
Mini-Driver Application for Testing
FEM Assembly on Modern Architectures

Matthew T. Bettencourt1

Eric C Cyr1
1Scalable Algorithms,

Sandia National Laboratories,
Albuquerque, New Mexico, USA

SIAM Parallel Processing
Portland Oregon

Feb 19th, 2014

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

adphill
Typewritten Text
SAND2014-1229C

Outline

1. Overview – problem description, tools, …
2. Different assembly approaches
3. Results
4. Summary

Problem Description

• You’ve heard it 1000 times
– Many more less powerful CPU cores on a chip
– Memory to FLOPs is going down – codes require restructuring

• However, we have large FEM applications running on current
hardware
– How do we know how to migrate all this code to a new

architecture?
• At Sandia we developed the Mantevo Mini-App suite

http://mantevo.org
– Mini-apps should show the complexity of a full application in a

small package which is easy to understand, and simple to
change

– Minimal dependency on non-standard APIs, simple to build
• Multi-core solvers are currently active area of research

– We feel less so about the rest of a typical FEM algorithm

UNCLASSIFIED UNLIMITED RELEASE

Mini Driver – FEM Assembly Layer

• Develop a FEM assembly test code
– Solve added to check correctness

• Model problem
– Viscous Burgers equation

• FEM
– Standard Galerkin formulation with theta method time

integration in residual correction form
– Stiffness matrix computed with the help of Automatic

Differentiation (AD) and the Sacado library
• Hand turned Jacobian not implemented or compared
• Full Jacobian calculation compared to just residual calculation

UNCLASSIFIED UNLIMITED RELEASE

uuu
t
u



 

Kokkos: C++ Library / Programming Model
for Manycore Performance Portability

• Portable to Advanced Manycore Architectures
– Multicore CPU, NVidia GPU, Intel Xeon Phi (potential: AMD

Fusion)
– Maximize amount of user (application/library) code that can be

compiled without modification and run on these architectures
– Minimize amount of architecture-specific knowledge that a user is

required to have
– Allow architecture-specific tuning to easily co-exist
– Only require C++1998 standard compliant

• Performant
– Portable user code performs as well as architecture-specific code
Thread scalable – not just thread safety (no locking!)

• Usable
– Small, straight-forward application programmer interface (API)
Constraint: don’t compromise portability and performance

Kokkos: Collection of Libraries
• Core – lowest level portability layer

– Portable data-parallel dispatch: parallel_for, parallel_reduce,
parallel_scan

– Multidimensional arrays with device-polymorphic layout for
transparent and device-optimal memory access patterns

• Containers – built on core arrays
UnorderedMap – fast find and thread scalable insertion
– Vector – subset of std::vector functionality to ease porting
– Compress Row Storage (CRS) graph

• Linear Algebra
– Sparse matrices and linear algebra operations
– Wrappers to vendors’ libraries
– Portability layer for Trilinos manycore solvers

• Examples – where the code for this presentation resides
– MiniFENL: finite element solution of non-linear system of

equations

What is Automatic Differentiation (AD)?

• Technique to compute analytic
derivatives without hand-coding the
derivative computation

• How does it work -- freshman
calculus

– Computations are composition of
simple operations (+, *, sin(),
etc…) with known derivatives

– Derivatives computed line-by-
line, combined via chain rule

• Derivatives accurate as original
computation

– No finite-difference truncation
errors

• Provides analytic derivatives without
the time and effort of hand-coding
them

• Provided by Trilinos/Sacado library

2.000 1.000

7.389 7.389

0.301 0.500

0.602 1.301

7.991 8.690

0.991 -1.188

2.000

7.389

0.301

0.602

7.991

0.991

Hardware and Terminology

• Hardware platforms
– Intel Xeon Nehalem 2x6 cores
– Intel Knights Corner (Phi) with 57 cores x4 hyperthreads
– Nvidia Tesla k20x cards

• Terminology
– Thread – lowest unit of computing resource
– Thread team – group of threads trained on a common task

• Common shared local memory
• Might be 4 threads in a team on a Phi or 256 on Tesla

– League – group of teams tasked to handle the full workload

UNCLASSIFIED UNLIMITED RELEASE

Assembly Approaches

• Worksets
– Typical assembly follows a gather-work-scatter approach
– Worksets have been developed to improve cache performance

on scalar hardware
– How to parallelize multicore worksets?
– Thread per workset
– Team per workset
– Interleaving vs block

updates

• No worksets at all

UNCLASSIFIED UNLIMITED RELEASE

Workset Queue

League1

Workset 1
Element 1

Element 2

Element 3

:

Element N

League2

Workset 2
Element 1

Element 2

Element 3

:

Element N

League3

Workset 3
Element 1

Element 2

Element 3

:

Element N

League4

Workset 4
Element 1

Element 2

Element 3

:

Element N

Workset 1
Element 1

Element 2

Element 3

:

Element N

Workset 1
Element 1

Element 2

Element 3

:

Element N

Workset 1
Element 1

Element 2

Element 3

:

Element N

Workset 5
Element 1

Element 2

Element 3

:

Element N

League3

Thread Team
Thread 1 - Element 1

Thread 2 - Element 2

Thread 1 - Element 3

:

Thread 2 - Element N

General Trends

UNCLASSIFIED UNLIMITED RELEASE

• Scaling over all options
for Matrix and RHS
calculation
– Upper Right – Desktop
– Lower Left – Nvidia
– Lower Right – Xeon Phi

General Trends

UNCLASSIFIED UNLIMITED RELEASE

• Scaling over all options
for RHS calculation only
– Upper Right – Desktop
– Lower Left – Nvidia
– Lower Right – Xeon Phi

Variability
examined
next slides

Weak Scaling – Worksets Sizes

UNCLASSIFIED UNLIMITED RELEASE

• Effect of workset size
– UR – Desktop – 10 threads
– LL – Nvidia – 1024 threads
– LR – Phi – 224 threads

• Effect is minor!
– Except for desktop

Weak Scaling – Thread Team Size

UNCLASSIFIED UNLIMITED RELEASE

• Nvidia below run with a
total of 1024 threads
– Optimal small thread team

size
– Smaller variance with large

problem size

• Xeon Phi below run with
on a 400x400 problem
– Diminished return using

hyperthreads
– Using all the threads/cores

slightly faster most times,
optimal may be 3 of 4

Simpler Approach – No Worksets

UNCLASSIFIED UNLIMITED RELEASE

• Scaling over all options
for Matrix and RHS
calculation
– Upper Right – Desktop
– Lower Left – Nvidia
– Lower Right – Xeon Phi

Weak Scaling – Thread Team Size – No Worksets

UNCLASSIFIED UNLIMITED RELEASE

• Nvidia below run with a
total of 1024 threads
– Optimal small thread team

size
– Smaller variance with large

problem size

• Xeon Phi below run with
on a 400x400 problem
– Diminished return using

hyperthreads
– Using all the threads/cores

slightly faster most times,
optimial may be 3 of 4

Worksets or No Worksets?

UNCLASSIFIED UNLIMITED RELEASE

• Desktop – Left: Worksets Right: No Worksets ~30%

• Nvidia – Left: Worksets Right: No Worksets ~-50%

Worksets or No Worksets?

UNCLASSIFIED UNLIMITED RELEASE

• Xeon Phi– Left: Worksets Right: No Worksets No Diff

• Worksets
• Depends on the platform, they were developed

for today’s hardware, work well on it.
• More complicated to code

Summary

• A simple code to test parallel multi threaded assembly of a finite
element code
– Threading tested on Xeon Phi, Nvidia and a standard desktop
– Kokkos was the abstraction layer, it was simple to use and

robust!
– Code hopefully to be released as part of Mantivo Mini-apps

• Worksets were compared on the different platforms
– Showed improved performance on today’s hardware, but not

next gen systems
– Thread team can provide a large benefit on some platforms –

Nvidia for example

UNCLASSIFIED UNLIMITED RELEASE

