The increase in throughput is
due to the bi-directional nature of the test, but generally aligns
with the unidirectional results, in that they are reasonably
within twice of the unidirectional throughput.

A key observation from these results is the relatively small
trade-off in throughput performance from transitioning be-
tween CPU frequencies for both onload and offload at 2.9GHz
and higher. We concentrate on the results including cache

effects for the purpose of this analysis, but the percentages
are similar for the case in which cache effects have been
removed. For the onload case 36.4% of the power consumption
can be saved while only losing 2.5% of throughput, while
for the offloaded case 22.5% of power can be saved while
only impacting performance by 0.5%. The offloaded network
provides better results in scaling frequency back below the
2.9GHz level, providing power consumption savings of ap-
proximately 30.5% while impacting performance by only 1.5%
when switching from a 3.8GHz clock rate to 1.9GHz. For the
onloaded case, this is impractical, as using a lower frequency
such at 1.9GHz would result in a performance loss of 35.1%.
This emphasizes the potential issues that may arise when using
many-core systems with slower and less powerful compute
cores. It also highlights that if such network onload approaches
are to be practical on future many-core systems, parallelism
for communication will be a key component in achieving
performant network throughput.

Finally, we examine the latency impacts from slower
CPU frequencies on the onloading and offloading approaches.
Figure 5 shows that the latency penalties associated with
lower CPU frequencies occur for both onloaded and offloaded
networking. However, the offloaded networking approach leads
to convergence of latencies for successively lowering CPU
frequencies at smaller message sizes, and all CPU frequen-
cies eventually converge at 1MiB message sizes. For small
messages under 512 Bytes, the offloaded networking approach
has a flat latency curve, while the onloaded case has a upward
slope at smaller message sizes.

B. Application Benchmark Evaluation

We used application benchmarks to examine the perfor-
mance and power tradeoffs in realistic workloads. Using MILC
and LULESH, we measured the runtime and power usage at
different node counts and CPU speeds to compare onload and
offload. Then we ran MPI profiling tests to compare the results
of the two applications. It should be noted that there was not
much variance in either the runtime or power of the application
benchmarks; The standard deviations of 80% of the runs were
below 1% of the mean with only 2.5% being greater than 2%.

1) Runtimes and Power: Figures 6a and 6b show the power
and performance results of MILC. The tests show the runtime
change over the CPU frequency for each of the different node
counts. Because the problem size is scaled to the number of
nodes, the runtime increases when adding nodes, for instance
the four node, onloaded case at 1.4GHz takes over 17 minutes
more than the one node, onloaded case. This can be attributed
to a combination of the extra computation at the boundary and
the communication time between the four nodes.

In all of the cases we measured, the offload version takes
less time than its onload counterpart. For four nodes, it ranges
from a 7.7% to a 10.6% difference between the two, for two
nodes, the range is from 5.3% and 7.8%, and even the single
node case had a small but consistent performance benefit,
ranging from 0.9% to 3.1%. These differences all steadily
decline when we increase the clock speed. This shows that
while the offload cards have a significant effect on most of the
test cases, they have a more significant performance impact
on low frequency cores. The power usage of MILC has less



B
a
n
d
w

id
th

 (
M

b
p
s)

P
o
w

e
r 

(W
)

Message Size (bytes)

Onload Stream Bandwidth (Put) With Power

1.4GHz
1.9GHz
2.4GHz

2.9GHz
3.4GHz
3.8GHz

1.4 GHz power
1.9 GHz power
2.4 GHz power

2.9 GHz power
3.4 GHz power
3.8 GHz power

 0

 5000

 10000

 15000

 20000

 25000

2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M

B

50

60

70

80

90

100

110

120

130

140

(a) Onload

B
a
n
d
w

id
th

 (
M

b
p
s)

P
o
w

e
r 

(W
)

Message Size (bytes)

Offload Stream Bandwidth (Put) With Power

1.4GHz
1.9GHz
2.4GHz

2.9GHz
3.4GHz
3.8GHz

1.4 GHz power
1.9 GHz power
2.4 GHz power

2.9 GHz power
3.4 GHz power
3.8 GHz power

 0

 5000

 10000

 15000

 20000

 25000

2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M

B

50

60

70

80

90

100

110

120

130

140

(b) Offload

Fig. 2. Onload stream vs. offloaded stream with varying CPU frequencies

B
a
n
d
w

id
th

 (
M

b
p
s)

P
o
w

e
r 

(W
)

Message Size (bytes)

Onload Stream Bandwidth (Put) With Power - No Cache Effect

1.4GHz
1.9GHz
2.4GHz

2.9GHz
3.4GHz
3.8GHz

1.4 GHz power
1.9 GHz power
2.4 GHz power

2.9 GHz power
3.4 GHz power
3.8 GHz power

 0

 5000

 10000

 15000

 20000

 25000

2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M

B

50

60

70

80

90

100

110

120

130

140

(a) Onload

B
a
n
d
w

id
th

 (
M

b
p
s)

P
o
w

e
r 

(W
)

Message Size (bytes)

Offload Stream Bandwidth (Put) With Power - No Cache Effect

1.4GHz
1.9GHz
2.4GHz

2.9GHz
3.4GHz
3.8GHz

1.4 GHz power
1.9 GHz power
2.4 GHz power

2.9 GHz power
3.4 GHz power
3.8 GHz power

 0

 5000

 10000

 15000

 20000

 25000

2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M

B

50

60

70

80

90

100

110

120

130

140

(b) Offload

Fig. 3. Onload stream vs. offloaded stream with varying CPU frequencies without cache effects

B
a
n
d
w

id
th

 (
M

b
p
s)

P
o
w

e
r 

(W
)

Message Size (bytes)

Onload Bi-directional Ping-Pong Bandwidth with Preposted Recvs

1.4GHz
1.9GHz
2.4GHz

2.9GHz
3.4GHz
3.8GHz

1.4 GHz power
1.9 GHz power
2.4 GHz power

2.9 GHz power
3.4 GHz power
3.8 GHz power

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M

B

50

60

70

80

90

100

110

120

130

140

(a) Onload

B
a
n
d
w

id
th

 (
M

b
p
s)

P
o
w

e
r 

(W
)

Message Size (bytes)

Offload Bi-directional Ping-Pong Bandwidth With Preposted Recvs

1.4GHz
1.9GHz
2.4GHz

2.9GHz
3.4GHz
3.8GHz

1.4 GHz power
1.9 GHz power
2.4 GHz power

2.9 GHz power
3.4 GHz power
3.8 GHz power

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M

B

50

60

70

80

90

100

110

120

130

140

(b) Offload

Fig. 4. Onloaded vs. offloaded bi-directional ping-pong with send-recv and preposted recvs

significant differences. The offload ones used between 1.1%
and 3.2% more power than their onload counterpart.

Figures 7a and 7b show the power and performance results
of LULESH. The tradeoffs are less distinctive here. The
difference between runtime and power usage fluctuate around
0%. The change in performance ranges from 0.6% in favor of
offload and 0.6% in favor of onload. The power differences are
similarly low. Since LULESH is not significantly affected by
the InfiniBand card used, it interestingly contrasts with MILC.

It is important to note that the impact of decreasing CPU
frequency is significant to the performance of the compute
portion of the proxy-applications under study. The goal of
these experiments is to examine systems known to have little
process variation induced performance impact while limiting
the differences between the systems to soley the networking
hardware. By using the same switch for both onload and
offload approaches, we have isolated other potential perfor-
mance and power related impacts due to factors not of interest



L
a
te

n
cy

 (
µ

s)

P
o
w

e
r 

(W
)

Message Size (bytes)

Onload Bi-directional Ping-Pong Latency With Power

1.4GHz
1.9GHz
2.4GHz

2.9GHz
3.4GHz
3.8GHz

1.4 GHz power
1.9 GHz power
2.4 GHz power

2.9 GHz power
3.4 GHz power
3.8 GHz power

 8

 16

 32

 64

 128

 256

 512

2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M

B

50

60

70

80

90

100

110

120

130

140

(a) Onload

L
a
te

n
cy

 (
µ

s)

P
o
w

e
r 

(W
)

Message Size (bytes)

Offload Bi-directional Ping-Pong Latency With Power

1.4GHz
1.9GHz
2.4GHz

2.9GHz
3.4GHz
3.8GHz

1.4 GHz power
1.9 GHz power
2.4 GHz power

2.9 GHz power
3.4 GHz power
3.8 GHz power

 8

 16

 32

 64

 128

 256

 512

2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M

B

50

60

70

80

90

100

110

120

130

140

(b) Offload

Fig. 5. Onloaded vs. offloaded bi-directional ping-pong latency

to this study. In order to confirm the results, we conducted
some MILC experiments on the exact same hardware with the
network hardware swapped. These experiments confirmed that
process variation between the servers used for the experiments
were negligible.

2) Profiling The Applications: An interesting trend emerges
when comparing these results. Offloading has a measurable
performance benefit on MILC but LULESH is nearly indistin-
guishable from the onloaded environment. To understand the
difference between these two applications, we profiled the two
applications using MPIP [12]. These tests were run at 3.8GHz
on four nodes with the QLogic onloaded InfiniBand cards. The
pieces of information we gathered are percentage of time the
application spent in MPI, the distribution of time within MPI,
and the number and distribution of function calls.

Both applications spent a fair amount of time in MPI;
MILC spent 15% of it’s runtime in MPI, while LULESH spent
12%. However, the number of MPI calls was significantly
different. MILC called MPI 4,011,216 times over its runtime
averaging 1382.45 times per second. Comparatively, LULESH
made substantially fewer calls, with 42,904 MPI calls over
it’s runtime, averaging 81.64 per second. This equates out to
2901.5 MPI calls per second for MILC and 525.5 MPI calls
per second for LULESH. Table I shows the distribution of MPI
calls to specific functions. The notable differences are MILC
has larger percentage of wait calls and the lower percentage
of Allreduce calls, compared to LULESH. Table II shows the
distribution of time within MPI calls. The differences here are
stark; MILC spends a reasonable amount of time in Allreduce,
Isend, and Wait however, LULESH spends almost no time
in Isend, mainly spending time in Allreduce and Wait. The
time spent in Irecv and Isend in MILC illustrates that it
is performing more significant point-to-point communication
than LULESH. MILC is a memory bound code that can be
sensitive to network performance, as such it is not surprising
that the performance of MILC is impacted by lowering CPU
frequency in an onloaded networking situation. LULESH is
primarily dependent on the performance of Allreduce for good
networking performance. These results indicate that the Allre-
duce performance is not significantly divergent in performance
between the onloaded and offloaded networking approaches
such that a clear winner emerges.

Call MILC LULESH
Allreduce 1.15% 2.22%
Irecv 24.71% 30.34%
Isend 24.71% 30.34%
Wait 49.42% 30.34%
Waitall 0.00% 6.73%
Other 0.00% 0.04%

TABLE I. DISTRIBUTION OF MPI CALLS

Call MILC LULESH
Allreduce 29.86% 42.68%
Irecv 1.71% 0 %
Isend 13.99% 0.2%
Wait 54.43% 54.02%
Other 0.01% 0.4%

TABLE II. DISTRIBUTION OF TIME WITHIN MPI ON A STANDARD
RUN

These results indicate that the performance benefit of
Offloading is seen primarily in codes that have a large number
of small communication calls, rather than a few larger calls.
MILC and LULESH spent similar percentages of their run-
times in MPI, but MILC relies on a large number of small
point to point and collective operations and LULESH focuses
on small number of large collectives that make up most of its
time in MPI.

V. DISCUSSION

From observing the results of the microbenchmark and
proxy application experiments, it can be observed that the
impacts of lowered CPU frequencies on onloaded network-
ing stack processing are inline with expectations. By using
host CPUs to perform network stack processing, networking
performance is susceptible to changes in CPU design, either
through frequency reduction or through migration to many-
core architectures. While it is expected that future multi-core
server class CPUs will continue to improve their aggregate
performance, single-thread performance is not expected to
continue to improve in proportion to aggregate performance
increases. As such, offloaded networking will provide a viable
alternative for future generation systems as the networking
ASIC approach can continue to provide good networking per-



R
u
n
tim

e
 (

S
)

P
o
w

e
r 

(W
)

CPU Speed (GHz)

MILC Onload Runtime with Power

1 Node
1 Nodes Power

2 Nodes
2 Nodes Power

4 Nodes
4 Nodes Power

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

1.4
1.8

2.2
2.6

3.0
3.4

3.8
90

170

250

330

410

490

570

650

(a) Onload

R
u
n
tim

e
 (

S
)

P
o
w

e
r 

(W
)

CPU Speed (GHz)

MILC Offload Runtime with Power

1 Node
1 Nodes Power

2 Nodes
2 Nodes Power

4 Nodes
4 Nodes Power

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

1.4
1.8

2.2
2.6

3.0
3.4

3.8
90

170

250

330

410

490

570

650

(b) Offload

Fig. 6. Onload vs. offloaded runs of the MILC application

R
u
n
tim

e
 (

S
)

P
o
w

e
r 

(W
)

CPU Speed (GHz)

LULESH Onload Runtime with Power

2 Node 2 Nodes Power 4 Nodes 4 Nodes Power

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

1.4
1.8

2.2
2.6

3.0
3.4

3.8
90

170

250

330

410

490

570

650

(a) Onload

R
u
n
tim

e
 (

S
)

P
o
w

e
r 

(W
)

CPU Speed (GHz)

LULESH Offload Runtime with Power

2 Node 2 Nodes Power 4 Nodes 4 Nodes Power

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

1.4
1.8

2.2
2.6

3.0
3.4

3.8
90

170

250

330

410

490

570

650

(b) Offload

Fig. 7. Onload vs. offloaded runs of the LULESH application

formance regardless of CPU changes as long as future CPUs
can continue to provide low-latency networking requests.

Power consumption is also a concern for future capability-
class systems. The experiments performed in this paper have
demonstrated that networking performance for offloaded ap-
proaches can provide good network performance with major
reductions in the range of 30% with less than 2% or net-
working performance loss. Further application studies showed
that onload and offload networking approaches can diverge in
performance at lowered CPU frequencies for some applications
while others are less impacted by CPU frequencies changes.

VI. RELATED WORK

The offload-versus-onload debate for high-performance in-
terconnects has been ongoing since network interfaces moved
from the memory bus to the I/O bus in early 1990’s [13].
Early distributed memory on massively parallel processing
machines where the network interface was on the memory
bus, such as the Intel Paragon, had multiple processors per
node and allowed one of these processors to be dedicated to
network protocol processing. With the advent programmable
network interface controllers (NICs), such as Myrinet [14]
and Quadrics [15], offloading a significant portion of network
protocol processing to a dedicated NIC processor became
possible. For MPI-based HPC applications, these networks

allowed offloading of latency-sensitive operations, such as
collective communication operations. However, the benefit of
offloading complex operations, such as tag matching and queue
traversals required for MPI point-to-point communication op-
erations, has continued to be debated. Proponents of onload
have argued that the low performance of embedded processors
in the NIC is prohibitive and that dedicating host processor
cores is not only more efficient, but is also more cost effective,
especially as the number of cores per node continues to grow.

Most interconnects used in large-scale HPC systems today
incorporate some offload capability. IBM’s Blue Gene/Q [16]
and PERCS [17] networks both support offloading of MPI
collective operations. Likewise, Cray’s Gemini [18] and
Aries [19] networks support MPI collective communication
offload. With the ConnectX-2 [20] product, InfiniBand network
adapters from Mellanox also began supporting MPI collec-
tive communication offload. However, these networks do not
offload the more complex tag matching and queue traversal
mechanisms needed to handle MPI point-to-point communi-
cation operations. These networks rely on the MPI process
running on host processors for this capability. Techniques
like Cray’s Core Specialization [21] provide a mechanism for
dedicating host processor cores to running an MPI progress
thread. This technique has also been used to improve the
performance of TCP/IP protocol stack processing [22].



More recently, power and energy efficiency of the inter-
connect has become an important consideration for large-scale
data centers [23], [24] and HPC systems [25], [26], providing
a new perspective on the offload-versus-onload debate. Other
works have previously studied the impact that power-efficient
cores have on MPI message rate [3].

VII. CONCLUSIONS AND FUTURE WORK

In examining the differences between onloaded and of-
floaded networks for varying host CPU frequencies, it has
been observed that the offloaded networking approach provides
approximately equivalent or superior performance at lower
frequencies. While this finding cannot be used to conclusively
state that offloaded networking is key for future many-core
systems networking performance, it provides key evidence to
be used in future evaluation of networking approaches for fu-
ture generation compute systems. The microbenchmark results
clearly illustrate the potential benefits of network offloading,
with power savings in the 20.5% range with only 0.5% perfor-
mance loss and good performance down to 1.5% performance
loss and power reductions of 30.5%. While onloading can
reap greater power consumption drops, performance at the
1.4GHz level shows that onloading results in a loss of over half
of the available throughput at higher CPU frequencies. This
demonstrates the tradeoffs in single thread communications
performance that would occur on systems with lowered CPU
frequencies, and can reasonably be expected to be even lower
if more simplified little-cores are used.

The conclusions reached from this study are somewhat in-
tuitive and while the high-performance computing networking
community has pre-supposed that such outcomes were likely,
no study has yet addressed this issue. While the results are
straightforward, they provide the foundation for discussions on
the merits of onload versus offload for next generation systems.
These results clearly demonstrate that single-thread perfor-
mance of onloaded networking solutions can be restrictive
in emerging many-core architectures. While multi-threaded
approaches may alleviate some of the negative performance
implications that this study exposes in single-threaded perfor-
mance, the number of compute cores needed to close this gap
is an open question that is currently being researched through
studies into methods of providing parallelism in MPI. We can
therefore conclude that at the current time, an offloaded net-
working approach can provide good networking performance
for slower frequency processors, while an onloading approach
will not be viable without further research and improvements
to multi-core based network processing for high-performance
computing.

In the future, we plan to expand this study by examining
methods of improving multi-threading in MPI to explore if
onloaded networking can provide similar performance to of-
floaded networks in many-core architectures. If it is possible to
provide similar performance we will investigate the number of
resources that need to be invested to provide offload equivalent
network performance.

REFERENCES

[1] J. Dinan, R. E. Grant, P. Balaji, D. Goodell, D. Miller, M. Snir,
and R. Thakur, “Enabling communication concurrency through flexible
message passing interface endpoints,” vol. In press. Sage Publishing,
2014.

[2] A. Friedley, G. Bronevetsky, T. Hoefler, and A. Lumsdaine, “Hybrid
mpi: efficient message passing for multi-core systems,” in Proceedings
of SC13: International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 2013, p. 18.

[3] B. W. Barrett, S. D. Hammond, R. Brightwell, and K. S. Hemmert,
“The impact of hybrid-core processors on mpi message rate,” in
Proceedings of the 20th European MPI Users’ Group Meeting, ser.
EuroMPI ’13. New York, NY, USA: ACM, 2013, pp. 67–71. [Online].
Available: http://doi.acm.org/10.1145/2488551.2488560

[4] U.S. Department of Energy’s Office of Science, “The opportunities and
challenges of exascale computing,” 2010.

[5] “Omited for blind review.”
[6] C. Aubin et al., “Fermilab lattice, milc, and hpqcd collaborations,” Phys.

Rev. Lett, vol. 94, p. 011601, 2005.
[7] I. Karlin, J. Keasler, and R. Neely, “Lulesh 2.0 updates and changes,”

Tech. Rep. LLNL-TR-641973, August 2013.
[8] Q. O. Snell, A. Mikler, and J. L. Gustafson, “Netpipe: A network

protocol independent performance evaluator,” vol. 6, 1996.
[9] M. Collaboration et al., “Mimd lattice computation (milc) collabo-

ration home page,” Information available at http://physics. indiana.
edu/sg/milc. html.

[10] K. Antypas, “Nersc-6 workload analysis and benchmark selection
process,” Lawrence Berkeley National Laboratory, 2008.

[11] I. Karlin, A. Bhatele, B. L. Chamberlain, J. Cohen, Z. Devito,
M. Gokhale, R. Haque, R. Hornung, J. Keasler, D. Laney et al., “Lulesh
programming model and performance ports overview,” Lawrence Liv-
ermore National Laboratory, Tech. Rep. LLNL-TR-608824, 2012.

[12] J. Vetter and C. Chambreau, “mpip: Lightweight, scalable mpi profil-
ing,” URL: http://www. llnl. gov/CASC/mpiP, 2005.

[13] K. Underwood, R. Brightwell, and S. Hemmert, “Network interfaces for
high-performance computing,” in Attaining High-Performance Commu-
nication: A Vertical Approach, A. Gavrilovska, Ed. CRC Press, 2009,
pp. 149–168.

[14] N. J. Boden, D. Cohen, R. E. F. A. E. Kulawik, C. L. Seitz, J. N.
Seizovic, and W.-K. Su, “Myrinet: A gigabit-per-second local area
network,” IEEE Micro, vol. 15, no. 1, pp. 29–36, Feb. 1995.

[15] F. Petrini, W. chun Feng, A. Hoisie, S. Coll, and E. Frachtenberg, “The
Quadrics network: High-performance clustering technology,” IEEE Mi-
cro, vol. 22, no. 1, pp. 46–57, January/February 2002.

[16] D. Chen, N. A. Eisley, P. Heidelberger, R. M. Senger, Y. Sugawara,
S. Kumar, V. Salapura, D. L. Satterfield, B. Steinmacher-Burow, and
J. J. Parker, “The IBM Blue Gene/Q interconnection network and
message unit,” in Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’11. New York, NY, USA: ACM, 2011, pp. 26:1–26:10. [Online].
Available: http://doi.acm.org/10.1145/2063384.2063419

[17] B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel, B. Drerup,
T. Hoefler, J. Joyner, J. Lewis, J. Li, N. Ni, and R. Rajamony, “The
PERCS high-performance interconnect,” in IEEE Symposium on High-
Performance Interconnects, August 2010.

[18] R. Alverson, D. Roweth, and L. Kaplan, “The Gemini system inter-
connect,” in High Performance Interconnects (HOTI), 2010 IEEE 18th
Annual Symposium on, Aug 2010, pp. 83–87.

[19] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson,
T. Johnson, J. Kopnick, M. Higgins, and J. Reinhard, “Cray Cascade:
A scalable HPC system based on a Dragonfly network,” in Proceedings
of the ACM/IEEE International Conference on High-Performance Com-
puting, Networking, Storage, and Analysis (SC’12), November 2012.

[20] R. Graham, S. Poole, P. Shamis, G. Bloch, G. Bloch, H. Chapman,
M. Kagan, A. Shahar, I. Rabinovitz, and G. Shainer, “Connectx-2
infiniband management queues: First investigation of the new support
for network offloaded collective operations,” in Cluster, Cloud and Grid
Computing (CCGrid), 2010 10th IEEE/ACM International Conference
on, May 2010, pp. 53–62.

[21] H. Pritchard, D. Roweth, D. Henseler, and P. Cassella, “Leveraging the
Cray Linux Environment Core Specialization feature to realize MPI
asynchronous progress on Cray XE systems,” in Proceedings of the
Cray User Group Conference, May 2012.

[22] L. Shalev, J. Satran, E. Borovik, and M. Ben-Yehuda, “Isostack: Highly
efficient network processing on dedicated cores,” in Proceedings of the



2010 USENIX conference on USENIX annual technical conference,
ser. USENIXATC’10. Berkeley, CA, USA: USENIX Association,
2010, pp. 5–5. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1855840.1855845

[23] G. Liao, X. Zhu, S. Larsen, L. Bhuyan, and R. Huggahalli, “Under-
standing power efficiency of TCP/IP packet processing over 10GbE,”
in High Performance Interconnects (HOTI), 2010 IEEE 18th Annual
Symposium on, Aug 2010, pp. 32–39.

[24] J. Byrne, J. Chang, K. T. Lim, L. Ramirez, and P. Ranganathan,
“Power-efficient networking for balanced system designs: Early
experiences with PCIe,” in Proceedings of the 4th Workshop on
Power-Aware Computing and Systems, ser. HotPower ’11. New
York, NY, USA: ACM, 2011, pp. 3:1–3:5. [Online]. Available:
http://doi.acm.org/10.1145/2039252.2039255

[25] T. Hoefler, “Software and hardware techniques for power-efficient HPC
networking,” Computing in Science Engineering, vol. 12, no. 6, pp.
30–37, Nov 2010.

[26] E. Totoni, N. Jain, and L. Kale, “Toward runtime power management
of exascale networks by on/off control of links,” in Parallel and
Distributed Processing Symposium Workshops PhD Forum (IPDPSW),
2013 IEEE 27th International, May 2013, pp. 915–922.


