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A Monte Carlo algorithm is developed for generating samples of real-valued non-
stationary Gaussian processes. The method is based on a generalized version of
Shannon’s sampling theorem for bandlimited deterministic signals, as well as an
efficient algorithm for generating conditional Gaussian variables. One feature of the
method that is attractive for engineering applications involving stochastic loads is
the ability of the algorithm to be implemented “on-the-fly” meaning that, given the
value of the sample of the process at the current time step, it provides the value for
the sample of the process at the next time step. Theoretical arguments are supported
by numerical examples demonstrating the implementation, efficiency, and accuracy
of the proposed Monte Carlo simulation algorithm.
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1 Introduction and Motivation

Current algorithms for generating sam-
ples of non-stationary Gaussian pro-
cesses are based on Cholesky decom-
positions (Franklin, 1965), Karhunen-
Loeve representations (Grigoriu, 2002,
Section 3.9.4.4, Hernandez, 1995, Sec-
tion 6.2), Fourier series representations
with Gaussian coefficients (Grigoriu,
2002, Section 5.3.2.2), a generalized ver-
sion of the spectral representation theo-
rem (Grigoriu, 2010), and filtered Gaus-
sian processes (Grigoriu, 2002, Sec-
tion 5.3.2.1). Although these representa-
tions are general, their construction can
be time consuming and usually involves
technicalities. For example, the imple-
mentation of a Monte Carlo algorithm
based on the Karhunen-Loeve expansion
involves the calculation of the eigenfunc-
tions and eigenvalues of an integral oper-
ator with kernel equal to the correlation
function of the target process.

Simple representations of non-station-
ary Gaussian processes are available in

special cases, for example, stationary
Gaussian processes modulated by de-
terministic functions, stationary Gaus-
sian processes with distorted time scale
(Grigoriu, 2003), Gaussian processes
whose harmonics have amplitudes vary-
ing slowly in time, also referred to as os-
cillatory processes (Priestley, 1965), and
Gauss-Markov processes defined by dif-
ferential or finite difference equations
driven by Gaussian white noise (Grigo-
riu, 2001).

Our objective is to develop a Monte
Carlo algorithm for generating non-
stationary Gaussian samples that is:
(1) general, that is, it can be applied
to generate samples of arbitrary non-
stationary Gaussian processes; (2) accu-
rate, that is, estimates obtained from
samples produced by the algorithm
match properties of target non-stationary
Gaussian processes; and (3) efficient, that
is, the algorithm can be implemented
simply and its use is not computation-
ally demanding. To address item (2),
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we provide a detailed analysis of errors
associated with the practical use of the
algorithm for sample generation, includ-
ing the effects of truncation and alias-
ing. We note that while the aliasing
error for stationary Gaussian processes
has been studied previously by Gardiner
(1972), we herein provide a bound on the
aliasing error for non-stationary Gaus-
sian processes that appears to be a new
result.

Item (3) is of particular interest when
the stochastic process being sampled
serves as input to a dynamic system rep-
resented by a complex finite element (FE)
model; applications include wind loads
on civil engineering structures and aero-
dynamics forces on aerospace vehicles.
The traditional approach is to calculate
realizations of the applied loads for the
entire time record of interest indepen-
dent of the transient dynamics calcula-
tions of the FE solver. Hence, it is neces-
sary to store the realizations of the load to
a file for later application as input to the
finite element model, which can become
infeasible for large models and/or sim-
ulations of long dynamic events. To il-
lustrate, consider the structural response
of a spacecraft to external aerodynamic
forces, e.g., planetary entry, that vary
in time and space. An analysis of this
event would require time-varying pres-
sure loads for each finite element mod-
eling the outside surface of the space-
craft; the resulting data file could require
terabytes of disk space for storage. The
proposed method instead calculates re-
alizations of the load over a small time
window which moves as the simulation
progresses. When embedded within a
transient dynamics solver, the load can
be computed “on-the-fly” meaning that,
given the value of the load at the current
time step, it provides the load at the next
time step only. No external data file is
needed for storage. This approach can
be very useful for dynamic simulations

of large models and/or when many time
points are needed.

The organization of this paper is as
follows. The accuracy of approximations
based on the sampling theorem is dis-
cussed in detail in Section 2, and details
on the implementation and its efficiency
are provided in Section 3. Examples are
provided in Section 4 to illustrate these
features.

2 The Sampling Theorem and its
Accuracy

Let z(t), t € R, be a real-valued de-
terministic bandlimited function, i.e., the
frequency content of xz(t) is contained
entirely within frequency band (—v,, v.),
0 < v. < . Let

wo(t) = Y alkte)alt—kt), (1)

|k|<n

for n = 1,2,..., define a sequence of
approximations for z(t), where a(t) =
sin(v.t)/(v.t), t € R, and t. = 7/v,.
Because a((q — r)t.) = 0 for ¢ # r and
1 for ¢ = r, we have that x,(t) = z(t)
att = kt. < nt.. The Shannon sam-
pling theorem states that x,(t) defined
by Eq. (1) converges to z(t) as n — oo at
each t € R (Papoulis, 1977, Section 5-1).

It is common in applications to approx-
imate = by =z, defined by Eq. (1) with
n < oo; there are two types of errors asso-
ciated with this approximation, referred
to as truncation error and aliasing error. A
bound for the truncation error, defined
as e, (t) = |z(t) — x,(t)|, is available in
Papoulis (1966) for |t| < nt., and can be
made as small as desired by increasing
the value for n.

Let 7 > 0 be an arbitrary frequency,
referred to as the sampling frequency,
and let z,, be z,, in Eq. (1) with t = 7/v
in place of t.. If v > v, then z(t) =
lim,, o Z,(t) at each t € R and there is
no aliasing error. If 7 < v, then aliasing
occurs and Too(t) = lim, o0 T, (t) does
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not coincide with z(t). The difference

eqa(t) = |z(t) — xoo(t)], referred to as
aliasing error, can be bounded by
1
WO <y [ ool @
T Jvl>w

provided that z(v), the Fourier trans-
form of z(¢), is absolutely integrable
(Brown 1967; Jerri, 1977). By Eq. (2),
we note that the aliasing error decreases
with increasing v.

In the following sections, we review
extensions of the sampling theorem de-
scribed above to the case of stationary
and non-stationary Gaussian stochastic
processes, and provide some discussion
on the associated truncation and aliasing
errors that occur. Numerical examples
are presented to illustrate the effects of
these errors.

2.1 Sampling Theorem for
Stationary Processes

Let X(¢), t € R, be a stationary Gaus-
sian stochastic process with zero mean,
covariance function ¢(r) = E[X(t +
T)X(t)] = [ge' T s(v)dy, and spectral
density s(v) = (2m)~! [pe "7 ¢(r)dT,
where i = \/—1. The process is defined
on a probability space (2, F, P), and we
use notation X (t,w), w € Q to refer to a
particular sample of X.

Our objective in this section is to ap-
ply the Shannon sampling theorem to ap-
proximate X (¢); the following two sub-
sections deal with processes X () whose
spectral densities have bounded and un-
bounded support.

2.1.1 Bandlimited Processes

Suppose X(t) is a bandlimited process
with bandwidth (—v.,v.), 0 < v. < oo,
i.e., its spectral density satisfies s(v) = 0
for |v| > v.. Let

Xo(t) =Y X(kto)a(t—kt), (3)

|k|<n
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for n = 1,2,..., be a sequence of pro-
cesses with the notation introduced by
Eq. (1). The approximations X,, for X
defined by Eq. (3) are referred to as global
representations (Grigoriu, 1993). It can be
shown that: (i) the second moment prop-
erties of X,, converge to those of X as
n — 00, so that X,, becomes a version of
X as n increases since X and X,, are both
Gaussian processes; (ii) the sequence
{X,(t)} of random variables converges
to X (¢) in the mean square (m.s.) sense
as n — oo, that is, lim, . E[(X(¢) —
X, (t))?] = 0 at any time ¢; and (iii) X,
converges almost surely (a.s.) to X as
n — oo (Belyaev, 1959; Grigoriu, 1993).

It can be shown that these properties
also hold for the sequence of processes
defined by

ni+n+1
Xo(t)= > X(kto)a(t—kt,), (4)

k=n:—n

for t € [n¢te, (ne + 1)t.], where ny =
|t/t.] is the largest integer smaller than
t/t. (Grigoriu, 1993). The representation
X,, defined by Eq. (4), referred to as a
local representation for X, is particularly
useful for calculations since its values in
time cell [n, t., (n; + 1) t.] depend on val-
ues of X at only 2 (n + 1) times, that is,
at the nodal time points {kt.}, k = n, —
n,...,n; +n+ 1. In contrast, the number
of terms needed for the global represen-
tation defined by Eq. (3) increases with ||
and becomes very large for [¢t| > 0. It
is this feature of the local representation
that facilitates efficient on-the-fly gener-
ation of samples of X,,(t) discussed in
Section 1.

For bandlimited processes, there can
be no aliasing error as long as the sam-
pling frequency is strictly larger than v..
Let £,(t) = |X(t) — X (t)| and &,(t) =
|X(t) — X,,(t)| define the truncation er-
rors associated with the global and local
representations for X defined by Egs. (3)
and (4), respectively. Because X, X,,
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and X, are stochastic processes, so too
are the errors &,(t) and &,(t). The trun-
cation errors can be bounded by using
arguments similar to those used to de-
rive the bound for deterministic func-
tions (Papoulis, 1966), but the resulting
bounds are of limited use for applica-
tions since they are complex functionals
of X and their probability law cannot be
obtained analytically. For example, the
bound (Helms and Thomas, 1962)

En(t) <

mas{ Xl )

is valid for processes with a.s. finite en-
ergy.

2.1.2 Non-Bandlimited
Processes

Next suppose that the spectral density of
X (t) does not have a bounded support.
Let v. > 0 be a finite but otherwise ar-
bitrary cutoff frequency, and let X,, and
X, be the processes defined by Egs. (3)
and (4), i.e., the global and local repre-
sentations for X, respectively. The mag-
nitude of the differences between these
representations and the target process X
depend on the values for n < oo (trunca-
tion error) and v, < oo (aliasing error).

It is possible to develop bounds on
both truncation and aliasing errors for
the case of non-bandlimited processes.
For example, an upper bound related to
the aliasing error is given by (Brown,
1978)

co(t) = lim E [(X(t) _Xn(t)ﬂ

n—oo

<2 [ st ©
T Jp|>ve

where s(v) is the spectral density of X (¢).
This bound constitutes a special case of
the bound for non-stationary processes
established in the following section (see
Eq. (12)). This bound demonstrates that
the accuracy of X,, depends on the en-

ergy of X outside the frequency band
(—ve, V), as expected.

2.2 Sampling Theorem for
non-Stationary Processes

Let X(t), t € I C R, be a real-valued
non-stationary Gaussian processes with
zero mean, finite variance, and covari-
ance function ¢(s,t) = E[X (s) X (¢)]. The
generalized spectral density of X and the
covariance function of this process are
double Fourier pairs, that is

1 )
_ —i(vs—nt)
s(v,m) @2 /R (s, t)e dsdt,
@)

and
c(s,t)z/ s(v,n) e VD dudn. (8)
R2

Note that the generalized spectral den-
sity s(v,m) in Eq. (7) exists if c(s,t)
is absolutely integrable in R?, that is,
if [oole(s,t)|dsdt < oo. Under this
condition, we have (27)2|s(v,n)| <
Jee le(s. )] Je= =10 ds i -
Jgz le(s, t)|dsdt, which is finite by as-
sumption.

In the reminder of this section we
give properties of the generalized spec-
tral density s(v,7) that are relevant to
our discussion; the properties are uti-
lized in Section 4 to ensure all exam-
ple spectral densities considered are in-
deed valid. We include processes whose
spectral densities have, or do not have,
bounded support.

Prop 2.1 The generalized spectral den-
sity is complex-valued even for real-
valued processes and satisfies s(v,n)* =
s(n,v) for all v,n € R. The spectral
ordinates s(v, v) are real-valued.

Proof. The proof can be found in Field et
al., (2013). O
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As a consequence of Property 2.1, the
real and imaginary parts of the gener-
alized spectral densities are such that
Re[s(v,n)] = Re[s(n,v)] and Im[s(v,n)] =
—Im[s(n, v)].

Prop 2.2 If X is a weakly stationary pro-
cess with zero mean, covariance function
co(s—t) = E[X(s) X (¢)] and spectral den-
sity so, its generalized spectral density is

st =0 (252) s ©)

that is, the entire energy of the process is
concentrated in the subset {(v,n) : v =

n}.

Proof. The proof can be found in Field et
al., (2013). O

v+

2.2.1 Bandlimited Processes

Let X(t), t € R, be a real-valued,
non-stationary process with zero mean
and generalized spectral density with
bounded support, i.e., s(v,n) defined by
Eq. (7) satisfies

s(v,m) =0, (10)

where D = [—v.,v.] X [—Ve, v and 0 <
v < oo is a constant. Let X, (¢) be the ap-
proximation for X (¢) defined by Eq. (3).
As discussed previously, there is no alias-
ing error for bandlimited processes, but
we have the following result related to
the truncation error for this case.

(v,m) € DS,

Theorem 2.1 The m.s. difference between
X(t) and its representation X, (t) is such
that

lim E {(X(t) -

n—oo
n

> X(ktc)a(t—ktc)>2] =0. (11)

k=—n

Proof. The proof of the m.s. convergence
in Eq. (11) can be found in Gardiner
(1972). O
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Remark 2.1 This result demonstrates
that the sampling theorem representation
defined by Eq. (3) can also be used to
approximate bandlimited non-stationary
processes. As for stationary processes,
we can derive bounds on the trunca-
tion error, that is, on the expectation in
Eq. (11) for specified values of truncation
level n.

2.2.2 Non-Bandlimited
Processes

Let X (¢) be a non-stationary process with
zero mean and generalized spectral den-
sity s(v,n) that does not have a bounded
support. In this case, we can show that
the sampling theorem representation X,
defined by Eq. (3) corresponding to an ar-
bitrary cutoff frequency 0 < v. < oo can
be used to approximate X under some
conditions. The quality of the approxi-
mation X,, depends on the values of n
(truncation error) and v, (aliasing error).
The local representation in Eq. (4) has
similar properties.

Theorem 2.2 If (v,n) is square integrable,
that is, sz]R2 |s(v,n)|? dvdn < oo, then

€q(t) = lim E{ )2]

n—oo

§4/6MumF¢dn (12)

Proof. The proof can be found in Field et
al., (2013). O

Remark 2.2 By Theorem 2.2, the mean
square value of the aliasing error defined
in Section 2.1.1 is bounded by the vol-
ume of the absolute value of the general-
ized spectral density of X in D¢. We note
that the requirement [, [s(v,n)|dvdn <
oo is stronger than X € L? since, if s(v,n)
is absolutely integrable, then c(¢,t) <
Jg2 [s(v,m)| dv dn < oo implying X € L.

Remark 2.3 The bound in Eq. (12) is
similar to that in Eq. (6) for weakly sta-
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tionary non-bandlimited processes. The-
orem 2.2 is an analogue, not a gen-
eralization, of Eq. (6). We note that
the difference between the coefficients in
front of the bounds relates to the dif-
ferences between the Fourier pairs in
Egs. (7) and (8), and the relationship
or) = [T s(v)e'’"dr/(27) used in
Brown (1978) to establish the bound in
Eq. (6).

3 Implementation of the
Sampling Theorem

Let X(t) be a non-stationary Gaussian
process with zero mean, covariance func-
tion ¢(s,t) = E[X(s) X(t)], and general-
ized spectral density s(v,n) defined by
Eq. (7). Our objective in this section is
to develop an efficient procedure to gen-
erate independent samples of X (¢) in a
time interval ¢ € [0,7 = n.t.], where
n. > 11is an integer.

The generation of samples of X () can
be based on the following three step al-
gorithm that uses the local representation
X, of X defined by Eq. (4). Samples
of X, and X, can be used as substi-
tutes for samples of X since the second
moment properties of these approximate
representations converge to those of X as
n — oo and v, — 0o, and X,,, X,,, and X
are all Gaussian processes. We first gen-
erate samples of X,, in the time interval
[0,t.] and then extend these samples over
successive time intervals.

(1) Select a cutoff frequency v, > 0 and
a half window width n defining the
number of nodal values { X (kt.)}, k =
ng—n,...,n+n+1, needed to describe
X (t) within cell ¢ € [ngt., (ne + 1)¢t.],
where ny = [t/t.] = |vet/7].

(2) Suppose, for example, that X is zero
at negative times, that is, X (t) = 0 for
t < 0. We generate independent sam-
ples of the R?("+1)-valued Gaussian
variable {X (kt.)}, k=1,...,2(n+1),

based on classical algorithms (Grigo-
riu, 2002, Section 5.2.1), and use them
and Eq. (4) to calculate corresponding
samples of X,, in cells [0, ], ..., [(n +
1) te, (n + 2)t.]. Nodal values of X
for negative times are set equal to 0.
Slight modifications of this step need
to be implemented for different start-
ing conditions.

(3) Extend the samples in the time in-
terval [0, (n + 2)t.] to the time inter-
val [(n + 2)t., 7] by using properties
of conditional Gaussian variables and
Eq. (4). Let ¢ be such that n, > n +
2 and let Z be an R?™+D+1_yalued
Gaussian variable with first coordi-
nate Z; = X(n: + n + 2) and the
rest of coordinates Zo = (X (ny +n+
1),...,X(ny — n)). The conditional
variable Z; | Zs is Gaussian with
mean i 7{21 Z, and variance ;1 —
Y12 7521 14, Where 71, is the variance
of Z1, ~v12 denotes the covariance ma-
trix of Z; and Zs, and ~»5 is the covari-
ance matrix of Z, (Grigoriu, 2002, Sec-
tion 2.11.5). Since samples of Z; have
been already generated, the probabil-
ity law of the real-valued Gaussian
variable 7, | Zs is known and can
be used to generate samples of this
variable. The definition of X,, and
the samples of Z; and Z, can be used
to construct the corresponding sam-
ple of this process in the time interval
[nt tc, (nt + 1) tc]

4 Applications

Three example applications are consid-
ered below to illustrate the effective-
ness of the sampling-theorem based ap-
proach; the examples are constructed to
demonstrate the accuracy and efficiency
of the proposed Monte Carlo algorithm.
First, we consider a uniformly modu-
lated stationary Gaussian process and a
fractional Brownian motion. These pro-
cesses, presented as Examples 4.1 and
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4.2 below, are selected since their sec-
ond moment properties can be obtained
simply and observations regarding the
accuracy of our approach via the trun-
cation and aliasing errors can be made.
For Example 4.3, we consider a more
realistic application by using the pro-
posed algorithm to generate samples of
non-stationary processes that represent
dynamic loads applied to a complex
aerospace system. This latter example
is presented to further highlight the nu-
merical efficiency of the approach by ex-
ploiting the “on-the-fly” load generation
feature of the method.

Example 4.1

Let Y(¢t), t € R, be a stationary Gaus-
sian process with zero mean and covari-
ance function cy (1) = E[Y (t + 7)Y ()] =
exp(—=A|7]),A > 0,7 € R, and let 5(t) > 0
be a deterministic function. Then

X(t) = B@1)Y(t),

is a non-stationary Gaussian process
with zero mean, covariance function
c(s,t) = B[X(s) X()] = B(s) B(t) ev (s —

t), and generalized spectral density

teR, (13)

1

s(v,n) = @n? Rzﬁ(s)ﬁ(t) X

e Mstl =i (s g qp. (14)

By Eq. (13), X (t) is a special type of non-
stationary stochastic process referred to
as a uniformly modulated process (Grig-
oriu, 2001).

Five samples of X (t), generated using
the Monte Carlo algorithm outlined in
Section 3, are illustrated by Fig. 1 for
n = v, = 10. The mean and standard
deviation functions of X (¢) and their es-
timates calculated from samples of X,
with (n = 10, v, = 10) are denoted by
the red line shown in Fig. 2.

As demonstrated by Fig. 2, the ac-
curacy of the estimates for the mean
and standard deviation functions do not
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Fig. 1. Five samples of X, (t) defined by
Example 4.1 for n = 10, and v, = 10.

- = = Exact

—n = v, = 10|

n=v.=5

n=v,=2

2 0.4

0.2t/
‘

Fig. 2. Estimated and exact statistics of X
for Example 4.1: (a) mean, and (b) standard
deviation.

seem to be affected if both the truncation
level n and the cutoff frequency v, are
reduced from (n = 10, v. = 10) to
(n = 5, v. = 5). That the reduction
of the cutoff frequency from v, = 10
to v. = 5 does not decrease the accu-
racy of X, is expected since most of the
power of the generalized spectral den-
sity of X is contained in the frequency
band [-5,5] x [-5,5]. However, a fur-
ther reduction of the cutoff frequency v,
yields unsatisfactory approximations X,
of X, as demonstrated by the estimates of
the second moment properties of X illus-
trated by Fig. 2 and obtained from 5000
independent samples of X,, with (n =
5, v. = 2). The unsatisfactory perfor-
mance of the representation X, consid-
ered here is caused by aliasing errors that
are significant since only the frequency
band [—2,2] x [—2,2] is considered and
a significant portion of the power of X is
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outside this frequency band.

Example 4.2

Let H € (0,1) be a constant and let
Bg(t), t > 0, be a fractional Brownian
motion, that is, a non-stationary Gaus-
sian process with zero mean, covariance
function

cu(s,t) = E[Bu(s) By (t)]

=2 $2H y 2H (g g2H|

(15)

for s,t > 0, and initial state By (0) = 0. If

H = 1/2, then By is a Brownian motion.

If H > 1/2, then By has long range

memory (Embrechts and Maejima, 2002).
Define, for 0 < 7 < oo,

X(t)=1(0<t<7)By(t), (16

where 1(-) is the indicator function. The
Monte Carlo simulation algorithm from
Section 3 is applied to generate samples
of X, that is, samples of By fort > 0, es-
timate second moment properties of By
from its samples, and assess the accuracy
of the estimated moments of By as a
function of truncation level n and cutoff
frequency v.. All numerical results are
for H = 0.7, 7 = 50, and 5000 inde-
pendent samples of X,,. Five samples of
X (t), generated using the Monte Carlo
algorithm outlined in Section 3, are illus-
trated by Fig. 3 for n = 10.

0 25 50
t

Fig. 3. Five samples of X, (t) defined by
Example 4.2 for n = 10, and v. = 1.

The exact covariance function ¢(s, t) of
X (t) is illustrated by Fig. 4(a), while an

estimate of this function obtained from
5000 samples of X,, with n = 10 is il-
lustrated by Fig. 4(b). The mean and
standard deviation functions of X (¢) and
their estimates calculated from samples
of X,, with n = 10 are denoted by the red
line shown in Fig. 5. Similar results are
illustrated for decreasing values of n. Es-
timates of the first two moments of X for
truncation levels n = 10 and n = 5 have
similar accuracy. However, estimates of
these moments based on samples of X,
with n = 2 are less accurate since small
values for n result in large truncation er-
rors. Aliasing errors are negligible in this
case since most of the power of the gen-
eralized spectral density of X is included
in the rectangle [—v.,v.] X [—v.,v.] for
v. = 1.

Example 4.3

The presence of time- and space-
dependent random fluctuations in condi-
tions within a planetary atmosphere, e.g.,
temperature, density, and pressure, is a
well-documented phenomenon (Jumper,
et al., 1997; Justus and Woodrum, 1990;
Weill, et al., 1976). For spacecraft struc-
tural design, it is often of interest to
quantify the vibration response of the
spacecraft and its internals to these fluc-
tuations when undergoing ballistic entry
(Gnoffo, et al., 1998;Justus, et al., 1990).

In Field, etal. (2011), the first author
developed stochastic models for ran-
dom fluctuations of air density and tem-
perature within the Earth’s atmosphere.
When coupled with a trajectory analy-
sis, these random fluctuations in atmo-
spheric conditions can be mapped to a
stochastic process that models spacecraft
deceleration. Upon subtracting the mean
deceleration and scaling by the vehi-
cle mass, the resulting stochastic process
represents a fluctuating drag force. This
model for fluctuating drag force can be
applied, for example, to a finite element
(FE) model for an aerospace vehicle to
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Exam-

Fig. 4. Covariance functions for
ple 4.2: exact (a), and estimates for the cases
of n =10 (b), n =5 (c), and n = 2 (d).
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- --Exact
—n=10
— n=5
— n=2 b
. (b)
2
11]
b
-0.25
0
0 25 50 0 25 50
t t

Fig. 5. Estimated and exact statistics of X
for Example 4.2: (a) mean, and (b) standard
deviation.

compute the resulting vibration response
of internal components.

In this section, we utilize the proposed
sampling-theorem based algorithm to
provide an efficient and accurate frame-
work for the analysis of the vibration
response of a complex aerospace system
subjected to the fluctuating drag force
modeling random disturbances in atmo-
spheric conditions. One possible applica-
tion is the dynamic response of the Mars
Pathfinder; a complex FE model of this
system is discussed in Dieudonné and
Spel (2004).

The traditional approach to this anal-
ysis is to calculate multiple independent
realizations of the drag load over the en-
tire entry event, store the realizations to
a file, then read this file as input to a FE
model for the spacecraft. It is not unusual
for there to be tens of thousands of finite
elements used to represent the outside
surface of the spacecraft, and each el-
ement requires as input a time-varying
load function defined for tens or hun-
dreds of seconds. The resulting data files
can be huge, rendering this approach in-
feasible for large FE models and/or sim-
ulations of long dynamic events. In-
stead, we utilize the proposed sampling-
theorem based method, which calculates
realizations of the load over a small time
window which moves as the simulation
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progresses. When embedded within a
transient dynamics solver, the load can
be computed “on-the-fly” meaning that,
given the value of the load at the current
time step, it provides the load at the next
time step only. No external data file is
needed for storage.

Figure 6 illustrates 5 samples of X(t),
a non-stationary Gaussian process mod-
eling fluctuating drag force applied to
a finite element mesh of the Mars
Pathfinder. These samples were taken di-
rectly from the simulation algorithm de-
scribed in Field, et al. (2011), then scaled
by the planetary entry mass. Process
X(t) is herein assumed to be Gaussian
with zero mean for simplicity, but is non-
stationary due to the inhomogeneity of
the atmosphere and the changing speed
of the spacecraft.

¢ t (sec) e

Fig. 6. Three samples of fluctuating drag
force X(t) in units of Ib; (taken from Field,
et al. (2011)) considered for Example 4.3.

To utilize the proposed algorithm to
create samples of the loading on the ve-
hicle, all that is required is an estimate
of ¢(t,s) = E[X(t) X(s)], the covariance
function of the applied drag force. This
estimate, based on 500 samples of X (t)
taken from Field, etal. (2011), is illus-
trated by Fig. 7; methods from Bendat
and Piersol, (1986), Section 12.5.1, were
used for the estimation procedure. The
estimate of ¢(t, s) is illustrated for four
different time segments, each of length
0.1 seconds, in Fig. 7(a)-(d). In gen-
eral, the frequency content of the signal
decreases with increasing time, and the
variance increases, then decreases with

time. Both of these characteristics are
further evidence of the non-stationarity
of the drag force.

5 Conclusions

A new Monte Carlo algorithm was
developed for generating samples of
real-valued non-stationary Gaussian pro-
cesses. To quantify the accuracy of
the proposed approach, we analyzed
in detail the truncation and aliasing
errors associated with using the algo-
rithm to produce samples of the target
stochastic process. As a result, a new
bound on the aliasing error for non-
stationary Gaussian processes was de-
veloped. We also developed a new ap-
proach for the square-root-like decompo-
sition of a sequence of covariance matri-
ces that proved very beneficial for im-
proving the overall computational effi-
ciency of the algorithm. Further, it was
demonstrated that the algorithm can be
implemented “on-the-fly” meaning that,
given the value of the sample of the
process at the current time step, it pro-
vided the value for the sample of the
process at the next time step. This fea-
ture proved attractive for engineering ap-
plications involving stochastic loads ap-
plied to complex finite element models
since the realization of the load can be
embedded within a transient dynamics
solver, thereby eliminating the need for
external storage of the load record.
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