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ABSTRACT

In this work we introduce an optimization—based method for the coupling of nonlocal and
local diffusion problems. Our approach is formulated as a control problem where the states are
the solutions of the nonlocal and local equations, the controls are the nonlocal volume constraint
and the local boundary condition, and the objective of the optimization is a matching functional
for the state variables in the intersection of the nonlocal and local domains. For finite element
discretizations we present numerical results in a one—dimensional setting; though preliminary, our
tests show the consistency and efficacy of the method, and provide the basis for realistic
simulations.

INTRODUCTION

Nonlocal continuum models are used in many scientific and engineering applications
where the material response and dynamics depend on the micro—structure. Such models differ
from the classical, local, models in the fact that interactions between points can occur at distance,
without contact; for this reason they are used to accurately resolve small scale features such as
crack tips or dislocations that can affect the global material behavior. However, nonlocal models
are often computationally too expensive, sometimes even intractable (see Figure 1 where we
report the pattern of the finite element (FE) stiffness matrices of a nonlocal diffusion problem for
increasing values of the radius of nonlocal interactions), especially when compared to partial
differential equations for which efficient numerical solvers are available.

Figure 1: Pattern of FE stiffness matrices of a one—dimensional nonlocal diffusion problem in
) = (—1,1) for increasing values of the radius of nonlocal interactions. From left to right, the
matrices corresponding to the local case, ¢ = 0.1, = 0.5, = 1.

Therefore, methods for the coupling of nonlocal and local models have been proposed for
efficiently obtaining accurate solutions; these methods employ nonlocal models in small parts of
the domain and local, macroscopic, models elsewhere.
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We propose an optimization—based coupling method for nonlocal diffusion problems; we split the
problem domain in a nonlocal and local domain such that they feature a non—zero intersection and
we minimize the difference between the nonlocal and local solutions in the overlapping regions
tuning their values on the common boundaries and volumes.

THEORY

We introduce the nonlocal and local diffusion models and describe the coupling strategy.
We define the nonlocal diffusion operator as

Lu(x) = Z/Rd (u(y) — u(w)) v(z,y) dy, (1

where u(z): R? — R and y(x,y): R? x R? — R is a symmetric non—negative kernel such that
Y(x,y) =0, Yy : | — y| > . We refer to ¢ as the interaction radius. For an open bounded
region ) € R we define the interaction domain as a layer of thickness ¢ that surrounds (2, i.e.

Q={yeR\Q: |ly—z|<e, zeQ} (2)
We formulate the nonlocal and local diffusion problems in 2,, C R and €; C R? as follows
_L'U/n = fn T € Qn —Aul = fl €T € Ql
(NL) - w {0 G
Uy = Op T E Qm U = 0 T E an,

where f,, f; are square integrable functions and o,,, 0; are the volume constraint (the nonlocal
counterpart of a Dirichlet condition) for (NL) and the Dirichlet boundary condition for (L).

Given a diffusion problem whose solution features discontinuities or irregularities (due to e.g.
discontinuous forcing terms) only in a part of the domain, we want to use the accurate nonlocal
model (NL) in that region and the macroscopic local model (L) in the remaining part, coupling
(NL) and (L) on the common boundaries or volumes.

The coupling method

Let Ot = QU Q be an open bounded domain in R%. We partition Q" into a nonlocal
subdomain 2, with interaction volume §2,, and a local subdomain €2;, such that
Qr=0Q,UQ, C Q" and Q, = QF N Q; # 0; we partition §2,, and 9, as in Figure 2.
The idea of our coupling approach is to tune the values of the nonlocal and local solutions, u,, and
uy, on the control regions (2. and I'. so that they are as close as possible on the overlap domain €2,.
The optimization—based coupling is formulated as a control problem where we minimize the
mismatch between the u,, and v; in {), subject to the nonlocal and local equations; the control
variables, denoted by 6,, and 0,, are the values of the nonlocal volume constraint on 2. and the
local boundary condition on I'.. Formally, we solve the following problem

1
min  J(u,,u) = = Uy — ) de
i I Cny ) = 5 /Qb( 2
—Lu, = fn € 9” —Au; = fi x e “4)
s.t. u, = 0, xell, and w = 0 xzel,

u, = 0 =xe w = 0 =zel,.



Figure 2: An example of domain configuration in two—dimensions.

We denote the optimal controls and the corresponding states by (0, 6;) and (u, u;). We define
the optimal “coupled” solution as u* = u} x(x € ) + u/x(x € 2\ ), where x(x) is the
indicator function.

In [1] this problem is treated in a variational form and analyzed using the nonlocal vector calculus
(see e.g. [2]), a recently developed technique that allows us to study nonlocal diffusion problems
as their local counterpart. There, one can find results such as the well-posedness and the analysis
of the error of u* with respect to the “true” solution, i.e. the solution of (NL) in Q" with o,, = 0.

Numerical approximation

For the numerical solution of problem (3) we consider the variational form of the state
equations and we discretize it with the FE method (see e.g. [3] for an introduction to weak
formulations and Galerkin discretizations).

Let wy,p, Uin, Onn, 0in be the discretized nonlocal and local states and controls; specifically, they are
discontinuous (for nonlocal) and continuous (for local) piecewise polynomial approximations of
the corresponding infinite dimensional variables w,,, u;, 6,,, 0;.
For the solution of the optimization problem we use an iterative gradient—based algorithm.
ALGORITHM 1.
Given an initial guess (6°,,65), for k =0,1,2,. ..
1. solve the state equations to obtain (u”, , ul ) and compute J(uf,, ul,)
2. compute the gradient of the functional with respect to the controls and evaluate it at (6%, , 0F ):
dJ

Ao, On) L1, 05
3. use 1. and 2. to compute the increments 6(6%, ) and 5(67,)
4. set OF = 0F, + 5(0F,) and 05 = 08 + 5(6F,).
In 3. one can use any optimization algorithm such as Conjugate Gradient, Newton methods,
Inexact Newton methods, etc. In this work we adopt the BFGS method [4]. [1] shows that for
each k, we only need one solve for the nonlocal and local states.

RESULTS

We report the numerical results of one—dimensional numerical tests; though preliminary,



these results prove the robustness of the method and provide the ground for realistic simulations.
We refer to the configuration in Figure 3.
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Figure 3: One—dimensional domain configuration used in the numerical tests.

We consider the kernel 1

mx(x—&erg), &)

y(z,y) =
which is often used in the literature, e.g. in a linearized peridynamics model for solid mechanics
[5]. We use discontinuous piecewise linear FE spaces for u,,;, and 6,,;, and continuous piecewise
linear FE spaces for wu;,; 6, is a scalar as we consider a one—dimensional setting. We use uniform
grids on both Q" and ), with the same grid size h.

Patch Test We utilize the following data set: u,, = u; = z, unlﬁ =z, u(1.75) = 1.75,

fn = fi = 0. Using linear FE spaces the optimal discretized solutions (u;“bh, u}"h) are exact; this
test proves the consistency of our method. In Figure 4, on the left, we report the optimal solutions
(u*,, u},) and their initial guesses (u2, , ud ).

Figure 4: (u},,u},) and (u?, , u), ) for the Patch Test (left) and for Test 1. (right).

Test 1. We utilize the following data set: u,, = u; = 2, Unlg, = x?, uy(1.75) = 1.75%,

fn = fi = —2. In correspondence of quadratic functions the nonlocal and local operators are
equivalent; this can be appreciated in Figure 4, on the right, where the optimal solutions
accurately approximate z2 over Q" = [—¢,1.75].

Test 2. The purpose of this test is to illustrate the coupling method in cases where the nonlocal
model is required in a part of the domain to capture irregular behavior, whereas the local model
provides adequate resolution in the rest of the domain. This situation arises when, for example,
the forcing term features discontinuities only in a part of the domain and it is smooth elsewhere.
In Figure 5, on the left, we report the right hand side over Q. We prescribe homogeneous



Dirichlet conditions on 621 and I';. In Figure 5, on the right, we report the optimal solutions and
their initial guesses.
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Figure 5: On the left, for Test 2. the forcing term with an infinite discontinuity. On the right, the
corresponding (u,, uj;,) and the initial guess (u2,, u,).

CONCLUSIONS

We introduced a robust, accurate and efficient method for coupling nonlocal and local
diffusion models and we illustrated its properties with several one—dimensional tests. The
generalization of our approach to more complex models (involving e.g. transport, reaction, or
nonlinear terms) is straightforward and the preliminary results presented in the previous section
are promising. An extensive mathematical and numerical analysis can be found in [1] as well as
other numerical tests illustrating the theoretical results. Our current work is focused on the
application of the coupling method to three—dimensional test cases and to nonlocal continuum
mechanics models such as peridynamics.
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