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Abstract

A continuous wavelet transform (CWT) based on the Gabor mother wavelet was used to 

analyze microwave interferometer data and calculate time-resolved detonation velocity. This 

technique is compared with established peak-picking and quadrature methods using a 

combination of real and manufactured data for a small-scale explosives characterization 

experiment. Further, this approach is expected to have greater flexibility for optimizing time-

frequency resolution than the short-time Fourier transform (STFT) alternatives.  Results show 

that the wavelet-based analysis has multiple advantages over both peak-picking and quadrature, 

including a greater robustness for handling high levels of signal noise (e.g. SNR=3-5), increased 

velocity-time resolution, and a single tunable parameter – the Gabor wavelet shaping factor (��) 

– that may be optimized for different types of signals. A cost function is proposed to minimize 

the error in velocity due to ��, and it is shown to be more reliable than previous methods using 

Shannon entropy. Overall, the wavelet based technique is suggested as an improved addition to 

the analysis tools used in the field of explosives research and in particular to microwave 

interferometry.  This analysis approach could also be applied to other experimental data.

Introduction

Microwave interferometry (MI) is an established technique to measure shock and 

detonation velocities in explosives. This technique is used to measure the phase and amplitude of 

microwave signals that are transmitted through an unreacted explosive and reflected back at 

locations of interest. These reflection points are located at dielectric discontinuities such as a 

shock wave or a reaction front [1,2] that occur in the media during a detonation event. The phase 

measurements can then be used to infer the relative position and velocity of the phenomena. 

Despite ongoing research since the early 1950s [3] and subsequent improvements made to 

interferometers [4-6], the associated data analysis tools have remained largely unchanged over 

the last 30 years [7,8]. While the established techniques are often adequate for tracking the 

location of a moving strong reflector as in a shock or detonation wave, instantaneous velocity 

measurements in less ideal systems remain challenging due to inherent numerical errors 

associated with these methods. A new approach could be considered to exploit the 

proportionality of the velocity of the reflector to the relative phase change of the signal through 

the use of time-frequency analysis. This would suggest consideration of a continuous wavelet 

transform (CWT) due to greater flexibility for optimizing time-frequency resolution than the 
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short-time Fourier transform (STFT) alternative [9].due to greater flexibility for optimizing time-

frequency resolution than the short-time Fourier transform (STFT) [9].

Difficulties associated with detonation velocity measurements are primarily due to the 

non-ideality of the signal. Total reflection of the microwave signal is never realized due to partial 

transmission of the signal through the wave front of interest, as well as attenuation of the signal 

through absorption and dispersion effects of the explosive media and the reaction front. In 

addition, real signals may contain several undesirable features related to important physical 

processes (e.g. damping, abrupt amplitude changes, and multiple dominant frequencies) and 

experimental realities (e.g. low signal-to-noise ratio). The current techniques attempt to account 

for these non-idealities at the expense of possibly introducing error through digital filtering, 

normalization, and smoothing [5] in order to obtain position-time results. Velocity is then 

numerically derived from position-time data, resulting in higher noise due to the numerical 

derivative amplification of noise, and consequently there can be loss of subtle transient features. 

In contrast, a wavelet analysis technique could allow for direct velocity measurement and is 

well-adapted to transient signals and is more robust in the analysis of real signals without the 

need of heavy filtering, and may allow for clearer observation of transient events of the wave 

velocity [10-12].

Wavelet analysis has been applied in similar fields of interferometry [10-15], including 

photonic Doppler velocimetry (PDV) [10,11] and optical techniques such as velocity 

interferometer system for any reflector (VISAR) [12]. For these applications, a CWT was shown 

to be advantageous for measuring shock velocity [10-12]. In this work, a new data analysis 

technique is proposed to directly measure velocity of a detonation event using a different CWT 

based method. The proposed technique was compared to currently established procedures by

processing manufactured data with known frequency-time content and effective error was 

evaluated for each method. Select examples of real data of a small scale explosives test were 

processed using each method and the results are directly compared for further evaluation. This 

method is suggested as an improved addition to the analysis tools used in the field of microwave 

interferometry, and possibly other similar data.

Experimental Methods

A 35 GHz signal was generated using a custom microwave interferometer [8] and 

transmitted to the test article through a solid 0.635 cm dia. polytetrafluoroethylene (PTFE) 

waveguide. A quadrature mixer was used to produce two-channel output 90 degrees out of phase, 

and was recorded at 2.5 GHz using a Tektronix DPO4034 Digital Phosphor Oscilloscope. 

Timing of the experiment is based on first light observed by fiber optics: a M34L02 Thorlab 

patch cable with a 600 µm core diameter transmitted light to a DET10A Thorlab photodetector 

with a 1 ns rise time. The detonation is contained inside a thick-walled steel box; a schematic of 

the experiment is shown in Fig. 3.



In this study, two types of explosives were pressed into 0.651 cm I.D. 304 stainless steel 

tubes for velocity measurement: Kinepak ammonium nitrate mixed with fuel oil (ANFO) and 

triaminotrinitrobenzene (TATB) powder. To intimately mix the ANFO, 20 g batches were mixed 

on a Resodyn (Butte, MT) LabRAM resonant mixer for 5 min at 80% intensity. A Teledyne Risi, 

Inc. RP-502 detonator was used to initiate a detonation in Primasheet 1000 which transitioned 

into the test explosive. In these experiments, 1.9 g of ideal explosive (~1.44 g/cm3) and 2 to 2.5 g 

of the test explosive were used in each trial. TATB samples were incrementally pressed, whereas 

the ANFO was loosely packed by hand. Pressing details for select cases discussed in this work 

are summarized in Table 1.

Figure 3. Schematic drawing of the microwave interferometer and test article (not to scale).

Table 1. Pressing details for test cases shown in this work.

Case Test Explosive Avg. � (g/cm3) %TMD # Increments
T1 ANFO 1.02 60.0 N/A
T2 TATB 1.34 69.3 9x (0.635cm)

The Continuous Wavelet Transform (CWT) Method

Formally, the CWT of a time-varying signal �(�) is given by [16],
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where u and s are the translation and scale variables, �(�) is the mother wavelet, and �∗ denotes 

the complex conjugate. Scale and translation are related to time and frequency through the 

choice of the mother wavelet. In Eq. (1), the function �(�) satisfies the following admissibility 

condition [16],
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where ��(�) is the Fourier transform of �(�) in frequency space �. The existence of the integral 

in Eq. (2) requires a zero mean value for the wavelet [16],

��(0) = 0, (3a)
That is,
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Following previous work [9-12], a Gabor mother wavelet was chosen as the basis for the

CWT and is given by the formula
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where � and � are the time spread and center frequency parameters. For the Gabor wavelet 

transform (GWT), time and frequency can be related to scale and translation via [17],

� = �, (5a)
and

� = �/�. (5b)

Kim and Kim [9] show that the Gabor wavelet shape is controlled by a single dimensionless 

parameter, and introduce the notation of a Gabor wavelet shaping factor �� = �� where � is set 

to unity. The shaping factor �� governs the time-frequency resolution of the GWT according to 

the relations [18],
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where ���,� and ���,� are the variances (or spread) in time and frequency of the GWT. The effect 

of �� on the Gabor wavelet shape is depicted in Fig. 1. The relative weighting on time or 

frequency resolution is determined by the number of oscillations in the Gabor wavelet shape; in 

the limit �� → ∞ the GWT becomes similar to a time-independent FFT. In the limit �� → 0, the 

number of oscillations decreases to improve time localization, however this also introduces error 

due to frequency spreading. When �� = 0, the Gabor wavelet collapses to a normal distribution 

and violates the admissibility condition (zero mean value). In general, the Gabor wavelet has a 

non-zero mean; however, it is suggested that �� ≥	3 is sufficient to minimize the mean such that

the conditions for a mother wavelet are satisfied [17,19]. Consequently, a frequency bias is 

introduced near �� = 3 and may be corrected as shown in [20].

Figure 1. Gabor mother wavelet for shaping factors �� of 3, 6, and 9.

All CWT-based methods suffer from an edge-effect when part of the wavelet is 

integrated beyond the length of a signal, using zero-padding or otherwise [18,20,21]. Minimizing 

the edge-effect is the subject of ongoing research [21]; the approach used in this work was to 

remove the affected region from the wavelet transform according to

� = ����,� , (7)

where � is the region in time to discard from the start or end, and � is a multiple of the time 

spread. Values for k are suggested based on the level of signal damping [20].

After the wavelet transform is calculated according to Eq. (1), a normalized scalogram 

may be used to visualize the time-frequency energy density of the CWT as [17]

���(�, �) =
|��(�, �)|�

�
. (8)



Dominant frequencies in the original signal �(�) appear as ridges or peaks on the normalized 

scalogram. A ridge detection algorithm is used to extract the time-frequency history of the signal 

[16,22]; in the analysis of a single dominant frequency it is sufficient to consider the location of 

the maximum scalogram amplitude as a function of time.

Optimization of the Gabor Wavelet Shaping Factor

An optimal �� value exists to most accurately resolve velocity information from the 

microwave interferometer signals. The dominant source of calculation error is typically due to 

insufficient time resolution. The time spread relation of Eq. (6a) may be rearranged to scale ��

���,�
�

=
��

2√2�
, (9)

where � is the period at a particular frequency of the signal, and ���,� is the acceptable time 

spread. Therefore, to resolve transient phenomena occurring over a time interval on the order of 

one period Eq. (9) implies that small �� values <� 9 are needed. An optimization scheme is 

considered to moderate the error in velocity due to frequency resolution within an allowable 

range for the time spread. Following similar work [17], �� values were limited between 3-5.5.

Hong and Kim [17,23] recommend an optimization technique for �� using the Shannon 

entropy cost function. In one dimension, Shannon entropy is maximized for a constant-valued 

function and minimized for an impulse (e.g. Dirac delta); this behavior rewards higher levels of

signal concentration. In two dimensions, Shannon entropy is used to minimize the time-

frequency spreading of the GWT. Shannon entropy-based cost functions require a double 

summation over time and frequency, therefore a normalization scheme is needed to balance the 

influence of time and frequency spreading [24]. Hong and Kim [17] favor normalization in time; 

however, normalization in frequency was also considered here to evaluate the full potential for 

minimizing the error in velocity.

A new cost function is proposed here using the multi-step process shown in Fig. 2. For a 

selected Gs value, the original signal is analyzed with a GWT to determine the frequency history

��(�). A reconstructed signal, y(t), is obtained from

�(�) = 2�� ��(�)��
�

��

, (10)

and

�(�) = �����(�)�. (11)

A second GWT with the initial �� value is applied to the reconstructed signal y(t) to obtain the 

frequency history ��(�). The two frequency histories are compared using a sum of squared 

percent errors function (SSPE) given by
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The error function is applied to frequency content which does not fall within the region R defined 

in Eq. (7), and an optimum �� value is chosen to minimize the estimated error (or actual error if 

manufactured data is used).

The GWT and frequency integration shown in Eq. (10) are fundamentally different 

transformations. An optimal �� value is defined to maximize transformation similarity when 

they are applied in succession. This cost function is effective for signals having a single 

dominant time-varying frequency; however, the cost function uniformly weights error across all 

time and is not well-suited for all signals with mixed transient and steady behavior. Signals 

having transient events in an otherwise steady frequency should be divided in time to determine 

the optimal �� value for isolated parts of the signal. When the frequency history ��(�) is known a 

priori, Eq. (12) may be applied to calculate the true error and true optimum �� value.

Figure 2. Flow chart for the proposed error function to determine an optimal �� value.

Data Analysis Procedures

Three analysis techniques – peak-picking, quadrature, and wavelet analysis – were

compared between two cases of manufactured data and two cases of real test data summarized in 

Table 2. All techniques are based on the velocity-frequency relationship [1],

�(�) =
�

2
�(�), (13)

where � is a calibrated material wavelength. The material wavelength depends on microwave 

frequency, sample diameter, and permittivity – values of � used in this work are listed in Table 2

from previous studies [8] and theoretical calculations [1,3]. For the peak-picking method, each 

advance in phase of the signal by 2� corresponds to the advance of the moving reflector by �/2



and is indicated by the time of the peaks. Thus, average velocity may be calculated between the i

and i+1 peaks according to

���� =
�/2

���� − ��
, (14)

which is a discretization of Eq. (13). The resolution of this method could be improved using time 

points from minima, maxima, and zero crossings; however, the most reliable calculations are 

made between similar features (e.g. peak-to-peak).

Quadrature analysis provides greater spatial resolution than peak-picking and is 

implemented by replacing Eq. (13) with the set of equations [5]
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and

� = ����� �
�2

�1
�, (15b)

where �1 and �2 are the microwave output signals offset by 90 degrees, and ����� is the 

discontinuous arctangent function effectively unwrapping the phase information of the signal.

For Eq. (15b) to apply, microwave signals must be normalized between -1 and 1. The signals are

filtered in multiple sections, and normalized with a linear mapping between minima and maxima

[8]. Filter settings are determined by an FFT of the time signal and experimental judgement;

parameters for each test case are summarized in Table 3. For the derivative in Eq. (15a), an FFT-

based procedure [25] is used following similar work [8].

Velocity calculations utilizing wavelet analysis are implemented with the MATLAB 

Wavelet ToolboxTM and a Gabor wavelet (complex Morlet with Fb=2 and Fc=Gs/2π). 

Microwave signals are de-sampled from 2.5 GHz to 200 MHz, and DC offset is removed. A 

normalized scalogram is computed from the raw, unfiltered signals; however, a 2D Savitzky-

Golay filter [26] is used to eliminate artificial surface roughness on the scalogram that might 

otherwise disrupt a maximum value search. This filter is first order spanning 33 points in time 

and frequency. Eq. (5b) is modified to determine the scale-frequency relationship,

� =
��	��

�
, (16)

where �� is sampling frequency and � is the signal frequency. Frequency limits of all explosives

are shown in Table 2; the frequency range was discretized into 8,000 bins for all cases. A

constant time value was subtracted from the edges of the scalogram to remove the edge-effected 

region (see Table 4). Once the frequency ridge is extracted, velocity is calculated from Eq. (13).



Sharp discontinuities appear in velocity when using Eq. (13) across materials of different 

wavelengths. One approach for smoothing the velocity across a material interface is to scale the 

time data of the original signal so that the GWT will numerically compute velocity as a multiple

of frequency

�̂ =
2

��
�, (17)

where �̂ is the scaled time and �� is the material-specific wavelength. The modified signal is re-

sampled as this scaling introduces a discontinuous sampling frequency.

Two test cases (M1 and M2) were manufactured in order to compare the velocity 

obtained from the three analysis methods with a true velocity history. Microwave signals were 

generated from the frequency histories

�(�) = 0.2 + 2.23	���(−0.3632	�), (18)
and

�(�) = 3.0 + ���(�	�), (19)

for cases M1 and M2, where � has units of MHz and � has units of µs. The parameter values in 

Eqs. (18) and (19) were selected to approximately match real data sets. Eq. (10) is used to 

calculate �(�), and two channel output is simulated with an impedance mismatch [3,5],

�1 = �(�)
2� − (�� + 1)	�����(�)�

1 + �� − 2�	�����(�)�
, (20)

and

�2 = �(�)
2� − (�� + 1)	�����(�)�

1 + �� − 2�	�����(�)�
, (21)

where �1 and �2 are the output channels in mV, �(�) is the signal amplitude, and r is the 

reflection coefficient (measures departure from a pure sinusoid). The reflection coefficient was 

introduced to mimic real effects observed in the microwave signals, and was set to 0.05 and 0.3 

for M1 and M2, respectively. Constant amplitude was used for M1, but the amplitude for M2 

was varied according to

�(�) = 1.82	���(0.0646	�). (22)

White Gaussian noise was added to each signal and SNR levels are summarized in Table 2.

Table 2. SNR, frequency limits, and wavelength values for all cases.

Case Type Explosive SNR flow

(MHz)
fhigh

(MHz)
���.
(mm)

M1 Mfg. ANFO 3 0.1 2.6 5.12
M2 Mfg. TATB 15 2.6 3.4 5.06



T1 Test ANFO 4.4 0.1 2.6 5.12
T2 Test TATB 16.1 1.8 2.4 5.61

PS1000 2.3 2.5 5.67

Table 3. Summary of filter parameters needed for the quadrature analysis.

Case Filter ��� (μs) ���� (μs) N Wn
M1 LPF 0 3.5 2 0.008

LPF 3 7.5 2 0.005
LPF 6.5 20 2 0.002
FFTD all 2 0.008

M2 LPF 0 20 2 0.008
FFTD 0 20 2 0.004

T1 LPF 0 5.5 2 0.008
LPF 5 8.5 2 0.005
LPF 8.5 20 2 0.002
LPF 8 60 2 0.001
FFTD -1.64 4.89 2 0.004
FFTD 4.89 52.3 2 0.003

T2 LPF all 2 0.008
FFTD -7.68 -2.24 2 0.001
FFTD -2.24 7.49 2 0.001

Key: LPF=low pass Butterworth filter of order N, non-dimensional cut-off frequency Wn; 

FFTD= FFT-based derivative and LPF.

Table 4. Time removed for the edge effect; estimated for ��=3 and k=3 or k=6 [21].

Case
LHS RHS

k R (μs) k R (μs)
M1 3 -0.5 3 -5.0
M2 6 -1.0 6 -1.0
T1 6 -1.0 3 -5.0
T2 6 -1.0 6 -2.0

Assessment of the Proposed Analysis Approach

I. Manufactured Signals

Two manufactured cases emphasize detonation failure (M1) and unsteady wave motion

(M2). These types of transient detonation phenomena are observed in the microwave 

experiments, and serve to demonstrate the practical application of peak-picking, quadrature, and 

wavelet analysis. Raw signals offset by 90 degrees are shown below in Fig. 4 and correspond 

with Eqs. (18) through (22). Signal features such as SNR, amplitude, and impedance mismatch 

are representative of those obtained from the experimental configuration described in this work.



An optimized �� value was found using the proposed cost function and compared with 

the results from Shannon entropy as well as true error. The different functions are plotted against 

�� in Fig. 5 and optimum values are summarized in Table 5. The proposed cost function closely 

matches the shape of the true error. The Shannon entropy is seen to over-predict the optimum ��

value for detonation failure (M1), and fails to predict an optimum �� value for unsteady wave 

motion (M2). Pure transient behavior drives the optimum value towards the minimum ��=3. 

However, in both cases other minima exist above the range of interest that tune �� to the steady 

frequency content of each signal. Additional minima are observed in the proposed cost function 

for (M2), possibly due to the dual effects of frequency resolution and error introduced near the 

admissibility condition limit. Overall, the proposed cost function allows one to choose �� closer 

to the true optimum value to minimize the error in velocity better than the Shannon entropy 

functions normalized in either time or frequency.

Figure 4. Manufactured signals offset by 90 degrees for detonation failure (case M1, left) and 

unsteady wave motion (case M2, right).

Figure 5. Cost function, Shannon entropy functions, and true error plotted against �� for 

manufactured cases M1 (left) and M2 (right).



Table 5. Summary of optimal �� values for manufactured cases.

Case Proposed Cost Fcn. True Error t-Norm. Sh. Ent. f-Norm. Sh. Ent.
M1 3.0 3.0 5.3 5.0
M2 3.8 3.8 3.0 >5.5

Peak-picking, quadrature, and wavelet-based velocity calculations for the manufactured 

cases are shown in Fig. 6. There is a clear advantage in using peak-picking and wavelet analysis 

over quadrature for detonation failure with a low SNR (M1). Quadrature analysis is based on 

multiple filter settings, which struggle to distinguish the true signal apart from high levels of 

white noise. Other difficulties in quadrature for this case may be due to the sharp drop in velocity 

over 5 µs and lower overall signal frequencies <1 MHz. The visual appearance of the quadrature 

data for (M1) is similar to recent work [7,8] and justifies the consideration of a new analysis 

technique such as wavelet analysis.

In the second case showing an unsteady velocity history (M2), all methods – including 

quadrature – perform well despite added impedance mismatch and noise. A numerical study was 

conducted to explain the success of quadrature; it was determined that the chosen filter settings 

were highly effective at analyzing the signal. However, small changes to the period and 

amplitude of the frequency oscillation were found to compromise the success of the filter settings 

and the ability for quadrature to analyze this type of data. In addition, velocity is not well 

matched to the actual velocity history for wavelet and quadrature methods, as clipping is 

observed in the peak-to-peak value by as much as 0.1 km/s (~10% amplitude decrease). Case M2 

is important nonetheless to show that all methods are capable of resolving small oscillations in 

detonation velocity, and justify the physicality of such oscillations in real test data.  From these 

observations we expect the wavelet analysis to be more robust however with real data.

Figure 6. Velocity comparison of peak-picking, quadrature, and wavelet methods for 

manufactured cases M1 (left) and M2 (right).



II. Real Signals

Two experimental test cases (T1 and T2) were analyzed for detonation failure in ANFO 

and unsteady detonation velocity in incrementally pressed TATB, respectfully. These cases are 

representative of the transient detonation phenomena observed in the small-scale characterization 

experiments. Raw signals offset by 90 degrees are shown below in Fig. 7, and resemble the 

manufactured data of Fig. 4. Signal indicated before time zero corresponds to an ideal explosive 

(Primasheet 100) that was used to initiate the test charge. Signal amplitudes vary in both T1 and 

T2 primarily due to the differences of attenuation in each material, and the strength of the 

reflection corresponding to detonation or unsupported shock waves. Optimization results for ��

for wavelet cases are shown in Fig. 8 and summarized in Table 6.

Figure 7. Real quadrature signals (offset by 90 degrees) for detonation failure in ANFO (left) 

and unsteady wave motion in TATB (right); time zero corresponds to the transition in 

explosives.

Figure 8. Cost function and Shannon entropy functions plotted against �� for real test cases T1

(left) and T2 (right).



Table 6. Summary of optimal �� values for real test cases.

Case Proposed Cost Fcn. t-Norm. Sh. Ent. f-Norm. Sh. Ent.
T1 3.1 >5.5 >5.5
T2 4.1 3.0 >5.5

Many similarities are observed in the shape of the cost functions between manufactured 

and real cases. Trends in Shannon entropy are identical, except for case T1 where the optimum 

�� value has moved beyond 5.5. This is likely due to the extended duration of the unsupported 

shock wave and constant frequency. For case T1, the optimum value in the proposed cost 

function is near ��=3 as expected from M1. However, the shape of the proposed cost function 

for T2 is visually different from M2. �� values between 3.5-4.1 and a raised section between 4.1-

4.6 are thought to be related to the range ��=3-4 for case M2 (refer back to Fig. 5). As the 

amplitude of the frequency oscillation about the mean value is slight (~2.1 ± 0.18 MHz), larger 

�� values accurately resolve the mean velocity, and the proposed cost function decreases beyond 

��=5.5. The raised section is understood as the range of �� values where the frequency 

oscillations begin to be obscured by the mean frequency, therefore an optimum value is selected

immediately before, i.e. ��=4.1. 

Velocity results for cases T1 and T2 are shown in Fig. 9. Velocity history before time 

zero corresponds to the ideal explosive, which shows a nominally steady value of 6.95 km/s. In 

both cases, similar observations can be made for peak-picking, quadrature, and wavelet analyses. 

Quadrature analysis is clearly inferior to the peak-picking and wavelet analyses, demonstrating a 

high susceptibility to noise and loss of subtle transient features. Adjustments to filter coefficients 

(Table 3) for the quadrature analysis are based on judgement, yet it is found to be impossible to 

produce velocity plots that are visually similar to the peak-picking and wavelet data. Moreover, 

the oscillation in velocity for case T2 is obscured by the quadrature analysis yet accentuated with 

wavelet and peak-picking methods. The oscillation in velocity is real, as evident by the peak-

picking method (unaffected from filter aliasing). Physically, it is due to density gradients from an 

incremental pressing procedure; this was verified by changing the number of pressing increments 

and observing how the period of the oscillation was affected. Similar density effects have been 

observed in other work [3].



Figure 9. Velocity comparison of peak-picking, quadrature, and wavelet methods for real test 

cases T1 (left) and T2 (right).

The appearance of wavelet and peak-picking velocity data is similar, and it is necessary 

to discuss advantages and disadvantages between these two methods. Microwave signals are 

sampled at 2.5 GHz and collect on the order 105 data points per experiment. Only a limited 

number of those data are used with peak-picking to calculate an average velocity, and thus much 

of the information contained in the signal is unused (~99.9%). Eq. (9) shows that it is possible 

with the GWT to resolve information between the peaks of an interference signal; therefore a 

normalized scalogram processes more time information about the signal. If transient events occur 

in less time than one period of the interferometer signal, peak-picking cannot resolve velocity or 

time. The event will simply not be resolved.  However, wavelet analysis requires tuning one 

parameter (��) whereas peak-picking is un-biased from signal filtering. An optimization routine 

for the GWT is critical, especially when investigating subtle transient features in velocity. The 

suggested value �� = 5.5 from Shannon entropy completely obscures the oscillation in cases M2 

and T2, and distorts the other cases as well. A final observation is that wavelet analysis may clip 

the full peak-to-peak velocity oscillation in cases M2 and T2, and this is also related to the 

optimization scheme.

The full advantage of a wavelet-based analysis is the capability to track multiple 

frequencies in time. For illustration, the single-sided amplitude spectrum is shown for cases M2

and T2 in Fig. 10. Multiple frequency peaks are observed in the signal – it is difficult to 

selectively filter these peaks for the quadrature analysis. However, it is possible to independently 

track the location of each of these peaks in time and frequency on a normalized scalogram. This 

capability will prove advantageous if simultaneous frequencies are observed in the signal, which 

may potentially occur due to decoupling of the shock and reaction zone. Future work will 

investigate such an application.



Figure 10. Single-sided amplitude spectrum for case M2 (mfg. TATB signal) and T2 (real

TATB signal).

Conclusions

A continuous wavelet transform based on the Gabor mother wavelet was used to analyze 

microwave interferometer data and calculate time-resolved detonation velocity. This method is 

suggested as an improved addition to currently established analysis tools. Each method was 

compared using manufactured and real signals pertaining to a small-scale explosives 

characterization experiment, and the true error in velocity was determined using manufactured 

data. From these comparisons, wavelet analysis shows several advantages, including (1) greater 

robustness for handling noise, (2) increased velocity-time resolution to extract information 

between peaks in the interference signal, and (3) a single tunable parameter which may be 

optimized for increased accuracy. Peak-picking and wavelet methods were shown to perform 

better than quadrature analysis, for which transient features were obscured due to higher 

sensitivity to signal noise. Oscillations in velocity due to density gradients from an incremental 

pressing procedure were resolved with peak-picking and wavelet analysis only.

Accurate velocity calculations for the wavelet analysis required an optimization routine 

to determine a value for the Gabor wavelet shaping factor. Possible values were limited between 

3 and 5.5 by the admissibility condition and the acceptable time resolution needed to resolve 

transient detonation phenomena. A proposed cost function was developed in this work and 

compared against the Shannon entropy functions used in related work. It was found that the 

proposed cost function more accurately represents the true velocity history than the Shannon 

functions, which have difficulty optimizing �� for transient behavior.

Overall, wavelet analysis is an advanced multi-resolution tool with potential long-term 

advantages for processing microwave interferometer data. It has been considered over the short-

time Fourier transform due to greater flexibility in time-frequency resolution, and has the 

intriguing potential to more accurately resolve multiple frequencies. This may prove 

advantageous for studying the decoupling of shock and reaction zones, and should be 



investigated in future work. From the results of this work, wavelet analysis should make an 

improved addition to the fields of microwave interferometry and explosives research, wherever 

peak-picking and quadrature analysis are currently used to measure a time-resolved velocity.
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