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Smoothed particle hydrodynamics (SPH)

( du
; , — = —1Vp +yVu,
Navier Stokes equations dt f
in Lagrangian form { V-u=0,
dx
B u,
v it

SPH Pros/Cons of Standard explicit SPH scheme
PROS: - no need to track boundaries
- amenable to parallelization
- good performance in high Reynold®number regimes
CONS: - accuracy (does not converge when increasing number of particles)

- performs poorly in low Reynold®number regimes
- particles need to be 2well® distributed

In mesoscale applications, flows typically feature low Reynold®numbers

Standard explicit implementations would require tiny time

steps, therefore we consider an implicit implementati(m/_




Navier Stokes time discretization:
Implicit 2" order incremental pressure correction
(improve performance for low Reynold®number flows)

(u* —u" 1 1%
Helmoltz system: — =—-Vp"+ _V? (u” +u”) x € Q,
find velocity estimate {  Af 2

u =0 x € 0Q),

*

rlvﬁp"” e xeQ
Poisson system: lp At ;
find pressure

d ﬂnp”“ =0 X € L.
¢ u.”H—l = u* 1
. =—-V (p”” - p”) xeQ,

Correct velocity At Je
to make it 4 n
divergence free V.o =0

RUHH-,?I:O x € 0Q.

S. J. Cummins, M. Rudman, Journal of Computational Physics, 1999 / i
S. M. Hosseini, J. J. Feng, 2011



SPH discretization

kernel W{r)

interest

C luti ith
smooth kernel hw= | | JOWE =)y o
supp(W

neighbour =
kernel particle

Compute derivatives . ‘ .
differentiating the (V) x) = f JTYWOViW(X —y)dy . - .
supp(W)
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Approximate integral V f f(x;) = Z F(X)Vx, WX —X;)V;

as sum over particles 7% olume

Jesupp(W) fraction

Derive approximations for gradient
operator and Lapalacian operator

Vofi= > (fi= £VWiV,; Voﬁ—z b fi—5,
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Zeroth order operators (in)accuracy

L2 error, for gradient and Laplacian operators applied on the function u(x,y) = sin(x) sin(y).
on different particles distributions (Cartesian, perturbed Cartesian, quasi-ordered).
Gradient operator Lapalcian operator
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x : amount of uniformly distributed noise
h proportional vV N and to the kernel support radius
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Convergence tests: N. Trask



Higher order SPH discretization

“standard” Vofi = | Z (fi — fOVx, WiV
zeroth-order Jjesupp(W)
SPH I f,f
. . ) Nal =2 Wi 5 74
discretization C'f Z ] iV
jesupp(w) U
“Corrected” YiE= | Z (ff—f}')/Gr‘an-Wi.ij
first-order jesupp(W) .
SPH . -7 |
discretization Vifi=2 Z (Lr* e;; ® Vy, Wi (v — € Vu‘f) v
jesupp(W) \’\ ij
\/

Correction tensors
(computed locally)

* “Almost” 2" order accuracy
* Allows for fewer neighbors =  performance and scalability improvement

G. Oger et al, Journal of Computational Physics, 2007
R. Fatehi and M. T. Mangari, Computer and Mathematics with Application, 2011




First-order operators accuracy

L2 error, for gradient and Laplacian operators applied on the function u(x,y) = sin(x) sin(y).
on different particles distributions (Cartesian, perturbed Cartesian, quasi-ordered).
Gradient operator Lapalcian operator
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x : amount of uniformly distributed noise
h proportional vV N and to the kernel support radius
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SPH implementation
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Parallel SPH linear system solvers
» SPH particle discretization Updated : .
. ParalIl)el data distribution State Solution (Helmholtz, Poisson)
+ Neighbors@ists build Data Vectors * Block Krylov iterative solvers

» Algebraic multigrid preconditioners

Matrix Fill Solver Linear Systems
_} Manager _

Fuse LAMMPS and Trilinos for massively parallel 3D SPH computational framework

Let each code handle what it was designed to do well
" LAMMPS handles particle data, parallel data distribution, neighboring
Trilinos handles distributed memory linear/nonlinear solvers, preconditioners, etc.

Sandia
National
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Scalability results for 3D Taylor-Green Vortex

Synthetic problem //f}\\ i
1 . ///';"\\'/ eloci agni
manufactured solution: o !V locity Magy
_ —umlt _;
u, = Uge 28111(7‘1’:8) cos(my) 44/% ;O'OB
u, = —Upe 2™t cos(nz) sin(my) S EEZ
P = U—ge_4”“2t(cos(27r$) + cos(27y) + 2) /7/?;\\‘ 00
4 \&{\\g/\\\\k\ 0.001735
e
2224
t=0.000
Scalability results using up to 134 millions particles and 32K cores
# of iterations vs problem size (4096 x # of cores) Weak scale in solution time (per iteration)
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To our knowledge, the largest implicit SPH simulation ever
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Verification with Finite Volume for BCC lattice

Problem details: Streamlines

colored with
magnitude of
velocity

No slip boundary conditions:
Morris/Holmes Dirichlet boundary conditions to
provide 227 accuracy

OK for complex geometries
(no need to have analytic representation of boundaries)

Comparison with finite volumes

% Stream-wise probe
.032e-5 A : \ I ‘
8e-5
4e-5

4e-5
-8e-5

|
|
i
i
|
-8.032-5 i

Ux/max(Ux), P/max(P)
=)

= i
4.2e-6 051  R.Ux
4e-6 - IS:;H U Ux
;29-6

é_ze_é 0 o0 004 006 | ; .

X (m) Sandia
-de-6 @ National
-4.2e-6 Laboratories




Navier Stokes numerical benchmarks
lid driven cavity

Re ~ 1000

v Magnitu
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Navier Stokes numerical benchmarks
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Towards electrokinetic problems:
Poisson Boltzmann equation

Boltzmann charge distribution for a two-ion monovalent system: Ci — +cp exp (:F{;)

Nonlinear Poisson-Boltzmann equation:

6582
e KT

—Vg-ﬂ'} — —k?sinh W, with £2 := 2

Elctrokinetic forcing term appearing in the Navier Stokes equation

—
y
f

0 f =2ecy iy, si Ilh("i_;'.f) V'LH; < Polarized fluid is driven by

electric potential

Implementation uses SPH Laplacian operator introduced before
Nonlinearity solved with Newton method (NOX package in Trilinos)
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Benchmarks on electrokinetic effect

otenti_al field

o
(]
[00]
N
iy
Immmlm 8
o
N

J;‘ 0.8
>~
©
;5'0 1.2
1.6
v -1.93-
x component of velocity
2.86+08—E
~2e+8
le+8
0

-3.2e+07-

Problem settine: W. Pan. simulation: K. Kim

Four corners has fixed
negative potential
Gravity field is prescribed

The electric potential

clearly perturb the gravity
driven flow

f velocity Re ~ 0.02
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Li-air batteries application

velocity magnitude
(precipitation of electrolytes)

potential

Used first order
time scheme to
prevent
oscillations

gravity

Problem settine: W. Pan. simulations: K. Kim



On-going / future developments

» Improve scheme stability for very low Reynold©®numbers
* Use high-order mesh-free schemes (e.g. MLS)
* Design high order conservative schemes

» Improve model fidelity using Poisson-Nerst-Planck
equations and/or use DFT (density functional theory)

* Solve new problems, e.g. microfluidic mixing
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