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Resolution Analysis of Buried Spherical Targets in the DC Frequency Limit

Lowfreduency transient slecomagneti (EW) sianals are commonly used n geophysical exploration of e Sartv || Obtained by inverse discrete Fourier ransforming frequency-domain specira. Source
for inferring fluid content of saturated porous media. However, low-frequency EM wavefields are diffusive, and have waveform is alternating polarity square pulse sequence (1 s on+, 1 s off, 1 s on-).
significantly larger wavelengths compared to seismic signals of equivalent frequency. Seismic and (low-frequency) EM ) )
wavelengths are given by Variable Bed Thickness
l( f )‘ — £ : ﬂv( f )‘ — C( f ) — 47[ : " ‘ . Ex Rgﬂectiop Respc?nses ‘ ‘ . ‘Ex Trapsmissilon Reslponses‘ ‘
SE'S f EM f Wf variable:::ot:;ckness r 1 h=0m: black
— 05 Obea = m — 05 h =0.001, 0.01, 0.1, 1 m: top to bot
where C is phase speed, and 0 and U are current conductivity and magnetic permeability. For example, the % q %
wavelength of a 30 Hz sinusoid propagating with seismic velocity of 3000 m/s in an elastic medium is 100 m, whereas § 00F= — 'fé i
the analogous EM signal diffusing through a conductive body of 0.1 S/m (clayey shale) has wavelength 1826 m. This H $ variable bed thickness
larger wavelength has implications for the resolution capabilities of the EM prospecting method. ”56( h=0m: black ' Oreq = 2500 S/m L
h =0.001, 0.01, 0.1, 1 m: top to bot |
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We are investigating the detection and resolving power of the EM method via theoretical and numerical experiments. S v v ey e e
The thin bed reflection and transmission problem, well known in seismology (e.g., Widess, 1973), is readily
adapted to electromagnetics. Normal incidence plane wave responses for a simple three-medium earth model are —— v T —
amenable to an analytic solution which includes all intrabed multiples. Frequency-domain electric vector (Ex) and 10 DY Reflection Responses | _ - o TRNEHON Responaes, .
magnetic vector (By) responses are calculated for thin conductive beds with widths that are several orders of N e o / \ N o
magnitude smaller than the dominant wavelength of an incident EM wave. Although detectable signals are calculated, £ " e z " 7 -
the effect of bed thickness and conductivity appears to be encoded in the amplitudes, rather than arrival times, of oo O
observed time-domain signals. ' '

2 o5 h=0m: black v £ h=0m: black

Finite-element numerical solution of Poisson’s equation for the scalar electric potential function, on a three- h=0.001,0.01, 0.1, 1 m: bot to top h=0.001, 0.0, 0.1, 1 m: top to bot
dimensional (3D) unstructured mesh, enables an investigation of resolution of two buried bodies by dc frequency 10 T T T = e T S0 i 0 0 o 30 oo 4o
methods. Excellent agreement is obtained with an analytic solution (Aldridge and Oldenburg, 1989) for the secondary t(ms) tms)
potential due to two conductive spheres, where extrema on the obvserved voltage curve indicates two separate
bodies. However, as depth to two shallow resistive spheres increases, the secondary potential contours merge and . L
mimic the shape of a single buried body. Variable Bed Condu clivity
Finally, the ability of EM observations to resolve two buried point current density sources (which can either be . . _ ExReflection Responses . | [Ex Transmission Responses, .
physical body sources, or interpreted as two scattering loci via the First Born Approximation) is examined with a 3D variable bed conductivity o= 102 Sim (background): black
Green function algorithm. Three-component (3C) time-domain EM traces recorded along a surface profile exhibit = 05 Poea =1 M 2 05 9 =10%to 10° Sim: top to bot
subtle amplitude and character changes as separation distance between two deeply-buried current sources increases. s — 2
However, the changes are appreciable only at large separations, which implies resolution of closely-spaced scatterers 'fg o0 V-/— "’ 0o
will be difficult with low-frequency EM methods. § d g
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Thin Bed Reflection and Transmission

The Geophysical Basis

Reflected Response (primaries plus bed multiples)

Incident Plane Wave
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where the normal incidence reflection coefficient and complex wavenumber are:
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The Mathematical Basis
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No sensitivity to conductivity x thickness product!

Problem Statement Benchmark Comparison (Aldridge and Oldenburg, 1989) o |
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~320 s to convergence
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Resolving Two Buried Point Current Density Sources (or Two Point Conduc

tivity Scatterers)
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Time-domain trace character “obviously” differs only at large source separation distances.
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Magnetic (B) vector responses obtained by multiplying by K(a))/a)




