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SPH Pros/Cons of Standard explicit SPH scheme

PROS:  ­ no need to track boundaries 
             ­ amenable to parallelization

      ­ good performance in high Reynold's number regimes 

CONS: ­ accuracy (does not converge when increasing number of particles)
            ­ performs poorly in low Reynold's number regimes

     ­ particles need to be “well” distributed
             

Smoothed particle hydrodynamics (SPH)

Navier Stokes equations 
in Lagrangian form

In mesoscale applications, flows typically feature low Reynold's numbers

Standard explicit implementations would require tiny time 
steps, therefore we consider an implicit implementation.



  

Helmoltz system:
find velocity estimate

Poisson system:
find pressure

Navier Stokes time discretization:
Implicit 2nd order incremental pressure correction

(improve performance for low Reynold's number flows)

Correct velocity 
to make it 
divergence free

S. J. Cummins, M. Rudman, Journal of Computational Physics, 1999
S. M. Hosseini, J. J. Feng, 2011



  

SPH discretization

Convolution with 
smooth kernel

Compute derivatives 
differentiating the 
kernel

Approximate integral 
as sum over particles

Derive approximations for gradient 
operator and Lapalacian operator

volume 
fraction

Zeroth order approximation

www.nuigalway.ie



  

Zeroth order operators (in)accuracy

Cartesian
Cartesian

Gradient operator Lapalcian operator

L2 error, for gradient and Laplacian operators applied on the function
on different particles distributions (Cartesian, perturbed Cartesian, quasi­ordered). 

Convergence tests: N. Trask



  

“standard” 
zeroth-order 

SPH 
discretization

“Corrected”
first-order 

SPH 
discretization

Correction tensors 
(computed locally)

Higher order SPH discretization

• “Almost” 2nd order accuracy
• Allows for fewer neighbors              performance and scalability improvement 

G. Oger et al, Journal of Computational Physics, 2007
R. Fatehi and M. T. Manzari, Computer and Mathematics with Application, 2011



  

Cartesian Cartesian

First­order operators accuracy

Convergence tests: N. Trask

Gradient operator

L2 error, for gradient and Laplacian operators applied on the function
on different particles distributions (Cartesian, perturbed Cartesian, quasi­ordered). 

Lapalcian operator



  

SPH implementation

Solver
Manager

Matrix Fill Linear Systems

Solution 
Vectors

Updated
State 
Data

Fuse LAMMPS and Trilinos for massively parallel 3D SPH computational framework

Let each code handle what it was designed to do well
 LAMMPS handles particle data, parallel data distribution, neighboring
 Trilinos handles distributed memory linear/nonlinear solvers, preconditioners, etc. 

● Parallel SPH linear system solvers 
(Helmholtz, Poisson)

● Block Krylov iterative solvers
● Algebraic multigrid preconditioners

● SPH particle discretization
● Parallel data distribution
● Neighbors' lists build

N. Trask et al, CMAME, submitted, 2014



  

Scalability results for 3D Taylor-Green Vortex

t = 0.000

Synthetic problem
manufactured solution:

To our knowledge, the largest implicit SPH simulation ever

Scalability results using up to 134 millions particles and 32K cores



  

Verification with Finite Volume for BCC lattice

No slip boundary conditions:
Morris/Holmes Dirichlet boundary conditions to 
provide “2nd” accuracy

OK for complex geometries
(no need to have analytic representation of boundaries)

Streamlines 
colored with 

magnitude of 
velocity

Problem details:

Comparison with finite volumes

Stream­wise probe



  

Navier Stokes numerical benchmarks
lid driven cavity

prescribed velocity

simulation: K. Kim

L 
=

 1
 



  

Navier Stokes numerical benchmarks
lid driven cavity

prescribed velocity

simulation: K. Kim



  

Towards electrokinetic problems:
Poisson Boltzmann equation

Boltzmann charge distribution for a two­ion monovalent system:

Nonlinear Poisson­Boltzmann equation:

Elctrokinetic forcing term appearing in the Navier Stokes equation

Polarized fluid is driven by 
electric potential

Implementation uses SPH Laplacian operator introduced before
Nonlinearity solved with Newton method (NOX package in Trilinos)



  

Benchmarks on electrokinetic effect
gr

av
it

y

Four corners has fixed 
negative potential
Gravity field is prescribed

The electric potential 
clearly perturb the gravity 
driven flow

y component of velocityx component of velocity

potential field

Problem setting: W. Pan, simulation: K. Kim



  

Li-air batteries application

potential
velocity magnitude 

(precipitation of electrolytes)

gr
av

it
y

Problem setting: W. Pan, simulations: K. Kim

Used first order 
time scheme to 
prevent 
oscillations

L 
=

 2




  

On-going / future developments

● Improve scheme stability for very low Reynold's numbers

● Use high­order mesh­free schemes (e.g. MLS)

● Design high order conservative schemes

● Improve model fidelity using Poisson­Nerst­Planck 
equations and/or use DFT (density functional theory)

● Solve new problems, e.g. microfluidic mixing
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