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Abstract—Counting the frequency of small subgraphs
is a fundamental technique in network analysis across
various domains, most notably in bioinformatics and
social networks. The special case of triangle counting
has received much attention. Getting results for 4-vertex
patterns is highly challenging, and there are few practical
results known that can scale to massive sizes. Indeed, even
a highly tuned enumeration code takes more than a day
on a graph with millions of edges. Most previous work
that runs for truly massive graphs employ clusters and
massive parallelization.

We provide a sampling algorithm that provably and
accurately approximates all 4-vertex pattern subgraphs.
Our algorithm is based on a novel technique of 3-path
sampling and a special pruning scheme to decrease the
variance in estimates. We provide theoretical proofs for
the accuracy of our algorithm, and give formal bounds
for the error and confidence of our estimates. We perform
a detailed empirical study and show that our algorithm
provides estimates within 1% relative error for all sub-
patterns (over a large class of test graphs). Our algorithm
takes less than a minute (on a single commodity machine)
to process an Orkut social network with 300 million edges.

I. INTRODUCTION

Counting the number of occurrences of small sub-
graphs in a graph is a fundamental network analysis
technique used across diverse domains: bioinformatics,
social sciences, and infrastructure networks studies [1],
(21, 31, [4], 5], (6], [7], [8], [91, (101, [11], [12],
[13]. The subgraphs whose counts are desired are
variously referred as “pattern subgraphs”, “motifs”, or
“graphlets”. It is repeatedly observed that certain small
subgraphs occur substantially more often in real-world
networks than in a randomly generated network [1],
[14], [4]. Motifs distributions have been used in bioin-
formatics to evaluate network models [6], [15]. Analysis
of triadic (3-vertex) motifs has a long history in social
network analysis and modeling [1], [5], [7], [16], [17].
Work in the data mining community has applied motif
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Fig. 1: List of all connected 4-vertex motifs

frequencies for spam detection and group classification
of sets of nodes [9], [18].

The main challenge of motif counting is combi-
natorial explosion. Even in a moderately sized graph
with millions of edges, the subgraph counts (even for
4-vertex patterns) is in the billions. Any exhaustive
enumeration method (no matter how cleverly designed)
is forced to touch each occurrence of the subgraph, and
cannot truly scale. One may apply massive parallelism
to counteract this problem, but that does not avoid
the fundamental combinatorial explosion. An alternative
approach is based on sampling. Here, we try to count
the number of subgraphs using a randomized algorithm.
The difficulty is in designing a fast algorithm that also
provides an accurate estimate. The holy grail is to
get mathematically provable bounds on accuracy with
quantifiable error bars.

Sampling approaches have been employed for trian-
gle counting with good success [19], [20], [21], [22],
[23]. There also exists work for counting larger motifs,
as we shall discuss later. Most methods (especially in
bioinformatics) [15], [24], [25], [26] works for graphs
of at most 100K edges, much smaller than the massive
social networks we encounter.
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Fig. 2: Summary of 3-path sampling algorithm behavior over a large variety of datasets: The left figure shows
speedup over a tuned enumeration code. The right figure shows the relative error of each estimate, which is always

less than 1% (and mostly much smaller).

A. The main problem

We focus on estimating frequency of all connected
4-vertex subgraphs on massive input graphs. There are
six connected 4-vertex graphs (Fig. 1): (i) the 3-path, (ii)
the 3-star, (iii) the tailed-triangle, (iv) the 4-cycle, (v)
the chordal-4-cycle, and (vi) the 4-clique. Throughout
this work, we refer to these motifs by their numbering
in this list. For example the “6-th motif™ is the 4-clique.

Our aim is to give an accurate and fast estimate
of all 4-vertex subgraph counts. Triadic analysis is
now a standard aspect of network analysis. Recent
work of Ugander et al [18] specifically use 4-vertex
pattern counts to provide a “map” of egonets, and show
significant patterns among these counts. Such analyses
require fairly precise frequency counts.

B. Summary of our contributions

We design a new randomized algorithm, based on
3-path sampling, which outputs accurate estimates of
all 4-vertex subgraphs counts. We stress that the algo-
rithm is provably correct and makes no distributional
assumption on the graph. All probabilities are over the
internal randomness of the algorithm itself (which is
independent of the instance). We run detailed simula-
tions on a large variety of datasets, including product
co-purchasing networks, web networks, autonomous
systems networks, and social networks. All experiments
are done on a single commodity machine using 64GB
memory.

Extremely fast. Our algorithm relies on a sampling
based approach making it extremely fast even on very
large graphs. Indeed, there are instances where a finely
tuned enumeration code takes almost a day to compute
counts of 4-vertex motifs whereas our algorithm only

takes less than a minute to output accurate estimates.
Refer to Fig. 2i for speedup over a well-tuned enumera-
tion code. Our algorithm takes less a minute on an Orkut
social network with 200 million edges, where the total
count of each motif is over a billion (and most counts
are over 10 billion). An input Flickr social network has
more than 10 billion 6-cliques; we get estimate of this
number with less than 0.5% error within 30 seconds on
a commodity machine. We do not preprocess any of the
graphs, and simply read them as a list of edges.

Excellent empirical accuracy. We empirically val-
idate our algorithm on a large variety of datasets, and it
consistently gives extremely accurate answers. Refer to
Fig. 2ii. We get < 1% relative error for all subgraph
counts on all datasets, even those with more than
100M edges. (Exact counts were obtained by brute-force
enumerations that took several days.) This is much more
accurate than any existing method to count such motifs.

Provable guarantees with error bars. Our algo-
rithm has a provable guarantee on accuracy and run-
ning time. Furthermore, we can quantify the accu-
racy/confidence on real inputs and runs of our algorithm.
For a given number of samples, we can have a method
to put an explicit error bar on our estimate, based
on asymptotically tight versions of Chernoff’s bound.
While these error bars are not as tight as the real errors
in Fig.2ii, we can still mathematically prove that the
errors are mostly within 5% and always within 10%.

Trends in 4-vertex pattern counts: Given the
rapid reporting of 4-vertex pattern counts, our
algorithm can be used as a tool for motif analysis.
We detect common trends among a large variety of
graphs. Not surprisingly, the 3-star is the most frequent
4-vertex motif in all graphs we experimented upon.
The least frequent is either the 4-cycle or the 4-clique.



The chordal-4-cycle frequency is always more than that
of the 4-cycle or 4-clique. Ugander et al [18] study
what trends are merely implied by graph theory, and
what are actually features of real-world graphs. Such
analyses require accurate estimates quickly, which our
algorithm can provide. It is a promising direction to use
our algorithm to provide more input to such studies.

C. Comparison with previous work

We give a more detailed history of previous work
in §III. Here, we highlight the difference from pre-
vious results on subgraph counting. The work (be-
yond triangle counting) involves color coding meth-
ods [15], [24], [27], MCMC based sampling algo-
rithms [28], incremental pattern building algorithms for
Map-Reduce [29], [30] edge sampling algorithms [26].

These methods are quite general and work for large
subgraphs, and in that sense, are more general than our
algorithm. But our focus on the specific six subgraphs in
Fig. 1 allows for the design of highly accurate and fast
algorithms, that work better than more generic methods.
The differences are highlighted below.

Scalability and speed. Previous work either em-
ploy Map-Reduce clusters or max out at a million (or
so) edges. Our algorithm runs on a single commodity
machine with 64GB memory, and easily handles graphs
with more than a hundred million edges. No previous
result can get such scalability for 4-vertex pattern count-
ing.

Accuracy. Our algorithm’s accuracy is both em-
pirical and provable. Previous methods [28] for motif
analyses get the frequencies correct up to an order of
magnitude. Our relative errors of 1% are much smaller
than any of the previous results we are aware of.
Furthermore, we can explicitly put realistic error bars on
all our estimates. Again, this distinguishes our algorithm
from the state-of-the-art.

Comprehensive results for 4-vertex patterns.
We get detailed results for all 4-vertex counts on a
large number of graphs, and believe this is useful
for further data analysis (as done in [18]). Previous
work usually focuses on a small, specific set of larger
motifs [15], [24], [27], or gives coarser approximations
for more motifs [28].

II. FORMAL DESCRIPTION OF THE PROBLEM

Our input is an undirected simple graph G = (V| E),
with n vertices and m edges. For vertex v, d, is the
degree of v.

It is critical to distinguish subgraphs from in-
duced subgraphs. A subgraph is simply some subset
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Fig. 3: An example graph.

of edges. An induced subgraph is obtained by tak-
ing a subset V' of vertices, and consider all edges
among these vertices. Refer to Fig.3. The edges
(v1,v2), (v2,v3), (v3,v4), (vg,v1) form a 4-cycle, but
the vertex set {vy,v2,v3,v4} induces a chordal-4-cycle.
We collectively refer to the 4-vertex subgraphs as “mo-
tifs”.

It is technically convenient to think of induced
subgraph counts. We denote the number of induced
occurrences of the i-th subgraph (of Fig. 1) by C;. So,
Cjy is the number of induced 4-cycles in G, which is
the number of distinct subsets of 4 vertices that induce
a 4-cycle. When we talk of a “vanilla” subgraph, we
mean the usual subgraph setting (a subset of edges). In
general, if we do not say “induced”, we mean vanilla.

Our aim is to get an estimate of all C; values. Let N;
to denote the number of (vanilla) subgraph occurrences
of the ¢th subgraph, There is a simple linear relationship
between induced and non-induced counts, given below.
The (i,7) entry of the matrix A below is simply the
number of distinct copies of the ith subgraph in the jth
subgraph (so Az 4 = 4, the number of 3-paths in the
4-cycle).

1010 2 4 o Ny
01 2 4 6 12 Cs N,
0010 4 12 Cs| |V W
00011 3 ol T v |-
00001 6 Cs N;
0000CO0 1 Cs N

III. RELATED WORK

Motif counting for bioinformatics was arguably ini-
tiated by a seminal paper of Milo et al. [4]. This
technique has been used for graph modeling [6], [15],
graph comparisons [6], [31], and even decomposing a
network [32]. Refer to [24], [25] for more details.

Triangle counting has a rich history in social sci-
ences and related analyses, that we simply refer the
reader to the related work sections of [22], [23]. The
significance of 4-vertex patterns was studied in recent
work of Ugander et al. [18], who propose a “coordinate
system” for graphs based on the motifs distribution.
This is used for improved network classification, and



the input graphs were comparatively small (thousands
of vertices).

Previous studies tailored to 4-vertex patterns [33],
[34] provide both exact and approximation algorithms.
These are limited to small graphs. For example, a graph
with 90K edges requires 40 minutes of processing [34]
(on a single machine).

Most relevant to this work are previous studies on
wedge sampling [19], [23], [35]. This method samples
paths of length 2 to estimate various triangle statistics.
Our method of 3-path sampling can be seen as building
on wedge sampling. But we require new techniques of
path pruning to get the algorithm to work accurately.
These pruning techniques are inspired by degeneracy
ordering algorithms for triangle counting [36], [37]. We
can actually provide mathematical error bars for real
runs and instances (as opposed to just a theoretical proof
of convergence of estimate).

IV. THE BASIC ALGORITHM: ESTIMATING COUNTS
VIA 3-PATH SAMPLING

Our algorithm for estimating counts of 4-vertex
motifs is based on 3-path sampling. In this section,
we discuss a basic version of this method. In the next
section, we enhance it to get better accuracies

We begin with a simple procedure that samples a
uniform (vanilla) random 3-path. For each edge e =
(u,v) € E, denote 7. = (d,, — 1)(d, — 1). We denote
W=> .

Algorithm 1: sample

1 Compute 7, for all edges and set p, = 7./W.

2 Pick edge e = (u,v) with probability p..

3 Pick uniform random neighbor v’ of u other than
v.

4 Pick uniform random neighbor v’ of u other than
U.

s Output the three edges {(u',u), (u,v), (v,v")}.

Observe that the output of sample can either be a
triangle (if v’ = v’) or a 3-path. The following claim is
critical.

Claim IV.1. Fix any 3-path. The probability that
sample outputs this 3-path is exactly 1/W.

Proof: Fix a 3-path (v, u),(u,v),(v,v)
(u,u',v,v" are all distinct). The probability that
e = (u,v) is selected as the middle edge (in
Step 2) is exactly (d, — 1)(d, — 1)/W. Conditioned
on this event, the probability that u’ is selected
as a neighbor of w is 1/(d, — 1) (note that

the neighbor v is excluded). Similarly, o' is

selected with probability 1/(d, — 1). Putting it
all together, the 3-path is chosen with probability
[(du - 1)(dv - 1)/W] . [1/(du - 1)] . [1/(dv - 1)] = l/W-
The probability is the same for all 3-paths, proving our
claim. ]

Now, observe that all motifs of Fig. 1, except the 3-
star, contain a 3-path. So one can perform the following
experiment. Run sample to get a collection of edges,
and hence a set of (at most 4) vertices. Check the
edges among these vertices to see what motif it induces.
Repeat this experiment many times to estimate the true
counts C; (i € [2,6]). Finally, we use the formula
of (1) to estimate Cy. This is exactly the algorithm
3-path-sampler, as given in Alg. 2. We remind the
reader that A, ; is the number of 3-paths in the ith motif.

Algorithm 2: 3-path-sampler
Input: graph G = (V, E), samples k

1 Run sample k times to get k sets of edges. Let
S¢ denote the set of corresponding vertices for
the /th set.
Initialize count; = 0 for i € [2, 6].
For ¢ € [1, k],

Determine subgraph induced by S;.

If this is the 7th motif, increment count;.
For each i € [2, 6],

Set C; = (counti/k) . (W/AQJ‘).
Set N1 = ZvGV (dSU)'A - . -
Set (induced 3-stars) C; = Ny — C3 — 2C5 — 4C.

o e N S R W

We prove that 3-path-sampler outputs unbiased
estimates for all C;s.

Theorem IV.2. For every i € [1,6], E[C;] = C;.

Proof: First, let use deal with subgraphs other than
the 3-star, so fix some ¢ # 1. For each ¢ € [k], let X,
be the indicator random variable for .Sy inducing the ith
motif. So X, is 1 iff the /th call to sample outputs a
3-path contained in a copy of the ¢th motif. The total
number of (distinct) such 3-paths is exactly As ;-C;. By
Claim IV.1, the probability that X, =1 is Ay ;- C;/W.
Hence, E[X/]| = C; - Ay;/W.

By linearity of expectation, E[count;] =
S ¥ E[X)] = (kCiAz,;)/W. Hence, E[C;] = Ci.
Now, we detail with 51. Note that Ny, the number of
3-star subgraphs, is exactly >,/ (4). By linearity of
expectation, E[C1] = N; — E[C5] — 2E[C5] — 4E[C§],
which is Ny — C3 — 2C5 — 4C = Cy (as given by
(1)). |

We can also prove concentration results using the

Hoeffding bound [38]. This is useful as a proof of
concept, but do not give useful bounds in practice. (We



give more details later.) This analysis is analogous to
that of wedge sampling results [37], [23].

Theorem IV.3 (Hoeffding [38]). Let X1, Xo,..., Xy be
independent random variables with 0 < X; < 1 for all
t=1,...,k Define X = %Zle X;. Let n = E[X].
Then for € € (0,1), we have

Pr[|X — p| > €] < 2exp(—2ke?).

We can derive concentration results quite directly
from this bound.

Theorem IV4. Fix §,e € (0,1) and set k =
[(26)72In(2/0)]. For all i € [2,6]: with probability
at least 1 — 0, |C; — C;| < eW/Ay,;. With probability
at least 1 — 6, 61 —C] < eW.

Proof: We first fix ¢ # 1. Define X, as in the
previous proof. Apply TheoremIV.3 to Xi,..., Xk.
With probability at most §, |X — E[X]| > ¢ (we
use the notation from TheoremIV.3). It remains to
interpret X. Note that C; = (count;/k) - (W/Az;).
Since count; = Y35, Xy, C; = X - (W/A34). So
|X — E[X]| > ¢ implies |C; — C;| > &, as desired.

Since 51 is obtained by subtracting out other terms,
it appears that the errors could add up. With a little care,
we can get the same bound as the other C;’s. Define
random variable Y, as follows: if S, induces a tailed
triangle, Yy = 1/As 3 = 1/2. If Sy induces a chordal-
4-cyle, Yy = 2/As5 = 2/6. If Sy induces a 4-clique,
Y, = 4/A26 = 4/12. In all other cases, Yy = 0. We
have constructed this random variable, so that E[Y;] =
(Cs3 +2C5 +4Cq) /W

Observe that CA'l can also be exp\ressed as Ny —
(>-,Ye/k)W. The additive error |C; — Cy| is the
same as W - [Y — E[Y]|. Applying TheoremIV.3, with
probability at least 1 — 4, |C; — C| < eW. [

A. The challenge of cycle-based motifs

Theorem IV.2 and Theorem IV.4 seem to give us all
we want, so why aren’t we done? The catch is that
the concentration bound of TheoremIV.4 is actually
too weak to give reasonable estimates for real world
graphs. Let us do some rough calculations, ignoring the
constants. To get an estimate such that |C; —C;| < eW,
we require k &~ 1/¢2. But for such an estimate to be
useful, we need to understand how W relates to C;. So
¢ needs to be of the order of C;/W, and consequently,
k needs to be (W/C;)%.

Refer to Tab. I for the values of W and a few C;s.
(For convenience, we just give the order of magnitude
of each number. Full numbers are given later.) For ¢ €
{1,2,3} (3-star, 3-path, and tailed triangle), (W/C;)?

TABLE I: W vs C};: counts given as orders of magni-
tude.

Graph W Ca Cs Cy Cs

amazon0312 E+09 E+08 E+08 E+06 E+06
as-skitter E+12 E+11 E+11 E+10 E+08
orkut E+13 | E+13 | E+12 | E+10 | E+09

is usually < 10%. This is fairly reasonable number of
samples to take, and leads to an efficient and accurate
algorithm. On the other hand, for i € {4, 5,6} (4-cycle,
chordal-4-cycle, and 4-clique), (W/C;)? is often > 108,
which is too many samples to take.

In other words, 3—-path-sampler does not per-
form well for motifs containing a 4-cycle. This leads
us to a new algorithm for dealing with these motifs, as
described in the next section.

V. IMPROVED ESTIMATION OF 4-CYCLE-BASED
MOTIFS VIA centered 3-PATHS

We denote the 4-cycle, chordal-4-cycle, and 4-clique
as cycle-based motifs. We design a better algorithm to
estimate them. While the algorithm is provably correct
for any graph, the fact that it gives a significant im-
provement is dependent on the structure of real-world
graphs.

Our aim is to find a subset S of 3-paths with the
following properties:

e Every cycle-based motif is guaranteed to contain a
fixed number of 3-paths from S.

e It is possible to quickly generate uniform random
samples from S.

e |S| is significantly smaller than W =

>ty (e — 1)(dy — 1).

Let us go back to samp1le, and think of enumerating
all 3-paths. For edge (u,v), we take every neighbor of
u and every neighbor of v to generate a 3-path. We
basically take the Cartesian product of the adjacency
lists of u and v. Could we prune the adjacency lists so
this product is smaller?

Suppose we order all vertices based on degree and
vertex id. So we say u < v if: d,, < d, or, if d,, = d,,
the vertex id of u is less than that of v. We could prune
the lists using this ordering. When looking for 3-paths
where (u,v) is the middle edge, we only look at the
portion of w’s list “greater” than v, and the portion
of v’s list greater than w. In general, many 3-paths
are generated when d, and d, are large. But in that
case, we hope that many neighbors of v and v are of
lower degree. The pruning ignores such vertices and
(hopefully) reduces the set of 3-paths considered. Let
us formalize the set S of centered 3-paths.



Definition V.1 (Centered 3-path). A 3-path formed by
edges {(t,u), (u,v), (v,w)} is centered if: v < ¢, u <
w, and the edge (t,w) exists in the graph (so t,u,v,w
form a 4-cycle).

We prove the important property that every cycle-
based motif contains a fixed number of centered 3-paths.

Lemma V.2. Every induced 4-cycle and chordal-4-cycle
contains exactly one centered 3-path. Every induced 4-
clique contains exactly three centered 3-paths.

Proof: Consider any (vanilla) 4-cycle, formed by
vertices (in order) ¢, u,v,w. Pick the smallest vertex,
say u. Pick the neighbor of u that is smaller, say v. We
show that the 3-path {(¢,u), (u,v), (v,w)} is the only
centered 3-path in this 4-cycle.

By the choice of (u,v), v < t and u < w. Hence,
{(t,u), (u,v), (v,w)} is centered. The only other pos-
sible centered 3-path is {(u,t), (¢, w), (w,v)}. Because
v < t, this path cannot be centered. That completes the
proof for the induced 4-cycle case.

Now, suppose t, u, v, w forms an induced chordal-4-
cycle. The extra 3-paths contain the chord in the middle,
and such 3-paths do not lie on a 4-cycle. So there only
exists one centered 3-path.

A 4-clique contains three 4-cycles that partition
the 12 different 3-paths. Each of these 4-cycles has a
centered 3-path, yielding a total of three such 3-paths.

|

We now show how to sample a uniform random
centered 3-path. It is quite analogous to sample. First,
some notation. Let L,, , be the number of neighbors of
u greater than v. By sorting all adjacency lists according
to vertex degree and id, we can compute for every edge
e = (u,v), the value \e = Ly oLy . Let A =37 Ac.

Algorithm 3: sample-centered

1 Compute ). for all edges and set p. = A\./S.

2 Pick edge e = (u,v) with probability p..

3 Pick uniform random neighbor u’ of u such that
v =<

4 Pick uniform random neighbor v’ of v such that
u=<v.

5 Output the three edges {(u',u), (u,v), (v,v")}.

Note that it is possible that sample-centered
outputs a 3-path that is not centered (if the 3-path
does not lie on a 4-cycle). Nonetheless, analogous to
Claim IV.1, we have the following.

Claim V.3. Fix any centered 3-path. The probability
that sample—-centered outputs this 3-path is exactly

1/A.

Now, we give the algorithm that estimates the
number of cycle-based motifs. It is analogous to
centered-sampler, only using centered 3-paths.
For convenience, let B; denote the number of centered
3-paths in the ith motif. So By = B; = 1 and Bg = 3,
by Lemma V.2.

Algorithm 4: centered-sampler
Input: graph G = (V, E), samples k

1 Run sample-centered k times to get k set
of edges. Let T, denote the set of corresponding
edges for the /th set.
Initialize count; = 0 for i € [4, 6].
For ¢ € [1, k],
If T} is a centered 3-path,
Determine subgraph induced by Sj.
If this is the ith motif, increment count;.
For each ¢ € [4, 6],
Set C; = (count;/k) - (A/B;).

NN AW N

Analogous to TheoremIV.4, we can prove the fol-
lowing. Observe how W is replaced by A.

Theorem V4. Fix 6, € (0,1) and set k =
[(26)"2In(2/0)]. For all i € [4,6]: with probability
at least 1 — 4, |C; — C;| < eA/B,;.

A. Why centered 3-paths help

We put the value of W and A for various real
world networks in Tab.Il. Observe how A is at least
an order of magnitude smaller than W (except for
a road network). This is a huge difference when it
comes to the sampling bounds in TheoremIV.4 and
Theorem V.4. These bounds show that two orders of
magnitude less samples suffice for the same error (in
estimating cycle-based motifs). This improvement is
extremely significant for getting good accuracy with
fewer samples.

TABLE II: Difference between the number of 3-paths
and the number of centered 3-paths.

Graph w A W/A
amazon0312 1.40E+09 | 9.36E+07 15
amazon0505 1.59E+09 1.02E+08 16
amazon0601 1.57E+09 1.01E+08 15
as-skitter 1.43E+12 | 9.05E+10 16
cit-Patents 9.16E+09 | 8.78E+08 10
web-BerkStan 1.69E+12 1.28E+11 13
web-Google 2.05E+10 | 6.34E+08 32
web-Stanford 1.85E+11 1.36E+10 14
wiki-Talk 1.31E+12 | 9.08E+09 144
youtube 1.19E+11 1.68E+09 71
flickr 1.31E+13 | 8.42E+11 16
livejournal 1.67E+12 1.14E+11 15
orkut 2.22E+13 | 9.48E+11 23

The final algorithm is simply obtained by running
both 3-path-sampler and centered-sampler.



The former gives estimates for Cy, Cs, C3 (we simply
discard the remaining estimates), and the latter estimates
C147 055 Cﬁ'

VI. GETTING PRACTICAL ERROR BARS

While the Hoeffding bound used above provides
theoretical convergence, we do not get practical error
bars from it. In this section, we show how to get useful
error bars for our algorithm on real instances.

All of our sampling algorithms have the same un-
derlying primitive: try to estimate the expectation p of
a Bernoulli random variable. We generate a binomial
random variable X ~ B(k,p) (by performing % i.i.d.
Bernoulli trials), and hope that the outcome is close
enough to the expectation.

We employ a standard Bayesian viewpoint to gener-
ate an error bar. Suppose, our outcome of the binomial
draw is X = r. Conditioned on a choice of p, we
calculate the probability that X = r. This gives a prior
on p. Of course, this cannot be done explicitly because
of computational issues, but we can use tail bounds
for B(k,p) to get appropriate estimates. We use the
following theorem of Chernoff [39] (we use notation of
Equation 1.4 from [40]) that gives good tail bounds for
B(k,p).

Theorem VI.1 (Chernoff). Suppose X ~ B(k,p). Fix
a € (0,1).

Pr[X/k > o] <exp(—D(a,p)k) ifa>p
Pr[X/k < a] <exp(—D(a,p)k) if a <p

where D(a,b) = aln(a/b)+ (1—a)In((1—a)/(1-10))
(the KL-divergence between Bernoulli distributions with
expectation a and b).

Suppose the outcome of X/k = . We can use the
Chernoff bound to get a range of likely values of p.
Think of exp(—D(a, p)k) as a function of p. The basic
properties of the KL-divergence (and simple algebra)
imply that exp(—D(«, p)k) is a unimodel function with
a maximum value of 1 at p = o and a minimum of 0
at p = 0, 1. That motivates the following definition.

Definition VL.2. Fix k,«,z € (0,1). Then p;(k, o, x)
(lower) and p,(«, x) (upper) are the two unique values
of p such that exp(—D(a,p)k) = x.

With this definition, we can give precise error bars.
In other words, given the outcome of a binomial random
variable B(k,p), we can give an interval of plausible
values (up to any desired confidence ¢) for p.

Corollary VI.3 (Error bar for binomial distribution).
Fix binomial distribution B(k,p), and «,§ € (0,1)

Then, fOI" any p ¢ [pl(k7 Q, 5)7pu(k7 a, 6)]’

Pr [X/k=a]<$¢
XnB(k,p)

How does this relate to our algorithms? Observe
that in both Alg. 2 and Alg. 4, the variables count;
are binomial random variables. So we can produce
errors bars for count;/k using the above corollary. The
final estimates are of the form C; = (count;/k) - K;
(i # 1, and K; is some fixed scaling, depending on the
algorithm and 7). So error bars for count; /k directly
translate to error bars for C;. For ¢ = 1 (3-stars), we
simply add up the errors (in 3-path-sampler) for
03, 205, and 406

VII. EXPERIMENTAL RESULTS

Preliminaries: We implemented our algorithms in
C and ran our experiments on a computer equipped
with a 2x2.4GHz Intel Xeon processor with 6 cores and
256KB L2 cache (per core), 12MB L3 cache, and 64GB
memory. We performed our experiments on 13 graphs
from SNAP [41] and per private communication with
the authors of [42]. In all cases, directionality is ignored,
and duplicate edges are omitted. The properties of these
matrices are presented in Tab. III, where |V| and |E| are
the numbers of vertices and edges, respectively.

Exact counts for the motifs are obtained by a
well-tuned enumeration (counts and runtime given in
Tab.III). We do not get into details, but note that
the enumeration code processes million edge Amazon
networks in only 5 seconds'.

For getting 3-path sampling estimates, we run both
3-path-sampler and centered—-sampler as de-
scribed earlier, with k& = 200K. We use the outputs
of C1,Cq,C3 as given by 3-path-sampler, and
C4,C5,Cg from centered—-sampler. The runtimes
are in the last column of Tab. III.

Convergence of estimates: To show convergence,
we perform detailed runs on the as-skitter graph. We
choose this because it is the most difficult to get accurate
estimates, since the cycle-based motif counts are small
relative to the graph size. We vary the numbers of
samples in increments of 2.5K. For each choice of
the number of samples, we perform 50 runs of our
algorithm. We plot those results in Fig.4 for tailed-
triangles, chordal-4-cycles, and 4-cliques. (Other pat-
terns are omitted due the space considerations, and had
even better convergence.) The output of each run (for
a given number of samples) is depicted by a blue dot.
For 4-clique counts, we can see the spread of outputs

I'This is quite competitive with the best existing numbers in the
literature of [34], whose algorithm takes 40 minutes on a 90K
autonomous systems graph.



TABLE III: Exact values of pattern counts and runtimes (in seconds).

Datasets 4 |E| 3-star 3-path Tailed 4-cycle Chordal 4-clique Enum. 3-path

triangle 4-cycle time | samp. time
amazon0312 4.01E+5 2.35E+6 1.07E+10 | 8.44E+08 1.90E+08 3.23E+06 1.71E+07 | 3.98E+06 4.42 0.47
amazon0505 4.10E+5 2.44E+6 1.21E+10 | 9.63E+08 2.19E+08 3.30E+06 1.91E+07 | 4.36E+06 4.75 0.48
amazon0601 4.03E+5 2.44E+6 1.11E+10 9.41E+08 2.17E+08 3.22E+06 1.92E+07 4.42E+06 4.74 0.48
as-skitter 1.70E+6 1.11E+7 9.64E+13 8.19E+11 1.62E+11 4.27E+10 1.96E+10 1.49E+08 5128.93 2.7
cit-Patents 3.77E+6 1.65E+7 6.11E+9 6.54E+09 | 5.52E+08 | 2.69E+08 | 6.28E+07 | 3.50E+06 46.46 3.33
flickr 1.86E+6 1.56E+7 1.90E+13 6.89E+12 1.18E+11 1.18E+11 2.30E+11 2.67E+10 | 217274.39 2.53
livejournal 5.28E+6 | 4.87E+7 | 4.46E+12 1.14E+12 1.26E+11 5.21E+09 1.90E+10 1.14E+10 11894.63 6.86
orkut 3.07E+6 | 2.24E+8 9.78E+13 1.86E+13 1.51E+12 | 7.01E+10 | 4.78E+10 | 3.22E+09 70966.96 16.24
web-BerkStan | 6.85E+5 | 6.65E+6 | 3.82E+14 | 3.14E+10 | 4.76E+11 2.53E+10 | 9.86E+10 1.07E+09 6462.56 3.77
web-Google 8.76E+5 | 4.32E+6 | 6.50E+11 4.06E+09 | 6.72E+09 3.80E+07 3.82E+08 | 3.99E+07 5229 0.88
web-Stanford 2.82E+5 1.99E+6 | 2.51E+13 1.28E+10 | 5.08E+10 | 4.48E+09 8.60E+09 | 7.88E+07 831.5 1.76
wiki-Talk 2.39E+6 | 4.66E+6 1.92E+14 1.17E+12 | 6.41E+10 | 9.24E+08 1.03E+09 | 6.49E+07 1346.76 1.04
youtube 1.16E+6 | 4.95E+6 | 5.73E+12 | 9.15E+10 1.24E+10 | 2.32E+08 | 2.22E+08 | 4.99E+06 141.78 0.61

reducing. The figure only goes up to 35K samples. (The
convergence is so rapid that at around 50K samples, the
spread is impossible to see.)

Accuracy: Fig.2ii presents the relative errors for
all 13 graphs and all 6 motifs, using 200K samples for
both 3-path-sampler and centered-sampler.
All relative errors are less than 1% in all instances. As
expected the relative errors tend to be larger for the less
frequent patterns such as 4-cycles and 4-cliques.

Speedup: Fig.2i presented the speedups achieved
over full enumeration by using our path sampling algo-
rithm. Enumeration for flickr and orkut takes order of
a day. Since the motifs counts are in the order of tens
of billions, there is no hope of getting any scalability.
Our algorithms takes less than a minute (even including
I/0) for all these graphs.

The benefit of centered 3-paths: We could
simply use the basic 3-path sampling given in
3-path-sampler to approximate all counts. We
compare this approach to our final algorithm that use
centered-sampler for Cy, C5, Cg estimates. Com-
parisons between the relative errors for Cy,C5,Cg
are given in Fig.5. (“Basic” denotes simply using
3-path-sampler, and “centered” is the main algo-
rithm.) We used 200K samples for both algorithms.
Some instances of using 3-path-sampler give
somewhat large errors, and centered-sampler re-
ally cuts these errors down. It shows the power of
centered 3-path sampling.

Error bounds: We use Corollary VI.3 (as explained
in §VI) to compute 99% confidence error bounds for all
of our runs. So, for a single run of our algorithm on a
candidate graph, we have a mathematical bound on the
error that is solely based on output estimates. (These
are critical in the situation where we do not know the
true answer, and need confidence that the estimates are
accurate.) Fig. 6 shows the accuracy of our error bounds
with 99% confidence, so § = 0.01 in Corollary VL.3. In
all cases, the provable bounds on the error are always

W 3-star M 3-path

tailed-triangle M 4-cycle & chordal-4-cycle

4-clique

10.00
9.00
8.00
7.00
6.00
5.00
4.00

Percentage relative error

Fig. 6: Provable error bounds

less than 10% and mostly at most 5%. (We stress that
the actual error is much smaller.) To the best of our
knowledge, no previous sampling based algorithm for
motif counting comes with hard mathematical error bars
that are practically reasonable.

Edge sampling approaches: An alternative ap-
proach to motif counting is edge sampling, which
was applied to triangle counting [22], [21]. In this
approach, the graph is sparsified by retaining each edge
independently with a fixed probability p. The motif
counts is obtained in the sparsified graph, and scaled
to give an unbiased estimate of the true count (For
example, the 4-clique count of the sparsified graph is
multiplied by p~%). Because of limited space, we only
provide comparisons between this approach and our
algorithm for 4-clique counts. Naturally, as p decreases,
the runtime decreases but so does the accuracy.

In Fig.7, we show results for the edge sampling
approach for p = 0.05,0.1,0.2. To compare with our
algorithm (200K samples), we plot all results with time
on the z-axis. Again, we take 50 runs of for all settings,
and the output is given by a single dot (red for edge
sampling, blue for path sampling). While p = 0.05 gives
better runtimes, the estimates are completely wrong.
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For comparable in accuracy to our 3-path sampling
algorithm, we need to set p = 0.2 for edge sampling
(which then has a run time about 10 times more).

Trends in patterns: For lack of space, we do not get
detailed studies of the relationships among the induced
counts. We mention a few direct observations. The most
frequent connected induced motif is the 3-star. The least
frequent is either the 4-cycle or the 4-clique. We find it
somewhat interesting that (among cycle-based motifs)

the chordal-4-cycle is the most frequent. (The orkut
graph is a notable exception in that 4-cycles are more
frequent.) We find these counts fascinating, and a future
direction is to connect these counts with the subgraph
frequency approaches of [18].

CONCLUSIONS AND FUTURE WORK

In this work we showed a 3-path sampling scheme
that efficiently and accurately estimates counts of all 4-
vertex motifs in large input graphs. It is natural to ask if
we can extend this sampling scheme further to estimate
counts of 5-vertex (or even higher order) motifs.
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