Sandia

NSAND2014- 18720C

ational
Laboratories

Metasurfaces strongly coupled to
intersubband transitions: Circuit model
and second order nonlinear processes

S. Campione’?, A. Benz'2, O. Wolf'2, J. F. Klem?, F. Capolino?,

M. B. Sinclair?, and |. Brener?

! Center for Integrated Nanotechnologies (CINT), Sandia National
Laboratories, Albuquerque, NM

2 Sandia National Laboratories, Albuquerque, NM
3 University of California, Irvine, CA

This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user
facility. Portions of this work were supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia
National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.




Sandia
Outline of the talk @ Nationa

Laboratories &

Strong coupling between a metasurface and
intersubband transitions (ISTs) in quantum
wells (QWs)

Metasurface = array of resonators

Introduce strong coupling between a metasurface and ISTs in QWs
Introduce an electrodynamic model of strong coupling

e Derive and validate a circuit model
Get a phenomenological explanation of strong coupling

* Helpful for further extension beyond strong coupling regime

Applicability of such platform for efficient second harmonic generation

Campione et al., Phys. Rev. B 89, 165133 (2014)
Campione et al. Appl. Phys. Lett. 104, 131104 (2014)
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Light-matter coupling in metasurfaces @Samﬁa
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coupled to ISTs in QWs
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Matter resonance: ISTs in QW:s National K1
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Cavity resonance: Metasurface
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« Under normal plane wave illumination, the ISTs properties would be inaccessible
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We thus pattern a metasurface of
metallic resonators for two reasons:

1) Introduce the cavity resonance
(dependent on materials,
dimensions, etc.)

2)  Produce strong near fields in
order to excite the QWs and
promote electrons in subbands
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Motivation of circuit modeling @ Sandia

Resonator dependence

e Different resonator geometries may lead to different Rabi splittings

e Acircuit interpretation helps understanding
* the parameters that contribute to strong coupling

* and how the resonator shapes affect Rabi splitting

Circular SRR Jerusalem cross Dogbone

Campione et al., Phys. Rev. B 89, 165133 (2014)
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Modeling: introduction of a @Sandia

circuit model

A metasurface resonance can be modeled through a series RLC circuit
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Electrostatic approximation for @ﬁgtnigil';lal
near fields — IST dipole rule
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Consider a set of distributed charges
below the dogbone paddles

* The ISTs selection rule requires z polarized
electric fields

e zpolarized electric fields are confined in
the near fields of the resonators

* Near fields can be described resorting to
the electrostatic approximation




Electrostatic approximation for

near fields — Comparison
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Resonator On top of
anisotropic half space
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ISTs in QWs

Distributed set of charges:
Electrostatic approximation
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Capacitor from a point dipole over an @ﬁgtnigil';lal '%@E
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anisotropic half space

Campione et al., Phys. Rev. B 89, 165133 (2014)
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* We can estimate the electric potential of a charge

’ b =b.(..5.)
This capacitor is a measure of the near-field interaction

between dipole and matter (anisotropic space)
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Strong coupling capacitor in place in @Sandia

the circuit model

* The total capacitor is thus the sum of two contributions
* ThentSpudashiitabse otdaih@W\sirsgng full-wave and
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Validation of the circuit model: @ﬁgtnigil';lal
Spectral properties
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Campione et al., Phys. Rev. B 89, 165133 (2014) €Ay

.. 2 .
Reflectivity [T ISTS in QWs
=IST
y
X
. Yo
Full-wave o8 Circuit network Experiment
. 34 :

twol nent

20 22 24 26 28 30 32 34 20 22 24 26 28 30 32 34
20 22 24 26 28 30 32 34 Bare cavity frequency [THz] Bare cavity frequency [THz]

Bare cavity frequency [THz]
Not only do we recover the resonance frequency locations, but we are also able to quantify

the magnitude of reflectivity



Circuit model: how to maximize Rabi @ﬁ%ﬁﬂﬁm /
splitting — Polariton splitting [ahoratories %

*  We now investigate different resonators on top of the same quantum well
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To increase the Rabi splitting the metasurface should
exhibit a larger capacitance
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Another example: @Sandia
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Let’s take the SRR geometry of the previous slide

C, =8.7aF
-

To increase its capacitance, we increase the metal traces

A larger capacitance
‘ Cing =13.7 aF corresponds to a larger Rabi
Qp =2.4THz frequency

Dependence with resonator physical dimensions:

Cgap = gohW/g‘l‘gO (h+W+ g)

C

Csrr = Cg surf

+
ap
C..e=|2eq(h+w)log(4R/ /T
Sydoruk et al., J. Appl. Phys. 105, 014903 surf [ 0( ) g( g ):I

(2009)



Second harmonic generation — Design @ e 70N
of the strong coupling structure L
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* Strongly coupled structures exhibit large field enhancements — Useful to enhance second harmonic
generation in ISTs in QWs

*  Doubly resonant metamaterials enhance second harmonic generation

Gorkunov et al. Appl. Phys. Lett. 88, 071912 (2006)
Kanazawa et al. Appl. Phys. Lett. 99, 024101 (2011)

* Design the quantum well to support two ISTs at 30 and 60 THz with large %(2)
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Capasso et al. IEEE J. Quantum Electron. 30, 1313 (1994)

Campione et al. Appl. Phys. Lett. 104, 131104 (2014) Lee et al. Nature 511, 65-69 (2014)
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Second harmonic generation — Results @ Natoral

x 10 = Quadratic fit

® Simulati . .
2 TR« Signal power at SH frequency shows quadratic dependence
as a function of pump power as expected from second order

nonlinear process

P.... (mW)

ThH1.3 9:00 AM - 9:15 AM:
O. Wolf et al.
Second Harmonic Generation in Quantum Wells Enhanced
via Coupling to Metamaterials
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*  SHsignal is found in perpendicular polarization with
respect to the pump polarization
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e Qur circuit model shows that increasing the metasurface capacitance Cmsinduces
stronger light-matter interaction
Q. C,., * This may enable us to go beyond
strong coupling regime by using
planar metamaterials coupled to ISTs
in QWs at infrared frequencies

* Such platform is promising for
efficient second harmonic generation

Circular SRR Jerusalem cross Dogbone

Campione et al., Phys. Rev. B 89, 165133 (2014) Campione et al. Appl. Phys. Lett. 104, 131104 (2014)
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Second Harmonic Generation in Quantum Wells Enhanced via Coupling to
Metamaterials



