SAND2014-1229C

\

Mini-Driver Application for Testing
FEM Assembly on Modern Architectures

Matthew T. Bettencourt?
Eric C Cyr?

1Scalable Algorithms,
Sandia National Laboratories,
Albuquerque, New Mexico, USA

SIAM Parallel Processing
Portland Oregon
Feb 19th, 2014

> Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, Sandi
7 YA J for the United States Department of Energy’s National Nuclear Security Administration @ naia

4 ;
i vN,A' Qf@ under contract DE-AC04-94AL85000. Eaat}(llorg?tlrﬁes

adphill
Typewritten Text
SAND2014-1229C

el '
} Outline

1. Overview — problem description, tools, ...
2. Different assembly approaches

3. Results

4. Summary

v) i
MM A Laboratories

o~
& Problem Description

* You've heard it 1000 times
— Many more less powerful CPU cores on a chip
— Memory to FLOPs is going down — codes require restructuring

 However, we have large FEM applications running on current
hardware

— How do we know how to migrate all this code to a new
architecture?

» At Sandia we developed the Mantevo Mini-App suite
http://mantevo.org

— Mini-apps should show the complexity of a full application in a
small package which is easy to understand, and simple to
change

— Minimal dependency on non-standard APIs, simple to build
» Multi-core solvers are currently active area of research
— We feel less so about the rest of a typical FEM algorithm

—— e
N A’ A= UNCLASSIFIED UNLIMITED RELEASE Laboratories

A
% Mini Driver — FEM Assembly Layer

* Develop a FEM assembly test code
— Solve added to check correctness

* Model problem
— Viscous Burgers equation 8_u+u VU = vAU

. FEM ot
— Standard Galerkin formulation with theta method time

integration in residual correction form
— Stiffness matrix computed with the help of Automatic
Differentiation (AD) and the Sacado library
« Hand turned Jacobian not implemented or compared
 Full Jacobian calculation compared to just residual calculation

«

r
|

b i
? |
i1

10

05

0.0
.5

— e
N A’ A= UNCLASSIFIED UNLIMITED RELEASE Laboratories

or Manycore Performance Portability

« Portable to Advanced Manycore Architectures

— Multicore CPU, NVidia GPU, Intel Xeon Phi (potential: AMD
Fusion)

— Maximize amount of user (application/library) code that can be
compiled without modification and run on these architectures

— Minimize amount of architecture-specific knowledge that a user is
required to have

— Allow architecture-specific tuning to easily co-exist
— Only require C++1998 standard compliant
« Performant
— Portable user code performs as well as architecture-specific code
» Thread scalable — not just thread safety (no locking!)
» Usable
— Small, straight-forward application programmer interface (API)
» Constraint: don’t compromise portability and performance

v) i
MM A Laboratories

'ﬁl’ C++ Library / Programming Model

okkos: Collection of Libraries

Core — lowest level portability layer

— Portable data-parallel dispatch: parallel for, parallel reduce,
parallel _scan

— Multidimensional arrays with device-polymorphic layout for
transparent and device-optimal memory access patterns

» Containers — built on core arrays
» UnorderedMap — fast find and thread scalable insertion
— Vector — subset of std::vector functionality to ease porting
— Compress Row Storage (CRS) graph
* Linear Algebra
— Sparse matrices and linear algebra operations
— Wrappers to vendors’ libraries
— Portability layer for Trilinos manycore solvers
« Examples — where the code for this presentation resides

— MiniFENL.: finite element solution of non-linear system of
equations

NISE @ Natoral
Il NI A A4 Laboratories

A
} What is Automatic Differentiation (AD)?

* Technique to compute analytic
derivatives without hand-coding the
derivative computation

» How does it work -- freshman
calculus

— Computations are composition of
simple operations (+, *, sin(),
etc...) with known derivatives

— Derivatives computed line-by-
line, combined via chain rule

« Derivatives accurate as original
computation

— No finite-difference truncation
errors

» Provides analytic derivatives without
the time and effort of hand-coding
them

* Provided by Trilinos/Sacado library

T VAT 3%

y = sin(e” + xlogx), « = 2

u «— logx
vV — TU
w<+—t+ov

Y «— sinw

d

T —

dx
2.000| 1.000
7.389 | 7.389
0.301 | 0.500
0.602 | 1.301
7.991 | 8.690
0.991 | -1.188

Sandia
National
Laboratories

A
_
Hardware and Terminology

« Hardware platforms
— Intel Xeon Nehalem 2x6 cores

— Intel Knights Corner (Phi) with 57 cores x4 hyperthreads
— Nvidia Tesla k20x cards
* Terminology

— Thread — lowest unit of computing resource

— Thread team — group of threads trained on a common task
« Common shared local memory
* Might be 4 threads in a team on a Phi or 256 on Tesla

— League — group of teams tasked to handle the full workload

| AN g%

q ﬁandia |
v P ationa
///’ v,,,‘ D‘ 4 UNCLASSIFIED UNLIMITED RELEASE Laboratories

\

* Worksets
— Typical assembly follows a gather-work-scatter approach

— Worksets have been developed to improve cache performance
on scalar hardware

— How to parallelize multicore worksets?
— Thread per workset

Assembly Approaches

Scatter Stokes<Residual>

11:10
— Team per workset r
StokesFOResid<Residual>
— Interleaving vs block
u p d a te S ViscosityFO<Residual> 10:4 10:3 StokesFOBodyForce<Residual>
6:5 6:4
A
DOFVecGradlInterpolation<Residual> DOFVecInterpolation<Residual>

MapToPhysicalFrame<Residual>

e

Gather Solution<Residual> Gather Surface Height<Residual>

ComputeBasisFunctions<Residual>

 No worksets at all

Gather Coordinate Vector<Residual>

T VAL =) Natorl
N A’ A= UNCLASSIFIED UNLIMITED RELEASE Laboratories

Workset Queue

Works;
Eleme
Eleme

Eleme

Element N

Workset 5

Works¢ Element 1
Element 2

Element 3

Element N

Element N

Element N

League1 League?2

Workset 1 Workset 2

Element 1 Element 1

Element 2 Element 2

Element 3 Element 3

Element N Element N

League3 League4

Workset 3 ifa =N
League3

Element 1

Element 2 Thread Team

Element 3 Thread 1 - Element 1

Thread 2 - Element 2
Thread 1 - Element 3

Element N

Thread 2 - Element N

'

\

» Scaling over all options

General Trends

for Matrix and RHS . |
. R * 2 :
calculation e foE oy PE
. glU’T . L «;Fi
— Upper Right — Desktop : | DRI I
— Lower Left — Nvidia P S %; R
. . 10 %
— Lower Right — Xeon Phi * ¥
o | I ‘+ + NX=1600 s
L+ o100 £
| W + 4 % | NX=200 |] = 10tk " $j -
w b + + - NX=800 0 I 4 .
EEESEERII Pl gl P
: *%igiﬁi*ﬂfqe IEh L e i*%fii”ﬁ
i % : % N I : i e AT
g 3 I T g 01} T A e
107} % % % % B ii% i’; HEHE
PFiioe i

Total number of threads Total number of threads

VALY i) o
/| VNQ A=Y UNCLASSIFIED UNLIMITED RELEASE Laboratories

Illlllll""

\

General Trends

« Scaling over all options
for RHS calculation only
— Upper Right — Desktop
— Lower Left — Nvidia
— Lower Right — Xeon Phi

Variability
examined
/nextslide
i ‘# f++ nx=1600
.ty Bl
| % e
LT Pl
% ' * 35 éE j; éE ® % & =
swPoF o+ T OF &
P s -
1073 ‘2 I3 l4
10 10 10

”’IA ' .' DQ&"& Total number of threads
LA LN o

Assembly time RHS (s)

Assembly time RHS (s)

10!

HHE R B B
A+ HH
e A A

RUIMTT I
N
e

-

b

10'3 L

10

10t F

10°

10-1 L

1020

10° 161
Total number of threads
T o+ fx
L
+ o+ Fa
P+ EE ii+
b ¥ & & ft £ oy i:.*:F 4F4+TF £+
+ = I4 sl el
LA - Z“f"'f e
- ‘ I Tt £F. 4
* 3& 2E ;E aE%EE 4—12; + +
| & et
10° 10} 10°

Total number of threads

UNCLASSIFIED UNLIMITED RELEASE

[)Sandia
|l'| National
Laboratories

'

\

» Effect of workset size

Weak Scaling — Worksets Sizes

+ + NX=1600

% + 4 NX=400
— UR — Desktop — 10 threads S ||+ + wx-100
s NX=200
. g 5 + NX=800
— LL — Nvidia — 1024 threads
@
. a +
— LR = Phi — 224 threads TR L L
2
n n =
« Effect is minor!
_— >
£
— Except for desktop
1076 0 ‘I [2 I3 4
10 10 10 10 10
Workset Size
10" i F 107 ‘
_ + + NX=1600 _ + + NX=400
5 © NX=400 T i [+ + NX=800
g + + NX=100 4 E + 4+ NX=100
5 NX=200 s NX=200
§ + NX=800 T+ £
5 = g
: g . v
g 2 . + 4+ =+ g .
g 207 & . : + I3 g w7
% i- ; ; ; Ii ¥ % +
£ ‘ E t &= 4 +
> > T o= ¥ * - +
10° : . : 10 s .
10" 10t 10° 10° 10* 10° 10! 10° 10° 10*

Workset Size Workset Size

T VAL =) Natoral
N A’ A= UNCLASSIFIED UNLIMITED RELEASE Laboratories

A
%‘ Weak Scaling — Thread Team Size

* Nvidia below run with a « Xeon Phi below run with
total of 1024 threads on a 400x400 problem
— Optimal small thread team — Diminished return using
size hyperthreads
— Smaller variance with large — Using all the threads/cores
problem size slightly faster most times,

optimal may be 3 of 4

107 [

10°

= + + Team=64 = + + Team=1
v + + Team=32 P + + Team=2
] + + Team=8] + + Team=3
§ Team=128 § Team=4
g t Team=256 g + & %
E 10t} 1 £ } £ &
g + + Team=16 8 e g * F &
@ 7] - == #
: - : + *
] @ $ $
a a | + i #:
2 ¢ T 10"} ;t 4 =3
< & i &
- ER TR F
E 2 ‘ + g
10°F
(] (1]
2 43 z g
s t i S
o o2
£ L # £
a]
n wn
< <
3 ; ‘ . s L . .
10 10
10? 10° 10° 10° 10 10?
Total number of threads Total number of threads

— e
N A’ A= UNCLASSIFIED UNLIMITED RELEASE Laboratories

Illll"'

\

Simpler Approach — No Worksets

« Scaling over all options
for Matrix and RHS
calculation

— Upper Right — Desktop
— Lower Left — Nvidia
— Lower Right — Xeon Phi

‘* I ‘+ + NX=1600
[$ + + NX=400
oty g
ﬁ ¥ = $ + + NX=800
é i i i ! i jr: - == T
£ 10° 1
5 % i = = op
= H- :F ’ ‘
£ - = £
s * E # d
T R
t Lt
<
107 t ¥ o+ o+ o+ o+
3 . . .
1 10° 10° 10°
Total number of threads
i l"!F 15
///' !,‘ ‘a 4 UNCLASSIFIED UNLIMITED RELEASE

+ + NX=1600
+ NX=400
+ + NX=100 ||

NX=200

= NX=800

Assembly time Matrix/RHS (s)

Total number of threads

10

+ + NX=400

+ NX=800
+ + NX=100
NX=200 ||

Fo+ o+ o+t

Assembly time Matrix/RHS (s)

+

Total number of threads

Laboratories

'

%‘eak Scaling — Thread Team Size — No Worksets

* Nvidia below run with a
total of 1024 threads

— Optimal small thread team

size

— Smaller variance with large

problem size

10° ‘
= + + Team=64
v + Team=32
] + + Team=8
E Team=128
3 - Team=256
E 1()'1 F |
a + Team=16
o -
w
(=X
L4 +
o
E
A - S -
= 107} +
E + t
= +]
5 T 7
@ BE F *
-3 i L i
10
10° 10° 10*

T VAT 3%

Total number of threads

UNCLASSIFIED UNLIMITED RELEASE

e Xeon Phi below run with

(s)

x/RHS per element on core

Assembly time Matri

on a 400x400 problem

— Diminished return using

107 [

10* |

5Ly
10
10°

— Using all the threads/cores

hyperthreads

slightly faster most times,
optimial may be 3 of 4

+ + Tea
+ Tea
+ + Tea
Tea

L T [
A WN P

33 33

*

10 10°
Total number of threads

@)

Sandia
National
Laboratories

'

N

\

Worksets or No Worksets?

» Desktop — Left: Worksets Right

107 F— 10° .
+ + NX=1600
i + + NX=400
i | £ N b + + NX=100 ||
s P . s g s 2 LR B NX=200
e g . 2 t + NX=800
T = i $ L s
z + g -
Z 10°F + * 2 ; " 2 10T + F
£ & ; * F I £ T4
s = = i3 +
a o L - i | w + +
E . i + % % £ + o+ 4
> 10} ” = 1 > 107
o = = =} +
g + i - e . " E i
8 1 X W i T 8 + % g +
107F * f i 1 1072 o+,
.3 L -3
10 10
10° 10' 10° 10!

* Nvidia — Left: Worksets Right

Total number of threads

107 |

1071

Assembly time Matrix/RHS per element on core (s)

-3

HHHH
-HitHH-

Total number of threads

: No Worksets ~-50%

+ + Team=64 = + + Team=64
£+ Team=32 I I Team=32
+ + Team=8 8 + + Team=8
[
+ Team=128 b Team=128
+ + Team=256 E B + Team=256
+ + Team=16 |1 g 10 + Team=16 |]
[)
- v ‘
@
[=}
z 9 +
(-4
E 4
= S if
£ .
> 107} . 4
E T
5 s
> +
£ N
@ g I
3 T Jﬁ *
i 103 i | i
10 10 157 10°

10 -
10°

<
A ‘.-‘Aﬂ

10°
Total number of threads

UNCLASSIFIED UNLIMITED RELEASE

Total number of threads

: No Worksets ~30%

&)

Sandia
National
Laboratories

VA
%‘ Worksets or No Worksets?

« Xeon Phi— Left: Worksets Right: No Worksets No Diff

107 \ 10

= + + Team=1 = + + Team=1
v + Team=2 o - + Team=2
] + + Team=3 g + + Team=3
5 Team=4 & Team=4
g + o ; g f
o
g £ 5 + 4 = = $ E F o+
3 T 4 * : ‘ T o+
— # # # ﬁ & +
2 i = $:1& g 2 -+ b ; +
£ W' T ¥ " % 2 107} 2 + ¥
€ : - F < T t +
& $ * $ B
8 B +
= =
a [
£ £
> >
o =
£ £
Q a
& @
wn 1%}
< <
s [y) . s L)
10 10
10° 10' 10° 10° 10" 10°
Total number of threads Total number of threads

* \Worksets

* Depends on the platform, they were developed
for today’s hardware, work well on it.

* More complicated to code

T YV AS 2% ﬁg?igir?al
N A’ A= UNCLASSIFIED UNLIMITED RELEASE Laboratories

A
o~
*’ Summary

A simple code to test parallel multi threaded assembly of a finite
element code

— Threading tested on Xeon Phi, Nvidia and a standard desktop

— Kokkos was the abstraction layer, it was simple to use and
robust!

— Code hopefully to be released as part of Mantivo Mini-apps
» Worksets were compared on the different platforms

— Showed improved performance on today’s hardware, but not
next gen systems

— Thread team can provide a large benefit on some platforms —
Nvidia for example

T VA
N A

Sandia
National
UNCLASSIFIED UNLIMITED RELEASE Laboratories

ED
Ve
A

