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Abstract.  This paper presents an extension of the all-quad meshing algorithm called LayTracks 
to generate high quality hex and hex-dominant meshes of 3D assembly models.  LayTracks3D 
uses the mapping between the Medial Axis (MA) and the boundary of the 3D domain to 
decompose complex 3D domains into simpler domains called Tracks.  Tracks in 3D are similar to 
tunnels with no branches and are symmetric, non-intersecting, orthogonal to the boundary, and 
the shortest path from the MA to the boundary.  These properties of tracks result in desired 
meshes with near cube shape elements at the boundary, structured mesh along the boundary 
normal with any irregular nodes restricted to the MA, and sharp boundary feature preservation.  
The algorithm has been tested on a few industrial CAD models and work is underway to achieve 
all-hex meshes on general solids. 

1 Introduction 

Many computational simulations such as non-linear solid mechanics require all-hex meshes.  
Currently, there is no ideal automatic hex meshing algorithm to mesh general solids or assemblies 
with commonly desired features in a hex mesh as this is a very challenging problem.  In most 
cases, users have to resort to using meshes of suboptimal quality or spend a significant amount of 
time generating them. In complex cases, the creation of a desirable hexahedral mesh may take 
months even for an expert user. This hex mesh generation process tends to dominate the overall 
cost of numerical simulations. Therefore, improvements in the hex meshing technology are of 
significant importance to the computational simulation community.  

The goal of LayTracks3D is to generate hex meshes of solids and assembly models with desirable 
features such as boundary sensitivity, orientation insensitivity, sharp feature preservation, high-
quality mesh, and the handling of general solids.  The mesh generator should have the ability to 
generate a variety of meshes by controlling sizing and anisotropy, generate geometry adaptive 
meshes, provide fast remeshing during FEM iterations, and should be scalable.  

This paper is an extension of the all-quad meshing algorithm proposed by the author called 
LayTracks [1] for 3D solids.  Section 2 gives an overview of the original 2D LayTracks 
algorithm.  Section 3 reviews the literature on method of decomposition and advancing front 
methods as LayTracks3D combines the merits of these two methods.  Section 4 gives an 
overview of LayTracks3D and the rest of the paper discusses extensions of LayTracks3D for 
assembly meshing and all-hex meshing.  The results section shows hex-dominant meshes on few 
industrial models as the all-hex meshing is not fully implemented at this time.  
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2 Overview of LayTracks 

As it is easier to understand the algorithm in 2D, here we quickly recap the original 2D 
LayTracks [1].  LayTracks works analogous to the formation of railway tracks by laying rails on 
the ground to form a set of non-intersecting connected tracks on surfaces (see Figure 1(e)); hence, 
the name LayTracks.  This algorithm uses a skeletal representation of the input domain called 
Medial Axis Transform (MAT) [2,3,4], which is a mathematically well-studied skeletal 
representation. LayTracks is built on the mathematically sound MA and guarantees many 
desirable properties such as orthogonality of mesh elements at the boundary, irregular nodes 
restricted at farthest distance from the boundary, automatic conformal mesh at interface of 
surfaces, and all-quad mesh.  
 
Figure 1 (a) shows an assembly of surfaces.  Figure 1 (b) shows the MA and the map from each 
MA segment to the corresponding boundary segment.  The points on the MA where more than 
two segments meet are called Branch Points.   These points represent the critical singularity 
points in the interior of the domain.   Figure 1(c) shows the decomposition of the original domain, 
i.e., assembly of surfaces into a set of connected simpler domains using the branch points.  Using 
the map, the branch point is connected to its corresponding tangent points on the boundary via 
line segments (see Figure 1(e) & Figure 5).  These line segments propagate from one surface to 
the other either from the MA to the boundary or from the boundary to the MA using the map.  
The set of these connected line segments is called a Rail. Figure 1(e) shows the rails in blue, 
which are mathematically defined as a bi-partite graph [5]. Each line segment of a rail (i.e. edge 
of the bi-partite graph) has two end points: one on the MA and the other on the boundary.  Note 
that rails branch at the MA branch points and they enter and exit the boundary orthogonally.  The 
region between two adjacent rails’ paths [5] is called a Corridor  (see Figure 1(c)).  
 
Note that the MA skeleton representation reduces the surface meshing problem into curve 
meshing.   The next step is propagating the rails across the surfaces inside each corridor as the 
MA curve segments are meshed by inserting nodes based on the input mesh size.   Uniform node 
spacing on the MA generates uniform mesh and a varying node spacing based on the radius of the 
medial ball generates a geometry-adaptive mesh [6].  Figure 1(d) shows the uniform node spacing 
on a MA segment of a corridor.  Figure 1(e) shows all the rails generated using uniform node 
spacing on the MA segments of each corridor.  The region between two adjacent rails’ paths [5] 
inside each corridor is called a Track (see Figure 1(e)). 

 
A set of connected tracks is a much simpler domain to mesh compared to the input surfaces.  First 
the rails are meshed and then the quad elements are built inside each track.  Note the rails are 
symmetric on either side of the MA as they are line segments connecting the center of the 
maximal ball to the tangent points as shown in Figure 5.  Therefore, the total number of nodes on 
the two radii is always even.  Thus, a track will be bounded by an even number of edges (i.e., 
even number of edges on the two rails and two boundary edges). This provides a theoretical 
guarantee for an all-quad mesh. 
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(a) Set of surfaces (b) MA and map 

 

 

(c) Corridors  (d) Mesh on corridor’s MA 

  
(e) Tracks inside the corridors (f) Quad mesh on set of surfaces 

 
Figure 1 Overview of quad meshing via LayTracks 
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3 Literature Review 

Various hex meshing algorithms have been proposed in the literature; however there is no 
automatic all-hex meshing algorithm that gives all the desirable properties such as boundary 
sensitivity, orientation insensitivity, high quality mesh, sharp feature preservation and handling of 
general solids.  Every algorithm has its own pros and cons.  In the paragraphs below, method of 
decomposition and advancing front methods are discussed as they are relevant to LayTracks3D. 
 
Method of decomposition works by decomposing a complex 3D domain into simpler meshable 
subdomains. One of the most practical approaches for generating all-hex meshes involves 
decomposing a complex solid into sweepable, mappable, or submappable subdomains, and then 
meshing these subdomains. This technique generally gives a high-quality mesh.  The main 
disadvantage of this method is that it requires manual geometry decomposition, which is a very 
tedious task, and not trivial on complex models even for experts.  This is a major bottleneck of 
this type of decomposition method.   
 
Another decomposition-based method uses the MA.  Here a quick review of the MA-based 3D 
meshing algorithms is presented. Price and Armstrong [7,8] described a subdivision yielding one 
subregion for each medial vertex, medial edge and medial face. The subregions are subsequently 
meshed by mid-point subdivision. This method can generate poor quality elements, which are not 
useful for simulation.  Pete Smpl [9] presented a semi-structured meshing algorithm that 
generates mixed meshes with hex percentage ranging from 10.6% to 47%.  It does not consider 
assembly models and therefore does not address respecting boundary imprints and obtaining 
conformal meshes. Makem et al. [10] used the MA for detecting thin and thick regions while 
generating a hybrid mesh, i.e., hex meshes are generated on the long slender regions and tetmesh 
on the rest of the domain. 
 
Another decomposition-based method uses frame fields to design high quality hexahedral 
meshes. However, the automatic generation of frame fields that are useful for generating meshes 
of good quality is a complex problem. The generation of 3D frame fields is more complex than its 
2D counterpart called cross fields; thus, preventing extension of most 2D methods to 3D.  Ved et 
al. [11] made the first attempt to generate such a frame field using tensor metrics.  The tensor 
field is first initialized at the boundary of the solid and then interpolated in the interior in an 
advancing front manner. This method generates a hex mesh at targeted regions and a hex-
dominant mesh in the rest of the domain.  The eigenvalues of the metric order the different 
directions of the tensor field. As a result, smoothing and interpolation operations treat the frame 
field as a set of 3 different direction fields, preventing the intertwining naturally occurring in the 
fields. Moreover, the regions surrounding umbilics, where several eigenvalues are starting to be 
identical, are highly unstable, and make the resulting tensor field unusable in these regions.   
 
To overcome these problems, a method based on an energy formulation has recently emerged 
[12,13,14]. Energy formulation ensures that the order in which the directions of a frame are 
considered have no impact. Using the gradient of this energy, it is then possible to globally 
smooth the frame field.  The initial field is computed using a given crossfield on the surface that 
is transformed into a surface frame field by adding the surface normal. The smoothing operations 
proposed are a massive step toward in the generation of frame fields.  However, poor initial 
singularity locations cannot be improved through smoothing, as these only look for the closest 
local minima of the energy.  The results are also very dependent on the input cross field and it is 
not clear if the singularity graph can always guarantee all-hex meshes. 
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Kowalski et al. [1516] proposed a method of generating frame fields, which does not depend 
upon the input surface crossfield.  By computing streamlines of interest, a skeleton is obtained 
that allows the partitioning of the domain into multiple blocks that can be easily meshed through 
structured mesh generation methods. The biggest drawback of this method is dealing with 
domains for which conflicting patterns of streamlines arise.  Also, computing the 3D frame field 
is very expensive.  
 
Advancing front methods are popular because of their success in 2D.   The extension of 2D 
advancing front all-quad meshing algorithm paving [17] to 3D plastering [18] has very limited 
success. Plastering starts with a pre-meshed boundary and places hex elements in an advancing-
front manner, progressing toward the center of the domain.  A heuristic set of procedures for 
determining the order of element formation is defined. Unconstrained paving and plastering 
[19,20,21] extend respectively the paving and the plastering algorithms by starting from a domain 
whose boundary is not pre-meshed. They use a background simplicial mesh to guide the 
placement of entire layers of cells at a time, reducing the frequency at which unmeshable voids 
appear.  Plastering is automatic, produces high quality elements at the boundary, preserves sharp 
features, and handles general solids.  However, the major drawback of this method is that it 
almost always contains interior voids that cannot be meshed through heuristics and generates 
poor quality elements at the interior. 
 
 LayTracks3D combines the merits of two popular mesh generation techniques, method of 
decomposition and advancing front methods. While the MAT has been used for domain 
decomposition before, this is the first attempt at using the MAT for the robust subdivision of a 
complex 3D domain into a well-defined simpler sub-domain called "Tracks".  As the MAT exists 
where the advancing fronts collide, the fronts can be terminated without complex interference 
checks.  Thus, LayTracks3D has the promise of generating high quality, boundary sensitive, 
orientation insensitive, sharp feature preserving hex meshes on general solids without any manual 
decomposition.   

4 Overview of LayTracks3D 

LayTracks3D works analogous to 2D LayTracks [1] in decomposing a general solid/assembly 
into tunnel like tracks in 3D.  Note that in 2D we discussed meshing an assembly of surfaces, but 
here we discuss meshing a single solid instead of an assembly for clarity.  Assembly meshing is 
discussed later in Section 6.   

Figure 2 shows the overview of LayTracks3D.  Step 1 is to generate a 3D medial surface (see 
Figure 3 (b)) and build data structures to hold a 2-way map from the MA to the B-Rep and the B-
Rep to the MA.  Establishing the map is the most critical step and subsequent steps depend 
heavily on the 2-way map. 

In Step 2, the non-manifold MA junction curves, which represent critical singularities of the 3D 
shape are used to decompose the solid into corridors.  First, the MA junction curves are meshed.  
Then, rails are propagated from mesh nodes to define critical partition surfaces that define 
simpler meshable sub-regions called corridors (see Figure 3 (c)).   
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In Step 3, the 3D meshing is reduced to 2D meshing on the 
MA (see Figure 3 (d)).  Meshing all the surfaces of the MA 
inside each corridor will cover the entire 3D solid.  
LayTracks3D is not an inside out method, i.e., as an 
alternative, one can mesh the boundary surfaces of corridors 
instead of the MA.  It is quite typical to have a 3-manifold 
medial curve at convex vertices.  It is recommended to have a 
layer of tri elements along the 3-manifold MA edge in order to 
obtain a single hex element by combining six tets.  This is 
discussed in detail in Section 7 as shown in Figure 11. 

Step 4 involves subdividing the corridor into tracks, which 
look like tunnels with quad/tri cross section.  First, rails are 
propagated at every node of the mesh on the MA. Second, 
tracks are automatically formed using the quad mesh topology 
on the MA.  
 

  	
  
(a) Input solid (b) Medial surface (c) Corridors 

  	
  
(d) Mesh on medial in corridors (e) Tracks in 3D (f) Hex dominant Mesh 

Figure 3 Overview of LayTracks3D 

 
Figure 2 LayTracks3D overview 
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Unlike a rail, tracks do not branch. Tracks either form a closed tunnel or a tunnel with only one 
entry and only one exit.   

In Step 5, tracks are meshed from the boundary towards the MA in an advancing front manner 
(without any interference checks) to achieve a boundary sensitive mesh.  First rails are meshed 
using the defined mesh size.  Next, hex elements are built using the nodes of the rails. At the MA, 
two wedges can be combined into a hex (e.g. at convex edge) or six tets can be combined into a 
hex (e.g. at convex vertex).  Non-hex elements may arise at the MA if all-hex cannot be achieved 
inside each track.  Section 7 gives more details on all of these cases. 

5 Characteristics of LayTracks3D 

As LayTracks3D is a new approach, some of the characteristics of the proposed method are 
highlighted below: 
• Handle General Solids   

LayTracks3D can decompose any general solid into simpler tracks using a mathematically 
well-defined MA skeletal representation. 

• Boundary Sensitive  
Rails/tracks cut through the boundary/interface orthogonally at tangent points giving a 
boundary sensitive structured mesh along the surface normal. 

• Orientation Insensitive  
MAT is independent of the input model orientation and hence the mesh is orientation 
insensitive. 

• Dimension Reduction  
MAT reduces hex meshing to quad meshing on the medial or the boundary surface of 
corridors. 

• Feature Preservation  
All the sharp boundary features are preserved in the corridors, tracks, and the final mesh. 

• Sizing and Anisotropy Control  
The size/anisotropy specified on the boundary surfaces can be mapped to medial surfaces, 
which controls the size/anisotropy of hex elements in two directions.  Node spacing along 
rails controls the size/anisotropy in the third principal direction of a hex element.  Note that 
tracks find the shortest path and hence limit the scope of specified size to a local region, 
which is quite hard to do with hex meshes. 

• Conformal Mesh  
The 2-way map projects and resolves all the boundary imprints on the medial.  Corridors then 
cut the interface of the assembly orthogonally and give an automatic conformal mesh 
respecting imprints.  More explanation on assembly meshing is given in Section 6. 

• Geometry Adaptive  
The radius function of the MAT and its gradients can be used to control element size, 
anisotropy, and orientation.  Rails can be used as NURBS control points to generate non-
linear tracks [2,5].   

• Fast Remeshing/Refinement  
Recomputing  the MAT or corridors is not required for remeshing/refinement as they depend 
only on geometry but not mesh size. Global or local remeshing can be performed by 
remeshing the medial surfaces of the corridors with a newer mesh size. 

• Mesh Morphing   
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Old meshes can be morphed easily to new deformed geometry whenever the MA topology 
does not change.  

• Parallel Friendly  
Decomposition-based methods are generally parallel friendly.  Meshing rails and tracks can 
be easily parallelized. 

• Potential All-Hex  
LayTracks3D is based on the strong mathematical foundation of the MAT.  Section 7 
discusses extension of LayTracks3D for all-hex meshing.  

6 Extension to Assembly Meshing 

Meshing an assembly model is more challenging than meshing a single solid.  While meshing a 
single solid, the solid is decomposed into subdomains called corridors using only the non-
manifold MA curves, which are critical singularities located in the interior of the solid.  While 
meshing an assembly, even the imprinted boundary curves need to be taken into account in order 
to obtain a conformal mesh at the interface of the solids.  
 
Figure 4 (b) shows a cuboidal solid of an assembly with imprinted curves on the top, left, right 
and front surfaces.  In is not trivial to get a hex mesh of this simple cuboidal solid using existing 
hex meshing algorithms.  Even though grid-based algorithms do a better job on solids aligned 
along Cartesian axes, they fail to respect the boundary imprints. Sweeping-based algorithms 
require manual decomposition and it is not trivial to decompose this simple cuboid into 
sweepable subregions.  For example, sweeping the rectangular imprint on the right surface will 
intersect with sweeping the semicircle from the front, hexagon from the left and semi-hexagon 
from the top.  Even with plastering, imprinted surfaces on the cuboid make it very difficult to 
close the inner voids.  
 
One of the original contributions of LayTracks3D is that the MA is used to resolve all boundary 
imprints coming from all directions.  Figure 4 shows the overview of meshing the cuboidal part 
of an assembly model via LayTracks3D.  As the MA is a lower dimensional skeleton 
representation of the 3D solid, all the boundary imprints are mapped onto the MA (see Figure 4 
(c)). The MA is then subdivided into different patches not only by non-manifold MA curves but 
also by all boundary imprints coming from all directions.   

 
It is quite trivial to subdivide a 3D solid into corridors using the map after the MA has been 
subdivided into patches using imprints.  Note that the corridors automatically cut the imprints 
orthogonally thus giving conformal mesh at the interface.  Recall that the sweeping based manual 
decomposition propagates globally and thus intersects with other sweeps.  Corridors are similar to 
sweepable regions but they do not propagate globally.  Corridors automatically find the shortest 
path to enter and exit a solid orthogonally.  Figure 4 (d) shows the tracks respecting all boundary 
imprints in front, top, right, and left surfaces.  For example, the tracks at the semicircle enter the 
front surface orthogonally and then take a right turn at the MA (see Figure 4 (f)) and exit 
orthogonally at the right surface.  Thus, a conformal mesh has been generated by respecting all 
the imprints and by ensuring the orthogonality condition at the boundary. 

 
 

•  
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(a) Assembly Model (b) Solid with boundary 
imprints 

(c) MA junctions & boundary 
imprints 

   
(d) Tracks respecting 

boundary imprints 
(e) Cross section of mesh on 

MA 
(f) Conformal mesh at 

interface 
 

Figure 4 Overview of LayTracks3D on assembly model 
 

7 Extension to All-Hex Meshing 

LayTracks3D is built on the strong mathematical foundation that is inherent in the MAT.  Every 
3D solid has a unique MA and that MA is a continuous rich skeleton representation of the 3D 
solid.  The MA reduces 3D hex meshing to quad meshing on the MA.  Thus completing quad 
meshing on the MA will complete hex meshing the solid. The LayTracks3D algorithm is based 
on the uniqueness and continuity of the MAT as given by the following lemma [22]. 

 
Lemma 1.0 Uniqueness and Continuity of Mapping to MAT 
Let A be an n-dimensional compact sub-manifold of Rn and let MA(A) be its medial axis.  Let P 
be an open subset of δA which is G1 and piecewise C2 continuous. Then for every point p ∈ P 
there is one and only one maximal ball touching p. Furthermore, the function M: P → MA(A), 
which maps each point p ∈ P to the center of its maximal ball, is continuous. 

 
The mapping function M: P → MA(A) in the above lemma connects a point p on the boundary to 
maximal ball center Mp as shown in Figure 5.  This lemma is central to LayTracks3D in (1) 
creating corridors by connecting branch points with its tangent points (see Figure 3 (c)) to get 
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high quality boundary oriented elements, (2) creating tracks inside the corridor by placing rails 
using a 1-to-1 map from the boundary to the MA and from the MA to the boundary thus 
guarantying no branches inside the tracks (see Figure 5), (3) projecting imprints from all 
directions onto the MA (see Figure 4 (c)), and (4) cutting the assembly interface orthogonally 
respecting all imprints to guarantee conformal mesh (see Figure 4 (d)).  Therefore, all the major 
steps of LayTracks3D are very robust as they are derived from M: P → MA(A).  
 
Let us now use this map M: P → 
MA(A) to prove the following two 
conditions for all-hex meshing: 
• Condition 1: A general solid 

can be decomposed into a set of 
connected 3D tracks 

• Condition 2: A 3D track can be 
meshed with all-hex elements  

Therefore, if these two conditions 
can be met, then any general solid 
can be meshed with all-hex 
elements using LayTracks3D.  The 
below sections show how these two 
conditions are met theoretically, 
although full implementation is not 
completed at this time. 

Condition 1: Decompose General Solid into Set of Connected 3D Tracks  

Let us now examine Condition 1.  Even though a general solid can be decomposed into a set of 
connected tracks as stated in Condition 1, the tracks may not have quadrilateral cross section 
everywhere. Note that the above lemma assumes that the boundary is G1 continuous (i.e. tangent 
direction is continuous) and piecewise C2 continuous (i.e. second derivatives are continuous).  In 
practice,  at concave edges/vertices, where the map is 1-to-N, the statement  “every point p ∈ P 
there is one and only one maximal ball touching p” does not hold.  Therefore, a 1-to-1 map 
between p and Mp can not be guaranteed at concave edges/vertices.  
 
Solution for concave edge/vertex, 
where the map is 1-to-N is shown 
in Figure 6.  The solution is to 
perturb the 1-to-N map to 1-to-1 
using smoothing operation.  The 
multiple coincident points at the 
concave vertex will get spread out 
locally. Note that the 
orthogonality condition will be 
lost locally at the convex vertex. 
 

 
Figure 5 Track generated using MA map 

 
Figure 6 1-to-N transformed to 1-to-1 map 
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The solution for the finite contact where the map is N-to-1 is shown in Figure 7.  Figure 7 (a) 
shows a finite contact case such as a cylinder or sphere where multiple points on the boundary 
map to a single point on the MA.   This single solid problem is transformed to an assembly 
problem by introducing a core at the N-to-1 map of the MA regions.  Figure 7 (b) shows a 
cuboidal core at the center of the sphere.  Note the change in the MA shown in purple.  The MA, 
which was a point at the center of the sphere, now becomes a sheet in between the outer sphere 
and inner cuboidal core.  Thus we have removed the N-to-1 map throughout the domain.  Note 
that there exists a 1-to-N map at the concave vertices of the outer sphere (see Figure 7 (b)).  As 
discussed in the above paragraph, a 1-to-N map at the concave regions can be transformed to a 1-
to-1 map by spreading the coincident nodes at the concave vertex (see Figure 7 (c)).  Thus the N-
to-1 map is transformed to a 1-to-1 map and an all-hex mesh can be generated on the sphere.   

Condition 2: Mesh a 3D Track with All Hex Elements  

Let us now examine Condition 2, which requires us to mesh every 3D track with all-hex 
elements.  LayTrack3D first meshes all the rails and then meshes all the tracks.   The hexes are 
built in advancing front manner inside each track, i.e., hex elements are built from the boundary 
towards the interior MA.  
 

 
Figure 7 N-to-1 transformed to 1-to-1 

 
Figure 8 shows all possible types of tracks that can arise from the 1-to-N and N-to-1 maps.  As 
discussed in the above paragraphs, 1-to-N and N-to-1 maps can be transformed to a 1-to-1 map. 
The 1-to-1 map then satisfies Condition 1 and quad cross-section tracks (as shown in the first 
image of Figure 8) can be generated on general solids. 
 

 
Figure 8 Types of Tracks in 3D 
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Here the author would like to point out why the current implementation discussed in Section 4 
does not guarantee an all-hex mesh and how to overcome this limitation to achieve an all-hex 
mesh.  In the current implementation non-hex elements can arise at the MA when the hex 
elements are built inside the track in advancing front manner. This is because LayTrack3D 
described in Section 4 has no control on the number of intervals present in the rails of the tracks.  
The quad mesh on the medial shown in Figure 3 (d) is randomly generated using the Paving 
algorithm for a given mesh size without any special attention.  Paving is an unstructured meshing 
algorithm and the quad nodes can exist in an unstructured manner on the medial surface.  Then 
the rails are generated from these quad nodes. Note that the rails on either side of a quad node 
will have the same length as they are radii of a maximal ball (see Figure 5).  The rail length is 
then divided by the desired mesh size to set the intervals on the rails.   Thus an even number of 
intervals on the rails of a track is set 
automatically without any special attention.    
 
In order to obtain an all-hex mesh inside a 
quad cross-section track, (1) all four rails must 
have the same intervals or (2) two rails must 
have 2N intervals and the other two rails must 
have 2(N+1) intervals.  With Case 1, all hex 
elements can be easily built on equal interval 
rails and with Case 2, two wedges at the MA 
can be merged to form a hex as shown in 
Figure 9.  If the intervals on the four rails of a 
track do not satisfy Case 1 or Case 2, then 
non-hex elements will be generated at the 
MA.   
 
The big question is how to generate a mesh on the medial surface such that all tracks satisfy either 
Case 1 or Case 2?  Figure 10 (d) shows the mesh on the MA that will give an all-hex mesh by 
satisfying either Case 1 or Case 2 in every track.   In order to satisfy Case 1 or Case 2 in every 
track, the isocontours of the radius function of the MA have been utilized.  Figure 10 (b) shows 
isocontours of the radius function of the MA obtained for mesh size increments. Isocontours and 
non-manifold MA curves split the MA into different regions/segments as shown in Figure 10 (c).  
Figure 10 (c) also shows the underlying facets of these MA segments.  Figure 10 (d) shows the 
quads and tris on the MA that represent the quad and tri cross section tracks in 3D, respectively.  
The intervals on a rail generated at a node can be easily determined by knowing the isocontour 
number (see Figure 9).  Figure 10 (d) shows two regions bounded by only one isocontour and 
non-manifold MA curves. These regions can be meshed using unstructured quad meshing 
algorithm such as paving.  All the rails at the quad nodes of this an unstructured mesh will have 
the same intervals thus satisfying Case 1.   The rest of the region is bounded by two isocontours N 
and N+1 and non-manifold MA curves.  A quad in this region is shown in Figure 9.  Two quad 
nodes lie on isocontour N and the two rails originated from these two quad nodes will have 2N 
intervals.  Similarly, the other two quad nodes lie on isocontour N+1 and the two rails originated 
from these two quad nodes will have 2(N+1) intervals. Thus, the track satisfies Case 2. 

 
In order to improve the hex quality at 3-manifold MA curves, a layer of tri elements are generated 
all along the 3-manifold MA curve as shown in Figure 10 (d).    Figure 11(a) shows a 3-manifold 
MA curve at a convex vertex.  Figure 11(b) shows a layer of tri elements all along the 3-manifold 
MA curve. The tracks corresponding to the tri will have triangular cross-section.   Figure 11(c) 
shows how six tets form a hex at a 3-manifold MA edge and two wedges form a hex along the 
two tri cross section tracks.  Figure 3 (d) and Figure 3 (f) show that having a tri along the 3-

 
Figure 9 Merge two wedges to get all-hex 
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manifold MA curve will result in high quality hex elements at the convex corner.  Figure 4 (h) 
and Figure 4(i) show that having quads along the 3-manifold MA curve will result in poor quality 
elements at the convex vertex.  Thus, using tri elements will give high quality hex elements that 
are conformal with the hex elements of the adjacent quad cross section tracks.  
 

   
(a) Non-sweepable solid (b) Isocontours of MA (c) MA segments 

 
(d) Meshing the MA using isocontours to obtain desired number of intervals on rails. 

Figure 10 Meshing the MA using isocontours of radius function to achieve all-hex mesh. 
 

 
 

 
(a) All-hex at 3-manifold MA 

curve 
(b) Top view of tri elements 
along 3-manifold MA curve 

(c) Six tri-cross section tracks 
form an hex at MA edge 

Figure 11 All-hex mesh at 3-manifold medial edge connecting a convex vertex 
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The final all-hex mesh topology can be visualized using the quad mesh topology on the MA. An 
unstructured hex mesh containing irregular nodes will exist in the tracks originating from the 
unstructured quad mesh.  Figure 10 (d) shows the unstructured quad mesh in the region bounded 
by one isocontour.  In Figure 10 (d), the regions bounded by two isocontours have structured 
quad meshes.  Therefore, the hex mesh originating from this quad mesh will have a structured 
mesh. 

8 Results	
   

LayTrack3D has been implemented in CUBIT [23] using the CADFix [24] medial object library.  
The author is actively working on LayTracks3D and this section shows the current results 
obtained on some industrial models.  The time taken to compute the MA of the below models is 
on the order of minutes.  It takes about half a minute on a  MacBook Pro for the rest of the 
process which includes importing the CAD model, importing the MA model, meshing the MA, 
building corridors, building tracks, meshing tracks, and exporting the mesh.  This computation 
time is significantly lower than to the user time required in methods requiring manual 
decomposition for hex meshing. 
 

 

  
(a) Solid with holes (b) Mesh on MA inside corridors 

 

 

(c) Tracks in 3D (d) Mesh cross section 
Figure 12 Meshing a solid containing two through holes 
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Currently, hex-dominant meshes can be generated by meshing the MA using the Paving 
algorithm (see Figure 3).  Generation of the isocontours discussed in Section 7 has been 
implemented; however, the quad meshing on the MA using the isocontours to achieve all-hex 
meshes is not yet implemented. Therefore, in this section only the hex-dominant meshes are 
shown, which by itself is a significant step forward in the MA-based hex meshing research.  
While hex-dominant meshes are not suitable for all applications, numerous numerical simulations 
can use hex-dominant meshes [25]. 
 
Figure 12(a) shows a typical industrial solid containing through holes, sharp features, fillets, 
concave regions, and thin-thick cross sections.  Figure 12(b) shows the corridors obtained by 
propagating rails (shown in red) from the non-manifold MA junction curves, which represent 
critical singularities.  The MA is meshed using the paving algorithm with a layer of tri elements 
along the 3-manifold MA curves touching convex vertices.  Figure 12(c) shows the tracks, which 
look like tunnels in 3D and are much simpler to mesh than the original solid.    An advancing 
front method has been used to mesh the tracks by building high-quality (near cubical shape) hex 
elements from the boundary towards the MA.  Figure 12(d) shows the hex-dominant mesh 
containing 10,260 hex elements and 536 non-hex elements, i.e., 5.2% of elements are non-hex 
elements. 

 
 

  
(a) Thin-wall solid (b) Mesh on MA inside corridors 

 
 

(c) Tracks in 3D (d) Mesh cross section 
Figure 13 Meshing a thin walled solid 
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(a) Assembly (b) Imprints on the boundary of a solid 

  

(c) Imprints on MA (d) Corridors 

  

(e) Tracks (f) Final mesh 
Figure 14 Meshing an assembly model with imprinted interface 

 
The proposed method can handle thin-walled solids irrespective of the relative scale between the 
thin and the thick regions.  Figure 13(a) shows a typical industrial thin-walled solid.   Figure 13 
(d) shows that the final mesh is always aligned orthogonal to the boundary.  Note that currently 
we get a minimum of one layer of hex on either side of the MA.  Figure 13 (d) shows the mesh 
cross section containing two layers of hexes at thin walls.  The hex-dominant mesh contains 
14,104 hex elements and 185 non-hex elements, i.e., 1.3% of elements are non-hex elements.  

 
Figure 14 shows an assembly model with eight parts and Figure 14 (b) shows the thick cylindrical 
plate in transparent mode with imprints from adjacent parts.  The top surface contains a 
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rectangular imprint with two inner circles.  The bottom surface contains two rectangular imprints 
and the lateral surfaces of the plate contain three circular imprints.  These disconnected imprints - 
which are located on different surfaces spatially - are resolved by transforming them from the 
solid to the MA using the map.   Figure 14 (c) shows all the imprints on the MA.  Corridors are 
then generated using the imprints and the non-manifold junction curves of the MA.  Note that the 
corridors pass through the boundary imprints orthogonally and are simpler subdomains with a 1-
to-1 map.   Figure 14 (e) and Figure 14 (f) show tracks and the hex-dominant mesh respectively.  
As the mesh respects the boundary imprints, other schemes such as sweeping can be used on 
simpler parts of the assembly.  The mesh quality at convex vertices can also be further improved 
by having a layer of tri elements along 3-manifold MA curves as shown in Figure 12 & Figure 
13.   

9 Conclusion 

This paper presents an extension of LayTracks to generate hex-dominant meshes of general solids 
using the MAT.  The algorithm first decomposes any general solid into corridors using boundary 
imprints and MA junction curves.  Next, corridors are further subdivided into simpler tracks that 
look like tunnels in 3D.  Tracks are then meshed in advancing front manner without any 
interference checks to generate high-quality hex-dominant meshes. The algorithm generates 
meshes on general solids and assemblies with desirable features such as boundary sensitivity, 
orientation insensitivity, sharp feature and imprint preservation, and high element quality without 
any manual decomposition/interaction.  Work is under way to guarantee all-hex meshes using 
isocontours of the MA radius function.  In the near future, the generated meshes will be validated 
using non-linear solid mechanics analysis codes. 
 
Acknowledgements: The author would like to thank Henry Bucklow, Robin Fairey and Mark 
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