

Michael J. Haass, Mark H. Van Benthem, Edward M. Ochoa, Hyrum Anderson, Kristina R. Czuchlewski

ABSTRACT

Denied access environments play a major role in shaping ISR operations and analysis in conflicts. A common strategy to perform analysis in denied access environments is to develop statistical models of geospatial activity patterns. To date, less effort has been devoted to identifying latent information contained in patterns of missing observations. This poster describes a case study of site discovery based on patterns of life (POL) identified through computational analysis of gaps in observations. First, significant sites are identified, then a GIS database is queried and this contextual information is used to cue an analyst to associate purpose with significant patterns of activity at detected sites. This work provides a basis of experience for development of predictive algorithms robust to missing observations in denied access environments.


CASE STUDY – SITE DISCOVERY

Purpose: Provide a basis of experience for further development of predictive algorithms that are robust to limited observation environments

Problem: Given GPS tracks from taxi cabs in San Francisco area, determine which cab company participated in study*

Data set: Approximately 500 taxis over 25 days

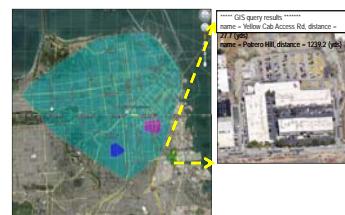
- Latitude
- Longitude
- Occupancy
- Time

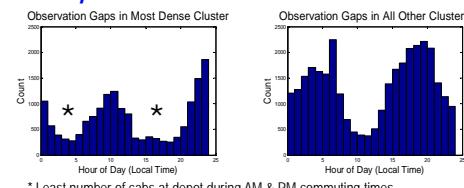
GPS Tracks from One Cab

*M. Piorkowski, N. Sarafianovic-Djukic, M. Grossglauser, *A Parsimonious Model of Mobile Partitioned Networks with Clustering*, The First International Conference on COMMUNICATION Systems and NETworkS (COMSNETS), Bangalore, India, 2009.

METHOD

Density Based Spatial Clustering of Applications with Noise (DBSCAN*) is well suited to POL analysis:

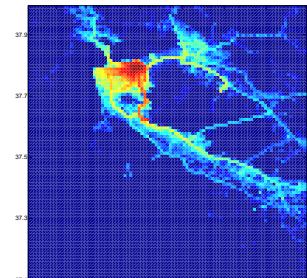

- The total number of clusters is not needed *a priori*
- A single and intuitive parameter, *the neighborhood radius (Eps)*, influences cluster identification
- We chose *Eps* equal to the diagonal of a typical San Francisco business district block (~200 m)


Clusters with Most Members

RESULTS

The most dense cluster identifies *which* cab company participated in the study

Temporal analysis identifies activity consistent with *expected* taxi behavior



*Ester, M., Kriegel, H., Sander, J., Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 1996.

CHALLENGES & APPROACH

CHALLENGES:

- Simple heat map of activity is too busy to search by eye
- Cab fare state is not likely to change at depot
- At least eight cab services in San Francisco area
- Laborious to search for activity at each address

Activity Level on Lat-Lon Grid

APPROACH:

1. *Query* for gaps in observations (i.e. when sensors are turned off – determined by time gap between consecutive observations)
2. *Identify patterns of life* using geolocation of observation gaps
3. *Correlate* coordinates with GIS database
4. *Rank* results to aid analyst's final assessment

CONCLUSIONS

- Site discovery through analysis of patterns of life obtained from gaps in observations may reduce the dependency on preexisting models which may not adapt to, or account for, new variances introduced as conflicts evolve.
- Integration of GIS query and temporal analysis provides contextual cues to aid analyst's interpretation of purpose.
- Future work should explore impact of uncertainties characteristic of denied access environments such as aperiodic sampling rates with large time gaps.

ACKNOWLEDGEMENTS

This work was supported by the Laboratory Directed Research and Development (LDRD) Program at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND 2014-1404

Contact mjhaass@sandia.gov for reprints, questions, or more information