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Abstract—We present PULP, a parallel and memory-efficient
graph partitioning method specifically designed to partition low-
diameter networks with skewed degree distributions. Graph
partitioning is an important Big Data problem because it impacts
the execution time and energy efficiency of graph analytics
on distributed-memory platforms. Partitioning determines the
in-memory layout of a graph, which affects locality, inter-
task load balance, communication time, and overall memory
utilization of graph analytics. A novel feature of our method
PULP (Partitioning using Label Propagation) is that it optimizes
for multiple objective metrics simultaneously, while satisfying
multiple graph constraints. Using our method, we are able to
partition a web crawl with billions of edges on a single compute
server in under a minute. For a collection of test graphs, we
show that PULP uses 8-39x less memory than state-of-the-art
partitioners, and is up to 14.5x faster, on average, than alternate
approaches (with 16-way parallelism). We also achieve better
partitioning quality results for the multi-objective scenario.

I. INTRODUCTION

Graph analytics deals with the computational analysis of
real-world graph abstractions. There are now several online
repositories that host representative real-world graphs with up
to billions of vertices and edges (e.g., [17], [8], [28]). Also,
new open-source and commercial distributed graph processing
frameworks (e.g., PowerGraph [10], Giraph [7], Trinity [26],
PEGASUS [12]) have emerged in the past few years. The
primary goal of these frameworks is to permit in-memory
or parallel analysis of massive web crawls and online social
networking data. These networks are characterized by a low
diameter and skewed vertex degree distributions, and are
informally referred to as small-world or power law graphs.
These graph processing frameworks use different I/O formats
and programming models [23], [11], but all of them require
an initial vertex and edge partitioning for scalability in a
distributed-memory setting.

A key motivating question for this work is, how must one
organize the data structures representing the graph on a cluster
of multicore nodes, with each node having 32-64 GB memory?
Fully replicating the data structures on each process is infeasi-
ble for massive graphs. A graph topology-agnostic partitioning
will lead to severe load imbalances when processing graphs
with skewed degree distributions. Two common topology-
aware approaches to generate load-balanced partitions are (i)
randomly permuting vertex and edge identifiers, and (ii) using
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a specialized graph partitioning tool. Random permutations
ensure load balance, but hurt locality and inter-task com-
munication. Graph partitioning methods attempt to maximize
both locality and load balance, and optimize for aggregate
measures after partitioning, such as edge cut, communication
volume, and imbalance in partitions. There is a large collection
of partitioning methods [1] that perform extremely well in
practice for regular, structured networks. However, there are
three issues that hinder use of existing graph partitioners for
small-world network partitioning:

1) Traditional graph partitioners are heavyweight tools that
are designed for improving performance of linear solvers.
Most graph parttioning methods use multilevel approaches,
and these are memory-intensive. Partitioning time is not a
major consideration, as it is easy to amortize the cost of
partitioning over multiple linear system solves.

2) The collection of complex network analysis routines is
diverse and constantly evolving. There is no consensus on
partitioning objective measures. Partitioning with multiple
constraints and multiple objectives is not widely supported
in the current partitioners.

3) Small-world graphs lack good vertex and edge separa-
tors [18]. This results in problems that are hard to parti-
tion the traditional way, resulting in even high-performing
traditional partitioners taking hours to partition small-world
graphs.

This paper takes a fresh look at the problem of distributed
graph layout and partitioning. We introduce a new partitioning
method called PULP (Partitioning using Label Propagation),
and explore trade-offs in quality and partitioning overhead for
a collection of real and synthetic small-world graphs. As the
name suggests, PULP is based on the label propagation com-
munity identification algorithm [24]. This algorithm belongs
to the class of agglomerative clustering algorithms, generates
reasonably good quality results for the community identifica-
tion problem [1], is simple to implement and parallelize, and
is extremely fast. One of the goals of any graph partitioning
scheme is to reduce the number of inter-partition edges (or
the edge cut), as it loosely correlates with the communication
cost.Since communities are tightly connected vertices, co-
locating vertices of a community in a partition will increase the



proportion of intra-partition edges. In parallel graph analytics
utilizing a bulk synchronous parallel (BSP) model, we also
want to minimize the maximum communication (cut edges)
incurred by any single partition. In typical graph analytic algo-
rithms, the number of vertices/edges in each partition represent
the local work and the memory usage. As a consequence,
our approach also tries to impose vertex and edge balance
constraints, with the goal to minimize total edge cut and
maximal per-partition edge cut.

To demonstrate the efficacy of our approach, we compare
the quality of results obtained using PULP to the multi-
level k-way partitioning method in METIS [14], [13] and
ParMETIS [15]. We use the multiple constraint version of
both the codes [16], [25]. We also compare our code against
the KaHIP [19] library, which uses label propagation within a
multilevel framework. Our contributions in the paper are:

1) A fast, scalable, partitioner that is practical for partitioning
small-world graphs.

2) A partitioner that handles the multiple objective and mul-
tiple constraints that are important for small-world graph
analytics.

3) A performance study for a collection of seven large-scale
small-world graphs (number of edges range from 42 million
to 1.8 billion).

For the large networks and commonly-used quality mea-
sures (edge cut), our partitioning scheme is comparable to
all the partitioners and better than them in additional ob-
jectives (maximum edge cut per partition), for a wide range
of partition counts (2-128) and with fixed edge and vertex
balance constraints. The biggest advantage of our approach is
the relative efficiency improvement: for instance, to partition
the 1.8 billion Slovakian domain (.sk) crawl [2], our approach
uses 7.5 less memory and is 16x faster than METIS. PULP
takes less than a minute on a single compute node to generate
128 partitions of this graph, while satisfying vertex and edge
balance constraints.

Note that graph partitioning is frequently used as a prepro-
cessing routine in distributed graph processing frameworks,
and so PULP can be used to accelerate the execution time of
graph algorithms in software such as Giraph and PowerGraph.

II. PRELIMINARIES: GRAPH DISTRIBUTION AND
PARTITIONING

We consider parallelizing analytics over large and sparse
graphs: the numbers of vertices (n) is greater than 10 million,
and the ratio of the number of edges (m) to number of
vertices is less than 1000. The graph organization/layout in
a distributed-memory system is characterized by the ‘distribu-
tion, partitioning, ordering’ triple. Given p processes or tasks,
the most common distribution strategy, called 1D distribution,
is to assign each task a p-way disjoint subset of vertices and
their incident edges. If the p-way vertex/edge partitioning is
load-balanced, the memory required per task would be @m+n)
identifiers (integers). The advantages of the 1D scheme are its
simplicity, memory efficiency and ease of parallel implemen-
tation of most graph computations using an ‘owner computes’

model. A disadvantage of 1D methods is that some collective
communication routines could potentially require exchange of
messages between all pairs of tasks (p?), and this may become
a bottleneck for large p.

In contrast, a 2D distribution with p = p,. X p. tasks results
in each task being the owner of a subgraph of size ™ x -+ with
disjoint edge assignments, but collective ownersh;p of each
vertex (by p, or p. tasks). The advantage is better load balance
and collective communication phases with up to max(p?, p?)
pairwise exchanges. The disadvantages are increased complex-
ity in algorithm design, primarily the communication steps,
and increased memory usage for storing the graph (since both
the row and column dimensions may be sparse).

The interaction of graph partitioning methods and 1D distri-
butions is well-understood [1]. Recently, it has been shown that
1D graph partitioning used in a 2D distribution is effective for
small-world graphs [3]. However, computing the 1D partition
still remains expensive. Other 1D and 2D distributions, for
instance, vertex degree-based, are also possible [21]. The
current state-of-the-art in distributed-memory implementations
is to adopt a graph distribution scheme, a specific partitioning
method, and then organize inter-node communication around
these choices. In this paper, we focus on the partitioning
aspect of the aforementioned triple and use 1D distribution
and natural ordering.

The partitioning problem we are interested in for graph
analytic applications and is solved in PULP can be formally

described as below. Given an undirected graph G = (V, E),
partition V' into p disjoint partitions. Let IT = {mq,..., 7}
be a balanced partition such that Vi = 1...p,
V] V1
1—¢)— < |V(m 1+e€ (H
(1—e) ’ Vim)l <(1+eu) — )
E
Bl <042 @

where ¢; and ¢, are the lower and upper vertex imbalance
ratios, 7,, is the upper edge imbalance ratio, V' (m;) is the set
of vertices in part 7; and E(m;) is the set of edges such that
both its endpoints are in part 7;. We define the set of cut edges
as

C(G,T1) = {{(u,v) € B} | Ti(w) £ T(0)} @)
C(G,m) = {{(u,v) e C(G,I)} | (u €M Vv EmE)} 4)

Our partitioning problem is then to minimize the two metrics

EC(G,1I) = |C(G,11)| (5)
ECynas (G, 11) = max |O(G, )| 6)

This can also be generalized for edge weights and vertex
weights. PULP can be extended to handle other metrics like
the total communication volume and the maximum communi-
cation volume. In the past, multi-constraint graph partitioning,
with the EC' objective has been implemented in METIS and
ParMETIS [16], [25]. We will compare against both these
methods in Section I'V. Pinar et al. [22] suggested a framework
for partitioning with complex objectives (but single constraint)



that is similar to our iterative approach. More recently, there
are multi-objective partitionings [29] and multi-constraint and
multi-objective partitionings [4] for hypergraph partitioning.
Hypergraph methods are often much more compute-intensive
than graph partitioning methods.

III. PULP: METHODOLOGY AND ALGORITHMS

This section introduces PULP and our methodology for
utilizing label propagation to partition large-scale small-world
graphs in a scalable manner. We will further detail how it
is possible to create and vary label propagation weighting
functions to create balanced partitions that minimize total edge
cut (EC) and/or maximal per-partition edge cut (EC,qz)-
This overall strategy can partition graphs under both single
and multiple constraints as well as under single and multiple
objectives. It is possible to extend this approach even further to
include other objectives, for example, communication volume,
beyond those described below.

A. PULP Overview

Label propagation methods are attractive for community
detection due to their low computational overhead, low mem-
ory utilization, as well as the relative ease of paralleliz-
ability. In PULP, we utilize weighted label propagation in
three separate stages to partition the graph. The first stage
initializes data structures and creates an initial partitioning
of vertices into communities or clusters. The communities
serve as initial partitioning for our iterative approach in the
second and third stages. In the second and the third stage,
the algorithm iteratively alternates between a label-propagation
based balancing step to minimize one of the objectives and
a refinement step to further improve upon a given objective.
Both these stages ensure that constraints satisfied in previous
steps remain satisfied. The input parameters to PULP are listed
in Table I. Listed in brackets are the default values we used
for partitioning the graphs for our experiments.

TABLE I

PULP INPUTS, PARAMETERS, AND SUBROUTINES.
G(V,E) Input graph (undirected, unweighted)
n =|V|  Number of vertices in graph
m = |E| Number of edges in graph
P(1---n) Per-vertex partition mappings
P Number of partitions
€] Vertex lower balance constraint [0.75]
€y Vertex upper balance constraint [0.1]
Nu Edge upper balance constraint [0.5]
I # of iterations in label propagation stage [3]
I # of iterations in outer loop [3]
Iy # of iterations in balanced propagation stage [5]
I, # of iterations in constrained refinement stage [10]
PULP-X  PULP subroutine for various stages

Algorithm 1 gives the overview of the three stages to
create a vertex and edge-constrained partitioning that min-
imizes both edge cut and maximal per-partition edge cut.
We refer to this algorithm as PULP Multi-Constraint Multi-
Objective partitioning, or PULP-MM (Algorithm 1). After
initializing a random partitioning, PULP-MM does an initial
label propagation in PULP-p (Algorithm 2) to get the initial

community assignments. The communities are then used in
an iterative stage that first balances the number of vertices
in each partition through weighted label propagation (PULP-
vp listed in Algorithm 3) while minimizing the edge cut
and then improves the edge cut on the balanced partitions
through FM-refinement [?]. The next iterative stage further
balances the number of edges per partition while minimizing
per-partition edge cut through weighted label propagation
(PULP-cp listed in Algorithm 4) and then refines the achieved
partitions through constrained FM-refinement (PULP-cr as
shown in Algorithm 5). More details of these stages are in
the following subsections.

Algorithm 1 PULP Multi-Constraint Multi-Objective Algo-
rithm
procedure PULP-MM(G(V, E), p, Ip, I}, Iy, I,)
for all v € V do
P(v) «Rand(1---p)
N(1---p) « vertex counts in P(1---p)
PULP_p(G(M E)7 b, P: N7 [P)
fori=1---1; do
PULP-vp(G(V, E), p, P, N, I)
PULP-vt(G(V, E),p, P,N, I,)
M(1---p) < edge counts in P(1---p)
T(1---p) < edge cutin P(1---p)
U < current edge cut
fori=1---1; do
PULP-cp(G(V, E),p, P, N, M, T, U, I)
PULP-ct(G(V, E),p, P, N, M, T, U, I,.)
return P

B. PULP Initialization and Label Propagation

PULP-p (Algorithm 2) randomly initializes partitions for
vertices and then uses this initial partitioning in label propaga-
tion. Our label propagation algorithm is given by Algorithm 2.
Here, in lieu of doing the standard label propagation approach
of assigning to a given vertex v a label based on the maximal
label count, Max(C(1 - - - p)), of all of its neighbors u € E(v),
we utilize an additional degree weighting. A vertex v is
more likely to take w’s label if u has a very large degree.
This approach enables creation of dense clusters around the
high degree vertices that are common in small world graphs,
and ends up minimizing edge cut in practice by making it
preferential for boundary vertices to be of smaller degree, as
larger degree vertices will propagate their label to all their
neighbors in the subsequent iterations.

We use an additional minimal size constraint Min, to
prevent the size of a given partition |7;| from becoming too
small. Initial partitions that are too small require lot more
iterations in the later stages to rebalance themselves. We
otherwise allow clusters to naturally grow to any size and only
perform vertex/edge balancing in the subsequent stages. We
chose a fixed iteration cutoff I,, in our current implementation,
as we are not explicitly optimizing for a community detection
measure such as modularity [9] and only want a reasonable
quality initial partitioning.



Algorithm 2 PULP degree-weighted label propagation stage.

procedure PULP-p(G(V, E),p, P, N, I,)
Min, + (n/p) x (1 — &)
140,71
while ¢ < I, and  # 0 do
r<+0
for all v € V do
C(l---p)«0
for u € E(v) do
C(P(u)) « C(P(u)) + [E(u)|
x < Max(C(1---p))
if x # P(v) and N(P(v)) — 1 > Min, then
Pw) <z
r<r4+1
14—1+1
return P

C. PULP Vertex Balancing and Total Edge Cut Minimization

With the initial partitioning, PULP-vp (Algorithm 3) bal-
ances the vertex counts between partitions to satisfy our
original balance constraint. It follows the same basic outline
of the initialization stage, in that it uses degree-weighted label
propagation. However, there are two important changes.

Algorithm 3 PULP single objective vertex-constrained label
propagation stage.

P + PULP-vp(G(V, E), P,p, N, I,)

140,71

Mazy, <+ (n/p) x (1 + €,)

Wy(1---p) « Max(Maz,/N(1---p)—1,0)

while i < I, and r # 0 do

r<0
for all v € V do
C(l---p)«0

for all uw € E(v) do
C(P(u)) « C(P(u)) + |N(u)|
for j=1---pdo
if Moving v to P; violates Max, then
C@y) <0
else
CH) < CU) x Wa(4)
x < Max(C(1---p))
if z # P(v) then
Update(N (P(v)), N(z))
Update(W, (P(v)), Wy(z))
Pw) < x
r—nr+1
1+ 1+1

First, for any partition that is overweight, i.e. the number of
vertices in that current partition 7; (N (4) in the algorithm) is
greater than our maximal M ax,,, we do not allow that partition
to accept new vertices. Second, there is an additional weighting
parameters W, (1---p) that is based on how underweight
any partition currently is. For a given partition 4, W, (i) will
approach infinity as the size of that partition approaches zero
and will approach zero as the size of the partition approaches
Maz,. For partition sizes above Max,, we will consider the
weight to be zero. This weighting forces larger partitions to

give vertices away with a preference towards the current most
underweight partitions. Due to the low diameter of small-world
graphs, it is possible for any given vertex to move between
multiple partitions. This stage is still degree weighted and
prefers more edges within a partition minimizing the edge cut
in an indirect way, by preferring small degree vertices in the
boundary.

When none of the partition is overweight and there is
little difference in W, values, this scheme will default to
basic degree-weighted label propagation. We further explicitly
minimize edge cut with FM-refinement. The FM-refinement
stage iteratively examines boundary vertices and passes them
to a new partition if it results in a lower edge cut without
violating vertex balance constraint. We do not show PULP-
vr for space considerations, but it is essentially the same
as Algorithm 5 (explained below), except for PULP-vr, we
consider only Mazx, as our single constraint.

We perform I; iterations of balancing and refining before
moving on to the stages for other constraints and minimize
other partitioning objectives. In order to create a vertex-
constrained partitioning with a total edge cut minimized,
the algorithm can stop after this stage. We call this PULP
Single-Constraint Single-Objective, or simply PULP. Also
note that very simple changes to Algorithm 3 would allow
us to constrain edge balance instead of vertex balance.

D. PULP Edge Balancing and EC,, ., Minimization

Once we have a vertex balanced partitions that minimizes
edge cuts, PULP balances edges per partition and minimizes
per-partition edge cut (Algorithm 4). The edge cut might
increase because of the new objective, hence the algorithm
uses a combination of both the objectives with a dynamic
weighting scheme to achieve a balance between the two
objectives. The algorithm ensures the vertex balance constraint
will still be satisfied. The approach still uses weighted label
propagation under given constraints. However, there are a
number of nuances to make note of.

Initially, we do not use the edge balance constraint as it
is given to us. Instead, a relaxed constraint based on the
current maximal edge count across all partitions Curjpsqz, 1S
used to compute the edge balance weights (W, (1---p)). This
results in the possibility of all partitions receiving more edges
with the exception of the current largest, but no partition will
receive enough edges to become greater than Curpsgq,. As
the largest partition can only give away vertices and edges,
Curpraz, 1s iteratively tightened until the given edge balance
constraint is met. Once we pass the threshold given by our
input constraint, we set Curpsq., to be equal to Max.. To
minimize the maximum edges cut per-partition, we employ
a similar procedure with C'urpsq,, and the weightings for
maximum cut edges (W, (1---p)). We iteratively tighten this
bound so that, although we have no assurance that the sum
edge cut will decrease, we will always be decreasing the
maximal edges cut per-partition.

We also introduce two additional dynamic weighting terms
R, and R, that serve to shift the focus of the algorithm be-



Algorithm 4 PULP multi-objective vertex and
constrained label propagation stage.
P < PULP-cp(G(V, E), P,p, N, M, T, U, I)
10, r<1
Max, < (n/p) x (14 €4)
Maze < (m/p) X (14 nu)
Curnmae, +— Max(M(1---p))
Curmaz, < Max(T'(1---p))
We(l---p) + Curmae, /M(1---p)—1
We(l---p) + Curnmaz, /T(1---p) —1
Re+ 1, R.+1
while < I, and r # 0 do

edge-

r<0
for all v € V do
C(l---p)«0

for all u € E(v) do
C(P(w) « C(P(u))+1
for j=1---pdo
if Moving v to P; violates Maz,, Curmace.,,
Curnpaz, then
C@J) «0
else
C(j) « C) x
x + Max(C(1---p))
if z # P(v) then

(We(j) X Re + Wy(j) x Re)

Pw) «+x

r<r+1
Update(N(P(v)), N(x))
Update(M (P (v)), M(z))
Update(T'(P(v)), T'(x))
Update(U)

Update(We (P(v)), We(z))
Update(W(P(v)), We(z))
Update(Curarae, CUrpmaz,)
if Curnvraz. < Max. then
Curman, < Mazx.
Rc — Rc X CUTMG,CL‘C
Re + 1
else
Re <+ R. X
Rc.+1
1+ 1+1

(Curmas, /Maz.)

tween hitting the Max, constraint and minimizing Curjzag, .
For every iteration of the algorithm that the M ax. constraint is
not satisfied, R, is increased by the ratio of which Curjpsq,, is
greater than M az.. This shifts the weighting function to give
higher preference towards moving vertices to partitions with
low edge counts instead of attempting to minimize the edge
cut balance. Likewise, when the edge balance constraint is
satisfied, we reset R, to one and iteratively increase R, to now
focus the algorithm on minimizing maximal per-partition edge
cut. Note that we still ensure the vertex balance is maintained
with Mazx,,.

This iterative approach with different stages works much
better in practice for a multi-constraint problem, as employing
two explicit constraints at the beginning is a very tough prob-
lem. Label propagation will often get stuck, unable to find any
vertices that can be moved without violating either constraint.
Note that we can very easily turn the problem in a multi-

constraint single-objective problem by not including Cur gz,
and W, in our weighting function or constraint checks. We
demonstrate this later in Section IV by running PULP Multi-
Constraint Single-Objective, or PULP-M. Additionally, we
can instead turn the problem into a single-constraint three-
objective problem by ignoring Max,. altogether and instead
just attempt to further minimize both Curpsaz, and Curyraz,
along with total edge cut.

Algorithm 5 PULP multi-objective vertex and edge-
constrained refinement stage.
P « PULP-ce(G(V, E), P,N, M, T, U, p)
10, r+1
Mazy < (n/p) X (1 + €u)
Maze < (m/p) X (14 nu)
Curyaz, < Max(Max(M(1---
Curmaz, < Max(T'(1---p))
while ¢ < I, and r # 0 do

p)).Maz.)

r<0
for all v € V do
C(l---p)« 0

for all u € E(v) do
C(P(u)) + C(P(u)) +1

x < Max(C(1---p))

if Moving v to P, does not violate Maz,, Cursaz.,

CurMazc then
P(v) <=z
rr+1
Update(N (P(v)), N (x)
Update(M (P(v)), M (x
Update(T'(P(v)), T(x))
Update(U)
1+ i+1

)
)

After the completion of Algorithm 4, we again perform
a constrained FM-refinement, given by Algorithm 5. This
algorithm uses the current maximal balance sizes of Max,,
Curaraz, » and Curasqq, , and we attempt to minimize the total
edge cut without violating any of these current balances.

E. Algorithm Parallelization and Optimization

One of the strengths of using label propagation for par-
titioning is that its vertex-centric nature lends itself towards
very straightforward and efficient parallelization. For all of
our listed label propagation-based and refinement algorithms,
we implement shared-memory parallelization over the primary
outer loop of all v € V. Max,, Curpraz., Curirez,, Re, and
R, as well as N, M, and T are global values and arrays and
are updated in a thread-safe manner. Each thread creates and
updates its own C, W,,, W,, and W, arrays.

The algorithm also uses global and thread-owned queues as
well as boolean in queue arrays to speed up label propagation
through employing a queue-based approach similar to ones
used for color propagation [27]. This technique avoids having
to examine all v € V in every iteration. Although it is
possible because of the dynamic weighting functions that a
vertex doesn’t end up enqueued when it is desirable for it
to change partitions on a subsequent iteration, the effects
of this are observed to be minimal in practice. We observe



near identical quality between both our queue and non-queue
implementations as well as our serial and parallel code.

IV. RESULTS AND DISCUSSION
A. Experimental Setup

We evaluate performance of our new PULP partitioning
strategies on a collection of seven large-scale small-world
graphs, listed in Table II. LiveJournal, Orkut, and Twitter
(follower network) are crawls of online social networks from
the SNAP Database and the Max Planck Institute for Software
Systems [28], [S]. sk-2005 is a crawl of the Slovakian (.sk)
domain using UbiCrawler and was retrieved from the Univer-
sity of Florida Sparse Matrix Collection [2], [8]. WikiLinks
is a crawl of links between articles within Wikipedia [17].
The DBpedia graph is a structured RDF graph generated
from Wikipedia data [20]. The R-MAT graph is a randomly
generated scale 24 R-MAT graph [6]. The Orkut graph is
undirected and the remaining six graphs are directed. We
preprocessed the graphs before running PULP by removing
all degree-0 vertices, multi-edges, and extracted the largest
(weakly) connected component. Ignoring I/O, this preprocess-
ing required minimal computational time, only on the order
of a few seconds in serial for our datasets. Table II lists the
sizes and properties of these seven graphs after preprocessing.

TABLE 11
TEST GRAPH CHARACTERISTICS after PREPROCESSING. GRAPHS BELONG
TO FOUR CATEGORIES, OSN: ONLINE SOCIAL NETWORKS, WWW: WEB
CRAWL, RDF: GRAPHS CONSTRUCTED FROM RDF DATA, SYN:
GENERATED SYNTHETIC NETWORK. # VERTICES (n), # EDGES (m),
AVERAGE (davg) AND MAX (dmax) VERTEX DEGREES, AND
APPROXIMATE DIAMETER (D) ARE LISTED. B = x10%, M = x109,

K = x103.
Network Category n m  davg dmazx D Source
LiveJournal OSN 48 M 43 M 18 20K 16 [18]
Orkut OSN 31M 117 M 76 33K 9 [33]
R-MAT SYN 77 M 133 M 35 260K 8 [6]
DBpedia RDF 62M 190M 6.1 73 M 8 [20]
WikiLinks WWW 26 M 504 M 42 43 M 170 [17]
sk-2005 WWW 51 M 18B 72 8.6 M 308 [2]
Twitter OSN 53M 16B 61 3.5M 19 [5]

The scalability studies were done on three clusters: Comp-
ton, Shannon, and Stampede. Each node of Compton and
Shannon is a dual-socket system with 64 GB or 128 GB main
memory and Intel Xeon E5-2670 (Sandy Bridge) CPUs at
2.60 GHz and 20 MB last-level cache running RHEL 6.1.
Stampede has two Intel Xeon E5-2680 CPUs and 1024 GB
DDR3 on the large memory compute nodes running CentOS
6.3. In addition, we used Carver at the National Energy
Research Scientific Computing Center. The programs were
built with the Intel C++ compiler (version 13) with OpenMP
for multithreading and the —O3 option, and we used Intel MPI
(version 4.1) for MPI codes.

B. Performance Evaluation

We evaluate our PULP partitioning methodology against
both single and multi-constraint METIS and ParMETIS as well

TABLE III
COMPARISON OF EXECUTION TIME OF SERIAL AND PARALLEL (16 CORES)
PULP-MM ALGORITHM WITH SERIAL METIS-M, KAFFPA, PARMETIS
(BEST OF 1 TO 256 CORES), COMPUTING 32 PARTS. THE “ALL” SPEEDUP
COMPARES PARALLEL PULP-MM TO THE BEST OF THE REST.

Execution time (s) PuLP-MM Speedup

Serial Parallel vs Best All

Network | P METIS-M KaFFPa PuLP ParMETIS Serial  Parallel
LiveJournal 91 75 182 7 44 0.8x 6.1x
Orkut 135 170 413 12 73 1.2x  5.8x
R-MAT 200 778 - 34 S 39%  22.9x
DBpedia 723 947 - 167 - 13x  56x
WikiLinks 1205 1104 1120 164 - 09x  6.7%
k2005 351 1237 T - 35x  29.4x
Twitter 5296 13428 - 530 - 25%  25.3x

as KaFFPa from KaHIP. METIS runs used k-way partitioning
with sorted heavy-edge matching and minimized edge cut.
KaFFPa results use the fastsocial option (KaFFPa-FS), which
does constrained label propagation during the initial graph
contraction phase. KaFFPa and ParMETIS were unable to
complete a portion of experiments on R-MAT, DBpedia,
WikiLinks, sk-2005, and Twitter.

We use the three aforementioned variants of PULP
for comparison, which are single-constraint single-objective
(PULP), multi-constraint single-objective (PULP-M), and
multi-constraint multi-objective (PULP-MM). We do compar-
isons on the basis of edge cut, maximal per-partition edge cut,
execution time, and memory utilization. For all experiments,
vertex imbalance ratio is set to 10%. For multi-constraint
experiments, edge imbalance ratio is 50%. Due to a relatively
high-degree vertex in DBpedia, we relax this constraint to
100% at 64 partitions and 200% at 128 partitions on this graph.

C. Execution Time and Memory Utilization

We first compare PULP to METIS, ParMETIS, and KaFFPa
in terms of partitioning times and memory utilizations. We
compare all seven test graphs and from 2 to 128 partitions.
The top plots of Figure 1 give the serial execution times for
all of the tested variants of PULP, METIS, and KaFFPa on
our Sandy Bridge test systems. We observe that the single-
constraint single-objective variant of PULP runs fastest in
almost all test instances. We note that the serial running times
of PULP-M and PULP-MM to also be faster than METIS and
METIS with multi-constraints (METIS-M) in majority of tests.

The bottom plots of Figure 1 give the parallel execution
times of the PULP variants across 16 cores and 32 threads
on our Compton system. We did multiple runs of ParMETIS
using 1 task to 256 tasks (16 nodes) and used the lowest
runtime over all the successful runs on LiveJournal and Orkut.
As a result, the speedups reported are very conservative.
ParMETIS didn’t complete for any of the other graphs. We
also include the serial versions of PULP-M and METIS-M
for comparison. From Figure 1, we can see that the parallel
execution times of all PULP variants are minimal compared
to the other partitioners. Note that this improvement in time
comes at a near negligible cost to edge cut quality. In order to
better demonstrate the speedup, Table III shows the running
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Fig. 1. Partitioning times with PULP, METIS, and KaFFPa. Top: Comparison of serial running times. Bottom: Parallel and Serial running times.

time to compute 32 parts, comparing serial PULP-MM with
METIS-M and parallel PULP-MM against ParMETIS, when
possible, or the best of the serial methods otherwise. The
parallel speedups range from 6x to 29x.

We additionally note that the increase in running times
versus number of partitions increases for PULP because it
correspondingly increases the total number of vertex swaps
between partitions. For parallel runs, this also increases the
number of required atomic updates to the global values and
arrays. However, we also see a relative increase in parallel
speedup for increasing partition counts because, although the
total number of updates increases, the contention between
threads to atomically update any given value decreases when
the number of threads is much less than the number of
partitions.

TABLE IV
PULP EFFICIENCY: MAXIMUM MEMORY UTILIZATION COMPARISONS FOR
GENERATING 128 PARTITIONS.

TABLE V
COMPARISON OF THE TWO QUALITY METRICS, EC AND EC/yq2 FOR
PULP-MM AND METIS-M WHEN COMPUTING 32 PARTS. THE %
IMPROVEMENT SHOWS RELATIVE IMPROVEMENT IN QUALITY WITH
RESPECT TO METIS QUALITY.

PULP-MM METIS-M % Improvement

Network o0 ECmes EC  ECmas  EC ECmas
LiveJournal 14.0M 1.2M 13.3M 1.9M —5% 34%
Orkut 56.8 M 4.3M  44.8M 5.9M —26% 26%
RMAT 118.7M 7.5M 119.3M 11.7TM 1/2% 56%
DBpedia 65.2M 8.0M 57.3M 9.7TM —13% 17%
WikiLinks 196.3M  16.3M 216.1M 30.1M 9% 45%
sk-2005 58.0M 10.9M 70.2M 124M 17% 12%
Twitter 1250.0M  86.1M 1142.0M 129.1M —9% 33%

thread-owned weight arrays also each of size p. The storage
cost for all p length arrays is insignificant with a modest
thread and partition count. We additionally utilize a few more
n length integer and boolean arrays as well as smaller thread-
owned queues and arrays to speed up label propagation, as

mentioned in Section III.

Memory Utilization Improv.
Network  \/ETIS-M KaFFPa PULP-MM Graph Size
LiveJournal 72 GB 50GB 044 GB 033 GB  2lx
Orkut 20GB I13GB  099GB 088GB  23x
R-MAT 42 GB * 12GB  1.02GB  35x
DBpedia 46 GB * 28GB  16GB  28x
WikiLinks ~ 103GB 42GB  53GB  41GB  25x
sk-2005 121 GB *  16GB 13.7 GB 8x
Twitter 487 GB *  14GB  122GB  39x

D. Edge Cut and Maximal Per-Partition Edge Cut

Figure 2 compares the quality of the partitionings from
PULP and METIS with the seven test graph for 2 to 128 par-
titions using multiple constraints for both programs and both
the single and multiple objectives for PULP. We report the
median value obtained over 5 experiments for each partition

Table IV compares memory utilization of PULP to METIS
and KaFFPa, comparing the maximal memory usage for
partitioning each graph in 128 partitions. Memory savings for
PULP versus both METIS and KaFFPa are significant(39x
for twitter and 7.5 for sk-2005). These memory savings are
primarily due to avoiding a multilevel approach. The only
structures PULP needs (in addition to graph storage) are the
global array of length n to store the partition mappings, the
vertex, edge count, and cut count arrays each of size p, and the

count and method. We report on partitions obtained by running
PULP in parallel, but report on partitions obtained by METIS
running in serial, as ParMETIS could successfully run just two
of the problems. We don’t report results from KaFFPa since
the code does not currently support multiple constraints.

The top plots show the edge cuts (EC) obtained for multi-
constraint METIS (METIS-M) as well as both multi-constraint
(PULP-M) and multi-constraint multi-objective PULP (PULP-
MM). The bottom plots give the maximal per-partition edge
cut (EC),q,) as a ratio of total edges. Taken together, these
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Fig. 2. Quality metrics of total cut edge ratio (top) and maximum per-partition edgecut ratio (bottom) for PULP-M, PULP-MM and METIS-M.

two plots demonstrate the tradeoff offered by PULP to mini-
mize either the total edge cut at a cost of maximal per-partition
edge cut or to minimize the maximal per-partition edge cut
at a cost of total edge cut. We observe PULP-M does better
than METIS-M for Twitter and sk-2005, as good as METIS-M
for WikiLinks, Livejournal, R-MAT, and Orkut and worse on
DBpedia in terms of total edge cuts. PULP-MM does slightly
worse than METIS for three graphs and comparable for four
graphs, but results in much better partitions in terms of the
maximal per-partition edge cut. Table V shows this trade-off
for 32 parts. We compare the quality of both the metrics, £EC'
and EC),,,, and observe that PULP-MM improves EC, 4.
substantially (12% — 56%) when compared with METIS-M at
modest expense of the edge cut in some graphs.

In terms of the edge cuts obtained for multi-constraint
partitioning, the top plots of Figure 2 demonstrate that PULP
variants perform relatively well in comparison to METIS
over all test cases with the exception of DBpedia. However,
DBpedia is a generated RDF graph, likely not having the
same community structure inherent to the other test graphs.
Therefore, it does not derive the same degree of benefit from
utilizing a label-propagation-based approach. We also observe
that our multi-objective PULP occasionally out-performs our
single-objective PULP on some test instances. This is likely
due to the additional dynamic weighting parameters which can
more fully explore the search space and are therefore more
likely to avoid local minima.

The bottom plots of Figure 2 demonstrate that multi-
objective can be relatively effective at minimizing the maximal
per-partition edge cut on partitions derived from these graphs.
Note that while we include METIS-M for comparison, it does
not explicitly attempt to minimize edge cut balance. Also note
that other experiment showed that tightening the edge balance
in METIS will also inherently improve the maximal per-
partition edge cut. However, PULP still demonstrated overall
better performance in these experiments. The results of these
tests are not shown for space considerations. In instances
where PULP-M outperforms PULP-MM, examination of re-

sults show that while the overall edge cut balance has been
improved by the approach, the higher total edge cut that results
can offset the derived benefits for smaller partition counts. The
jump seen on select graphs between two and four partitions
can be explained by the fact that the bipartitioning problem on
those instances is a relatively much easier problem than the
4-way partitioning.

V. RELATED WORK

There are three other works known to us that use label
propagation for the task of partitioning large-scale graphs.
We compare our results with their published results as the
codes are not available publicly. Vaquero et al. [31] implement
vertex-balanced label propagation to partition dynamically
changing graphs. Ugander and Backstrom [30] implement
label propagation for vertex-balanced partitioning as an op-
timization problem. They report performance on a similarly
pre-processed LiveJournal graph for generating 100 partitions,
with a serial running time of 88 minutes and resultant edge cut
ratio of 0.49. By comparison, our multi-constraint and multi-
objective serial code creates 128 partitions of the LiveJournal
graph in about two minutes and produces an edge cut ratio
of about 0.41. Wang et al. [32] utilize label propagation in
a manner similar to KaFFPa, which is a multilevel approach
with label propagation during graph coarsening. At the coars-
est level, METIS is used to partition the graph. They also
implement non-multilevel partitioning via a label propagation
step followed by a greedy balancing phase. Their multilevel
single-constraint and single-objective approach to partition
pre-processed LiveJournal has a serial running time of about
75 seconds, consumes about 1.5 GB memory, and has an edge
cut about 25% greater than that produced by METIS. By
comparison, our code consumes only 440 MB memory and
produces cut quality comparable to or better than METIS on
the same graph. Their non-multilevel approach runs in about
half the time, but at a considerable cost to cut quality.



VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present PULP, a new fast, multi-objective,
multi-constraint, partitioner for scalable partitioning of small-
world networks. The partitioning method in PULP is based
on the label propagation community detection method. In
a fraction of the execution time while consuming an order
of magnitude less memory, PULP can produce partitions
comparable or better in terms of total edge cut to the k-way
multilevel partitioning scheme in METIS. In addition, PULP
produces partitions that are better in terms of maximal cut
edges per partition. In future work, we will apply partitionings
from PULP to a larger set of graph computations, as well as
fully explore the input parameters and weighting functions
governing PULP’s partitioning phases.
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