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Abstract

A continuous wavelet transform (CWT) based on the Gabor mother wavelet was used to
analyze microwave interferometer data and calculate time-resolved detonation velocity. This
technique is compared with established peak-picking and quadrature methods using a
combination of real and manufactured data for a small-scale explosives characterization
experiment. Further, this approach is expected to have greater flexibility for optimizing time-
frequency resolution than the short-time Fourier transform (STFT) alternatives. Results show
that the wavelet-based analysis has multiple advantages over both peak-picking and quadrature,
including a greater robustness for handling high levels of signal noise (e.g. SNR=3-5), increased
velocity-time resolution, and a single tunable parameter — the Gabor wavelet shaping factor (Gs)
— that may be optimized for different types of signals. A cost function is proposed to minimize
the error in velocity due to Gs, and it is shown to be more reliable than previous methods using
Shannon entropy. Overall, the wavelet based technique is suggested as an improved addition to
the analysis tools used in the field of explosives research and in particular to microwave
interferometry. This analysis approach could also be applied to other experimental data.

Introduction

Microwave interferometry (MI) is an established technique to measure shock and
detonation velocities in explosives. This technique is used to measure the phase and amplitude of
microwave signals that are transmitted through an unreacted explosive and reflected back at
locations of interest. These reflection points are located at dielectric discontinuities such as a
shock wave or a reaction front [1,2] that occur in the media during a detonation event. The phase
measurements can then be used to infer the relative position and velocity of the phenomena.
Despite ongoing research since the early 1950s [3] and subsequent improvements made to
interferometers [4-6], the associated data analysis tools have remained largely unchanged over
the last 30 years [7,8]. While the established techniques are often adequate for tracking the
location of a moving strong reflector as in a shock or detonation wave, instantaneous velocity
measurements in less ideal systems remain challenging due to inherent numerical errors
associated with these methods. A new approach could be considered to exploit the
proportionality of the velocity of the reflector to the relative phase change of the signal through
the use of time-frequency analysis. This would suggest consideration of a continuous wavelet
transform (CWT) due to greater flexibility for optimizing time-frequency resolution than the



short-time Fourier transform (STFT) alternative [9].due to greater flexibility for optimizing time-
frequency resolution than the short-time Fourier transform (STFT) [9].

Difficulties associated with detonation velocity measurements are primarily due to the
non-ideality of the signal. Total reflection of the microwave signal is never realized due to partial
transmission of the signal through the wave front of interest, as well as attenuation of the signal
through absorption and dispersion effects of the explosive media and the reaction front. In
addition, real signals may contain several undesirable features related to important physical
processes (e.g. damping, abrupt amplitude changes, and multiple dominant frequencies) and
experimental realities (e.g. low signal-to-noise ratio). The current techniques attempt to account
for these non-idealities at the expense of possibly introducing error through digital filtering,
normalization, and smoothing [5] in order to obtain position-time results. Velocity is then
numerically derived from position-time data, resulting in higher noise due to the numerical
derivative amplification of noise, and consequently there can be loss of subtle transient features.
In contrast, a wavelet analysis technique could allow for direct velocity measurement and is
well-adapted to transient signals and is more robust in the analysis of real signals without the
need of heavy filtering, and may allow for clearer observation of transient events of the wave
velocity [10-12].

Wavelet analysis has been applied in similar fields of interferometry [10-15], including
photonic Doppler velocimetry (PDV) [10,11] and optical techniques such as velocity
interferometer system for any reflector (VISAR) [12]. For these applications, a CWT was shown
to be advantageous for measuring shock velocity [10-12]. In this work, a new data analysis
technique is proposed to directly measure velocity of a detonation event using a different CWT
based method. The proposed technique was compared to currently established procedures by
processing manufactured data with known frequency-time content and effective error was
evaluated for each method. Select examples of real data of a small scale explosives test were
processed using each method and the results are directly compared for further evaluation. This
method is suggested as an improved addition to the analysis tools used in the field of microwave
interferometry, and possibly other similar data.

Experimental Methods

A 35 GHz signal was generated using a custom microwave interferometer [8] and
transmitted to the test article through a solid 0.635 cm dia. polytetrafluoroethylene (PTFE)
waveguide. A quadrature mixer was used to produce two-channel output 90 degrees out of phase,
and was recorded at 2.5 GHz using a Tektronix DPO4034 Digital Phosphor Oscilloscope.
Timing of the experiment is based on first light observed by fiber optics: a M34L02 Thorlab
patch cable with a 600 pm core diameter transmitted light to a DET10A Thorlab photodetector
with a 1 ns rise time. The detonation is contained inside a thick-walled steel box; a schematic of
the experiment is shown in Fig. 3.



In this study, two types of explosives were pressed into 0.651 cm 1.D. 304 stainless steel
tubes for velocity measurement: Kinepak ammonium nitrate mixed with fuel oil (ANFO) and
triaminotrinitrobenzene (TATB) powder. To intimately mix the ANFO, 20 g batches were mixed
on a Resodyn (Butte, MT) LabRAM resonant mixer for 5 min at 80% intensity. A Teledyne Risi,
Inc. RP-502 detonator was used to initiate a detonation in Primasheet 1000 which transitioned
into the test explosive. In these experiments, 1.9 g of ideal explosive (~1.44 g/cm®) and 2 to 2.5 g
of the test explosive were used in each trial. TATB samples were incrementally pressed, whereas
the ANFO was loosely packed by hand. Pressing details for select cases discussed in this work
are summarized in Table 1.
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Figure 3. Schematic drawing of the microwave interferometer and test article (not to scale).

Table 1. Pressing details for test cases shown in this work.

Case Test Explosive Avg. p (g/em’) %TMD  # Increments

Tl  ANFO 1.02 60.0 N/A
T2 TATB 1.34 69.3 9x (0.635cm)

The Continuous Wavelet Transform (CWT) Method

Formally, the CWT of a time-varying signal f(t) is given by [16],



Wfu,s) = Tf(t)%zp*(t;”)dt, (1)

where u and s are the translation and scale variables, Y (t) is the mother wavelet, and y* denotes

the complex conjugate. Scale and translation are related to time and frequency through the

choice of the mother wavelet. In Eq. (1), the function (t) satisfies the following admissibility

condition [16],
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where 1) (w) is the Fourier transform of 1(t) in frequency space w. The existence of the integral
in Eq. (2) requires a zero mean value for the wavelet [16],

P(0) =0, (3a)
That is,

| wwae=o (3b)

Following previous work [9-12], a Gabor mother wavelet was chosen as the basis for the
CWT and is given by the formula
YO = e e, )
where o and 7 are the time spread and center frequency parameters. For the Gabor wavelet
transform (GWT), time and frequency can be related to scale and translation via [17],

t=u, (Sa)
and
w =n/s. (5b)

Kim and Kim [9] show that the Gabor wavelet shape is controlled by a single dimensionless
parameter, and introduce the notation of a Gabor wavelet shaping factor Gs = on where o is set
to unity. The shaping factor Gs governs the time-frequency resolution of the GWT according to
the relations [18],

_ Gs 6
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and
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where o, . and g, . are the variances (or spread) in time and frequency of the GWT. The effect

of Gs on the Gabor wavelet shape is depicted in Fig. 1. The relative weighting on time or
frequency resolution is determined by the number of oscillations in the Gabor wavelet shape; in
the limit Gs — oo the GWT becomes similar to a time-independent FFT. In the limit Gs — 0, the
number of oscillations decreases to improve time localization, however this also introduces error
due to frequency spreading. When Gs = 0, the Gabor wavelet collapses to a normal distribution
and violates the admissibility condition (zero mean value). In general, the Gabor wavelet has a
non-zero mean; however, it is suggested that Gs > 3 is sufficient to minimize the mean such that
the conditions for a mother wavelet are satisfied [17,19]. Consequently, a frequency bias is
introduced near Gs = 3 and may be corrected as shown in [20].
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Figure 1. Gabor mother wavelet for shaping factors Gs of 3, 6, and 9.

All CWT-based methods suffer from an edge-effect when part of the wavelet is
integrated beyond the length of a signal, using zero-padding or otherwise [18,20,21]. Minimizing
the edge-effect is the subject of ongoing research [21]; the approach used in this work was to
remove the affected region from the wavelet transform according to

R =ko,s (7)

where R is the region in time to discard from the start or end, and k is a multiple of the time
spread. Values for k are suggested based on the level of signal damping [20].

After the wavelet transform is calculated according to Eq. (1), a normalized scalogram
may be used to visualize the time-frequency energy density of the CWT as [17]
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Dominant frequencies in the original signal f(t) appear as ridges or peaks on the normalized
scalogram. A ridge detection algorithm is used to extract the time-frequency history of the signal
[16,22]; in the analysis of a single dominant frequency it is sufficient to consider the location of
the maximum scalogram amplitude as a function of time.

Optimization of the Gabor Wavelet Shaping Factor

An optimal Gs value exists to most accurately resolve velocity information from the
microwave interferometer signals. The dominant source of calculation error is typically due to
insufficient time resolution. The time spread relation of Eq. (6a) may be rearranged to scale Gs

Ot u,s Gs
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where T is the period at a particular frequency of the signal, and o, _ is the acceptable time

spread. Therefore, to resolve transient phenomena occurring over a time interval on the order of
one period Eq. (9) implies that small Gs values < 9 are needed. An optimization scheme is
considered to moderate the error in velocity due to frequency resolution within an allowable
range for the time spread. Following similar work [17], Gs values were limited between 3-5.5.

Hong and Kim [17,23] recommend an optimization technique for Gs using the Shannon
entropy cost function. In one dimension, Shannon entropy is maximized for a constant-valued
function and minimized for an impulse (e.g. Dirac delta); this behavior rewards higher levels of
signal concentration. In two dimensions, Shannon entropy is used to minimize the time-
frequency spreading of the GWT. Shannon entropy-based cost functions require a double
summation over time and frequency, therefore a normalization scheme is needed to balance the
influence of time and frequency spreading [24]. Hong and Kim [17] favor normalization in time;
however, normalization in frequency was also considered here to evaluate the full potential for
minimizing the error in velocity.

A new cost function is proposed here using the multi-step process shown in Fig. 2. For a
selected Gs value, the original signal is analyzed with a GWT to determine the frequency history
F(t). A reconstructed signal, y(7), is obtained from

6(t) =2 | f(r)dr, (10)

and

y(t) = Sin(G(t)). (11)

A second GWT with the initial Gs value is applied to the reconstructed signal y(z) to obtain the

frequency history f(t). The two frequency histories are compared using a sum of squared
percent errors function (SSPE) given by



F= LI (F@)/f) 1) (12)

The error function is applied to frequency content which does not fall within the region R defined
in Eq. (7), and an optimum Gs value is chosen to minimize the estimated error (or actual error if
manufactured data is used).

The GWT and frequency integration shown in Eq. (10) are fundamentally different
transformations. An optimal Gs value is defined to maximize transformation similarity when
they are applied in succession. This cost function is effective for signals having a single
dominant time-varying frequency; however, the cost function uniformly weights error across all
time and is not well-suited for all signals with mixed transient and steady behavior. Signals
having transient events in an otherwise steady frequency should be divided in time to determine
the optimal Gs value for isolated parts of the signal. When the frequency history f(t) is known a
priori, Eq. (12) may be applied to calculate the true error and true optimum Gs value.
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Figure 2. Flow chart for the proposed error function to determine an optimal Gs value.
Data Analysis Procedures

Three analysis techniques — peak-picking, quadrature, and wavelet analysis — were
compared between two cases of manufactured data and two cases of real test data summarized in
Table 2. All techniques are based on the velocity-frequency relationship [1],

YOEEI0) (13)

where A is a calibrated material wavelength. The material wavelength depends on microwave
frequency, sample diameter, and permittivity — values of A used in this work are listed in Table 2
from previous studies [8] and theoretical calculations [1,3]. For the peak-picking method, each
advance in phase of the signal by 2m corresponds to the advance of the moving reflector by 1/2



and is indicated by the time of the peaks. Thus, average velocity may be calculated between the i
and i+1 peaks according to

A/2
by = —12 (14)

tivi—

which is a discretization of Eq. (13). The resolution of this method could be improved using time
points from minima, maxima, and zero crossings; however, the most reliable calculations are
made between similar features (e.g. peak-to-peak).

Quadrature analysis provides greater spatial resolution than peak-picking and is
implemented by replacing Eq. (13) with the set of equations [5]

A do
== ——— 1
v(t) y— (15a)
and
V2
_ -1
0 = tan (Vl)' (15b)

where V1 and V2 are the microwave output signals offset by 90 degrees, and tan™! is the
discontinuous arctangent function effectively unwrapping the phase information of the signal.
For Eq. (15b) to apply, microwave signals must be normalized between -1 and 1. The signals are
filtered in multiple sections, and normalized with a linear mapping between minima and maxima
[8]. Filter settings are determined by an FFT of the time signal and experimental judgement;
parameters for each test case are summarized in Table 3. For the derivative in Eq. (15a), an FFT-
based procedure [25] is used following similar work [8].

Velocity calculations utilizing wavelet analysis are implemented with the MATLAB
Wavelet Toolbox ™ and a Gabor wavelet (complex Morlet with Fb=2 and Fc=Gs/2n).
Microwave signals are de-sampled from 2.5 GHz to 200 MHz, and DC offset is removed. A
normalized scalogram is computed from the raw, unfiltered signals; however, a 2D Savitzky-
Golay filter [26] is used to eliminate artificial surface roughness on the scalogram that might
otherwise disrupt a maximum value search. This filter is first order spanning 33 points in time
and frequency. Eq. (5b) is modified to determine the scale-frequency relationship,

FcFs
s = .
f

(16)

where F's is sampling frequency and f is the signal frequency. Frequency limits of all explosives
are shown in Table 2; the frequency range was discretized into 8,000 bins for all cases. A
constant time value was subtracted from the edges of the scalogram to remove the edge-effected
region (see Table 4). Once the frequency ridge is extracted, velocity is calculated from Eq. (13).



Sharp discontinuities appear in velocity when using Eq. (13) across materials of different
wavelengths. One approach for smoothing the velocity across a material interface is to scale the
time data of the original signal so that the GWT will numerically compute velocity as a multiple
of frequency

t=—r¢ (17)

where £ is the scaled time and A; is the material-specific wavelength. The modified signal is re-
sampled as this scaling introduces a discontinuous sampling frequency.

Two test cases (M1 and M2) were manufactured in order to compare the velocity
obtained from the three analysis methods with a true velocity history. Microwave signals were
generated from the frequency histories

F(O) = 0.2 + 2.23 exp(—0.3632 ©), (18)
and

f(t) = 3.0 +sin(mwt), (19)

for cases M1 and M2, where f has units of MHz and t has units of pus. The parameter values in
Eqgs. (18) and (19) were selected to approximately match real data sets. Eq. (10) is used to
calculate 6(t), and two channel output is simulated with an impedance mismatch [3,5],

2r — (r2 + 1) cos(8(1))

V1 = A(t) 1472 —2r cos(@(t)) ’

(20)

and
2r — (r2 + 1) sin(6(t))

V2 = A(t) 14712 —=2r sin(@(t)) ’

2

where V1 and V2 are the output channels in mV, A(t) is the signal amplitude, and r is the
reflection coefficient (measures departure from a pure sinusoid). The reflection coefficient was
introduced to mimic real effects observed in the microwave signals, and was set to 0.05 and 0.3
for M1 and M2, respectively. Constant amplitude was used for M1, but the amplitude for M2
was varied according to

A(t) = 1.82 exp(0.0646 t). (22)

White Gaussian noise was added to each signal and SNR levels are summarized in Table 2.

Table 2. SNR, frequency limits, and wavelength values for all cases.

Case Type Explosive SNR  fioy fhigh Agx.
(MHz) (MHz) (mm)

M1 Mfg. ANFO 3 0.1 2.6 5.12
M2 Mfg. TATB 15 2.6 3.4 5.06



T1 Test ANFO 4.4 0.1 2.6 5.12
T2  Test TATB 16.1 1.8 2.4 5.61
PS1000 2.3 2.5 5.67

Table 3. Summary of filter parameters needed for the quadrature analysis.

Case  Filter tin (US)  tour (us) N Wn
Ml LPF 0 3.5 2 0.008
LPF 3 7.5 2 0.005
LPF 6.5 20 2 0.002
FFTD all 2 0.008
M2 LPF 0 20 2 0.008
FFTD 0 20 2 0.004
T1 LPF 0 5.5 2 0.008
LPF 5 8.5 2 0.005
LPF 8.5 20 2 0.002
LPF 8 60 2 0.001
FFTD -1.64 4.89 2 0.004
FFTD 4.89 523 2 0.003
T2 LPF all 2 0.008
FFTD -7.68 -2.24 2 0.001
FFTD -2.24 7.49 2 0.001

Key: LPF=low pass Butterworth filter of order N, non-dimensional cut-off frequency Wn;
FFTD= FFT-based derivative and LPF.

Table 4. Time removed for the edge effect; estimated for Gs=3 and k=3 or k=6 [21].

LHS RHS
Case |k  R(us) |k R(ps)
M1l |3 -0.5 3 50
M2 |6 -1.0 6 -1.0
T1 6 -1.0 3 -50
T2 6 -1.0 6 -20

Assessment of the Proposed Analysis Approach
L Manufactured Signals

Two manufactured cases emphasize detonation failure (M1) and unsteady wave motion
(M2). These types of transient detonation phenomena are observed in the microwave
experiments, and serve to demonstrate the practical application of peak-picking, quadrature, and
wavelet analysis. Raw signals offset by 90 degrees are shown below in Fig. 4 and correspond
with Eqgs. (18) through (22). Signal features such as SNR, amplitude, and impedance mismatch
are representative of those obtained from the experimental configuration described in this work.



An optimized Gs value was found using the proposed cost function and compared with
the results from Shannon entropy as well as true error. The different functions are plotted against
Gs in Fig. 5 and optimum values are summarized in Table 5. The proposed cost function closely
matches the shape of the true error. The Shannon entropy is seen to over-predict the optimum Gs
value for detonation failure (M1), and fails to predict an optimum Gs value for unsteady wave
motion (M2). Pure transient behavior drives the optimum value towards the minimum Gs=3.
However, in both cases other minima exist above the range of interest that tune Gs to the steady
frequency content of each signal. Additional minima are observed in the proposed cost function
for (M2), possibly due to the dual effects of frequency resolution and error introduced near the
admissibility condition limit. Overall, the proposed cost function allows one to choose Gs closer
to the true optimum value to minimize the error in velocity better than the Shannon entropy
functions normalized in either time or frequency.
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Figure 4. Manufactured signals offset by 90 degrees for detonation failure (case M1, left) and
unsteady wave motion (case M2, right).
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Table 5. Summary of optimal Gs values for manufactured cases.

Case Proposed Cost Fcn.  True Error  #Norm. Sh. Ent.  f~Norm. Sh. Ent.

M1 3.0 3.0 53 5.0
M2 3.8 3.8 3.0 >5.5

Peak-picking, quadrature, and wavelet-based velocity calculations for the manufactured
cases are shown in Fig. 6. There is a clear advantage in using peak-picking and wavelet analysis
over quadrature for detonation failure with a low SNR (M1). Quadrature analysis is based on
multiple filter settings, which struggle to distinguish the true signal apart from high levels of
white noise. Other difficulties in quadrature for this case may be due to the sharp drop in velocity
over 5 us and lower overall signal frequencies <1 MHz. The visual appearance of the quadrature
data for (M1) is similar to recent work [7,8] and justifies the consideration of a new analysis
technique such as wavelet analysis.

In the second case showing an unsteady velocity history (M2), all methods — including
quadrature — perform well despite added impedance mismatch and noise. A numerical study was
conducted to explain the success of quadrature; it was determined that the chosen filter settings
were highly effective at analyzing the signal. However, small changes to the period and
amplitude of the frequency oscillation were found to compromise the success of the filter settings
and the ability for quadrature to analyze this type of data. In addition, velocity is not well
matched to the actual velocity history for wavelet and quadrature methods, as clipping is
observed in the peak-to-peak value by as much as 0.1 km/s (~10% amplitude decrease). Case M2
is important nonetheless to show that all methods are capable of resolving small oscillations in
detonation velocity, and justify the physicality of such oscillations in real test data. From these
observations we expect the wavelet analysis to be more robust however with real data.
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Figure 6. Velocity comparison of peak-picking, quadrature, and wavelet methods for
manufactured cases M1 (left) and M2 (right).



11. Real Signals

Two experimental test cases (T1 and T2) were analyzed for detonation failure in ANFO
and unsteady detonation velocity in incrementally pressed TATB, respectfully. These cases are
representative of the transient detonation phenomena observed in the small-scale characterization
experiments. Raw signals offset by 90 degrees are shown below in Fig. 7, and resemble the
manufactured data of Fig. 4. Signal indicated before time zero corresponds to an ideal explosive
(Primasheet 100) that was used to initiate the test charge. Signal amplitudes vary in both T1 and
T2 primarily due to the differences of attenuation in each material, and the strength of the
reflection corresponding to detonation or unsupported shock waves. Optimization results for Gs
for wavelet cases are shown in Fig. 8 and summarized in Table 6.
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Figure 7. Real quadrature signals (offset by 90 degrees) for detonation failure in ANFO (left)
and unsteady wave motion in TATB (right); time zero corresponds to the transition in
explosives.
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Table 6. Summary of optimal Gs values for real test cases.

Case Proposed Cost Fen. t-Norm. Sh. Ent. ~ f~Norm. Sh. Ent.

T1 3.1 >5.5 >5.5
T2 4.1 3.0 >5.5

Many similarities are observed in the shape of the cost functions between manufactured
and real cases. Trends in Shannon entropy are identical, except for case T1 where the optimum
Gs value has moved beyond 5.5. This is likely due to the extended duration of the unsupported
shock wave and constant frequency. For case T1, the optimum value in the proposed cost
function is near Gs=3 as expected from M1. However, the shape of the proposed cost function
for T2 is visually different from M2. Gs values between 3.5-4.1 and a raised section between 4.1-
4.6 are thought to be related to the range Gs=3-4 for case M2 (refer back to Fig. 5). As the
amplitude of the frequency oscillation about the mean value is slight (~2.1 £ 0.18 MHz), larger
Gs values accurately resolve the mean velocity, and the proposed cost function decreases beyond
Gs=5.5. The raised section is understood as the range of Gs values where the frequency
oscillations begin to be obscured by the mean frequency, therefore an optimum value is selected
immediately before, i.e. Gs=4.1.

Velocity results for cases T1 and T2 are shown in Fig. 9. Velocity history before time
zero corresponds to the ideal explosive, which shows a nominally steady value of 6.95 km/s. In
both cases, similar observations can be made for peak-picking, quadrature, and wavelet analyses.
Quadrature analysis is clearly inferior to the peak-picking and wavelet analyses, demonstrating a
high susceptibility to noise and loss of subtle transient features. Adjustments to filter coefficients
(Table 3) for the quadrature analysis are based on judgement, yet it is found to be impossible to
produce velocity plots that are visually similar to the peak-picking and wavelet data. Moreover,
the oscillation in velocity for case T2 is obscured by the quadrature analysis yet accentuated with
wavelet and peak-picking methods. The oscillation in velocity is real, as evident by the peak-
picking method (unaffected from filter aliasing). Physically, it is due to density gradients from an
incremental pressing procedure; this was verified by changing the number of pressing increments
and observing how the period of the oscillation was affected. Similar density effects have been
observed in other work [3].
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Figure 9. Velocity comparison of peak-picking, quadrature, and wavelet methods for real test
cases T1 (left) and T2 (right).

The appearance of wavelet and peak-picking velocity data is similar, and it is necessary
to discuss advantages and disadvantages between these two methods. Microwave signals are
sampled at 2.5 GHz and collect on the order 10° data points per experiment. Only a limited
number of those data are used with peak-picking to calculate an average velocity, and thus much
of the information contained in the signal is unused (~99.9%). Eq. (9) shows that it is possible
with the GWT to resolve information between the peaks of an interference signal; therefore a
normalized scalogram processes more time information about the signal. If transient events occur
in less time than one period of the interferometer signal, peak-picking cannot resolve velocity or
time. The event will simply not be resolved. However, wavelet analysis requires tuning one
parameter (Gs) whereas peak-picking is un-biased from signal filtering. An optimization routine
for the GWT is critical, especially when investigating subtle transient features in velocity. The
suggested value Gs = 5.5 from Shannon entropy completely obscures the oscillation in cases M2
and T2, and distorts the other cases as well. A final observation is that wavelet analysis may clip
the full peak-to-peak velocity oscillation in cases M2 and T2, and this is also related to the
optimization scheme.

The full advantage of a wavelet-based analysis is the capability to track multiple
frequencies in time. For illustration, the single-sided amplitude spectrum is shown for cases M2
and T2 in Fig. 10. Multiple frequency peaks are observed in the signal — it is difficult to
selectively filter these peaks for the quadrature analysis. However, it is possible to independently
track the location of each of these peaks in time and frequency on a normalized scalogram. This
capability will prove advantageous if simultaneous frequencies are observed in the signal, which
may potentially occur due to decoupling of the shock and reaction zone. Future work will
investigate such an application.
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Figure 10. Single-sided amplitude spectrum for case M2 (mfg. TATB signal) and T2 (real
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Conclusions

A continuous wavelet transform based on the Gabor mother wavelet was used to analyze
microwave interferometer data and calculate time-resolved detonation velocity. This method is
suggested as an improved addition to currently established analysis tools. Each method was
compared using manufactured and real signals pertaining to a small-scale explosives
characterization experiment, and the true error in velocity was determined using manufactured
data. From these comparisons, wavelet analysis shows several advantages, including (1) greater
robustness for handling noise, (2) increased velocity-time resolution to extract information
between peaks in the interference signal, and (3) a single tunable parameter which may be
optimized for increased accuracy. Peak-picking and wavelet methods were shown to perform
better than quadrature analysis, for which transient features were obscured due to higher
sensitivity to signal noise. Oscillations in velocity due to density gradients from an incremental
pressing procedure were resolved with peak-picking and wavelet analysis only.

Accurate velocity calculations for the wavelet analysis required an optimization routine
to determine a value for the Gabor wavelet shaping factor. Possible values were limited between
3 and 5.5 by the admissibility condition and the acceptable time resolution needed to resolve
transient detonation phenomena. A proposed cost function was developed in this work and
compared against the Shannon entropy functions used in related work. It was found that the
proposed cost function more accurately represents the true velocity history than the Shannon
functions, which have difficulty optimizing Gs for transient behavior.

Overall, wavelet analysis is an advanced multi-resolution tool with potential long-term
advantages for processing microwave interferometer data. It has been considered over the short-
time Fourier transform due to greater flexibility in time-frequency resolution, and has the
intriguing potential to more accurately resolve multiple frequencies. This may prove
advantageous for studying the decoupling of shock and reaction zones, and should be



investigated in future work. From the results of this work, wavelet analysis should make an
improved addition to the fields of microwave interferometry and explosives research, wherever
peak-picking and quadrature analysis are currently used to measure a time-resolved velocity.
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