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Hydrocarbon wells in low-permeability shales are complex. We are using naturally occur-
ring noble gas tracers in hydraulically fractured shale wells to increase the total information
available for parameter estimation and uncertainty analysis.

Helium and other noble gases may exist in
high concentrations in hydrocarbon reser-
voirs as by-products of radioactive decay of
natural uranium and thorium. Helium is
a small inert molecule, and the noble gases
(He, Ne, Ar, Kr, Xe & Ra) have a wide range
of molecular sizes, diffusion coefficients, and
propensities to sorb onto organic matter.

Naturally occurring tracers are brought to the borehole through advection (due to a uniform
initial concentration), driven by pressure gradients. Different species may have their own
effective permeabilities, porosities, and compressibilities – helium being the most favorable,
because it is a small inert molecule.

Multiporosity Flow Model

We extend the classical double porosity flow
model [8] to a single fracture continuum and
N matrix continua using the multirate trans-
port approach [5].

double porosity (L) vs. multiporosity (R)

The fracture flow equation (ƒ denotes frac-
ture continuum) is
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where ψƒ is the dimensionless pressure

head change [L], ωℓ =
cℓϕℓ

cƒϕƒ+
∑

cjϕj
, ℓ =

{ƒ ,1, . . . , N} is a storage capacity ratio (c

is formation compressibility [L−1] and ϕ is

porosity), tD = t/(r2

μϕcƒ /kƒ ) is dimen-

sionless time, μ is fluid viscosity [LT], r is
wellbore radius [L], and χ is a dimensionless
probability mass function (a discrete proba-
bility distribution).
The matrix flow equation (j denotes matrix
continua) is
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where κj = kj/kƒ is the matrix/fracture per-
meability ratio.
Integrating (2) across an assumed one-
dimensional matrix perpendicular to the
fracture

(see coordinate convention in diagram at top
of center column) produces
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where 〈ψj〉(t) =
1
yeD

∫ yeD
0

ψj(y, t) dy is the

spatially averaged change in matrix pres-
sure.
The pseudo steady-state interporosity flow
approximation (used by [3] & [8]) assumes
flow to or from the matrix is proportional to
their difference in fracture and matrix pres-
sures
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(3)

where αj is the Warren & Root “shape pa-

rameter” [L−2].
We use the Laplace transform to solve the
matrix (3) and fracture (1) governing equa-
tions simultaneously, leading to:



1 +

N
∑

j=1

ωj

ωƒ

jχj

s + j



 sψ̄ƒ = ∇2ψ̄ƒ , (4)

where j = αjκjr
2

/ωj is the summation pa-

rameter characterizing the matrix (also the
abscissa for the probability mass function
χj), s is the dimensionless Laplace param-
eter and an overbar indicates a Laplace-
transformed variable. The time-domain re-
sults are computed using a numerical inverse
Laplace transform [4]. The bracketed quan-

tity (η2) in (4) is the modified Helmholtz
wave number [1].

The multiporosity model can generalize the
dual porosity Warren & Root [8] pseudo-
steady-state interporosity flow model (N = 1),
triple-porosity pseudo-steady state interporos-
ity flow models [3] (N = 2), and can approxi-
mate the transient interporosity flow model of
Kazemi [6] (N → ∞). Adapting results from
[5], the series

j = (2j − 1)
2π2y2

eD
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with j = 1, . . . ,∞ can be used to approximate
transient diffusion into the matrix with an infi-
nite series of pseudo steady-state porosities.
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Radial Well Test Solutions

We solve the governing equation (4) in radial coordinates for two wellbore boundary con-
ditions, for both infinite and finite domains with a general Type-III boundary condition at
the radial extent of the domain.

The Laplace-domain specified
flowrate solution in an infinite
domains is

ψ̄
(q,∞)

ƒ
=

K0(η)

sK1(η)

where K is a modified Bessel
function. The specified down-
hole pressure solution for an in-
finite domain is

q̄
(P,∞)

ƒ
= πδDη

K1(η)

sK0(η)

where δD is the dimensionless
fracture aperture.
For a finite domain the specified
flowrate solution is

ψ̄
(q,ƒ)

ƒ
=

1

sη

0(η)ξ + K0(η)ζ

1(η)ξ − K1(η)ζ

and the finite domain solution
for specified bottomhole pres-
sure is

q̄
(P,ƒ )

ƒ
=
πδDη

s

1(η)ξ − K1(η)ζ

0(η)ξ + K0(η)ζ

where

ξ = ηK1(ηƒD)−HDK0(ηƒD),

ζ = η1(ηƒD)+HD0(ηƒD),

I is a modified Bessel func-
tion, and HD is a dimensionless
boundary conductance. The lim-
iting value of HD = 0 makes the
Type-III boundary no-flow (Type
II), HD → ∞ makes the bound-
ary constant head (Type I).
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Natural Gas Production Data

Transient pressure and gas, oil, and water production data collected from the wellhead at
hydrofractured horizontally completed natural gas wells (upper left figure) are used to ap-
proximate down-hole pressure and flowrate using the ideal gas law and wellbore mass and
energy balances [7] (upper right figure). Choke is plotted on the right axis in each figure,
and represents the size of the opening on the surface through which the fluids are allowed
to flow. Because gas is highly compressible, a pseudo-potential must be computed (lower
right figure),

Δm =

∫ p1

p0

p

μgZ
dp t = μgc

∫ t

0

dt

μgc

where μg(p, T) is the pressure- and temperature-dependent gas viscosity, Z(p, T) is the
ideal gas deviation factor, m is a pseudo-pressure, and t is a pseudo-time [2].
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Pressure & time accounting for compressibility

Noble gas isotope mole fraction data have recently been sampled and analyzed (lower left
figure), but definitive analysis is waiting on more noble gas data.
We are developing more realistic wellbore and production models to capture the early pro-
duction data (taking the applied choke into account) as shown in upper left figure above.
The early peak of water production (blue), followed by a delayed peak in gas (red) and oil
(green) production are unique to hydrofractured shale wells. They are representative of the
multi-phase interaction of fluids in both the fracture and matrix after high-pressure water
injection.
We are combining development of physically realistic fractured rock models, realistic well-
bore production models, and noble gas flow and transport data in a Bayesian framework, to
improve understanding of gas flow in low-permeability formations.
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