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Abstract. This paper presents an extension of the all-quad meshing algorithm called LayTracks
to generate high quality hex and hex-dominant meshes of 3D assembly models. LayTracks3D
uses the mapping between the Medial Axis (MA) and the boundary of the 3D domain to
decompose complex 3D domains into simpler domains called Tracks. Tracks in 3D are similar to
tunnels with no branches and are symmetric, non-intersecting, orthogonal to the boundary, and
the shortest path from the MA to the boundary. These properties of tracks result in desired
meshes with near cube shape elements at the boundary, structured mesh along the boundary
normal with any irregular nodes restricted to the MA, and sharp boundary feature preservation.
The algorithm has been tested on a few industrial CAD models and work is underway to achieve
all-hex meshes on general solids.

1 Introduction

Many computational simulations such as non-linear solid mechanics require all-hex meshes.
Currently, there is no ideal automatic hex meshing algorithm to mesh general solids or assemblies
with commonly desired features in a hex mesh as this is a very challenging problem. In most
cases, users have to resort to using meshes of suboptimal quality or spend a significant amount of
time generating them. In complex cases, the creation of a desirable hexahedral mesh may take
months even for an expert user. This hex mesh generation process tends to dominate the overall
cost of numerical simulations. Therefore, improvements in the hex meshing technology are of
significant importance to the computational simulation community.

The goal of LayTracks3D is to generate hex meshes of solids and assembly models with desirable
features such as boundary sensitivity, orientation insensitivity, sharp feature preservation, high-
quality mesh, and the handling of general solids. The mesh generator should have the ability to
generate a variety of meshes by controlling sizing and anisotropy, generate geometry adaptive
meshes, provide fast remeshing during FEM iterations, and should be scalable.

This paper is an extension of the all-quad meshing algorithm proposed by the author called
LayTracks [1] for 3D solids. Section 2 gives an overview of the original 2D LayTracks
algorithm. Section 3 reviews the literature on method of decomposition and advancing front
methods as LayTracks3D combines the merits of these two methods. Section 4 gives an
overview of LayTracks3D and the rest of the paper discusses extensions of LayTracks3D for
assembly meshing and all-hex meshing. The results section shows hex-dominant meshes on few
industrial models as the all-hex meshing is not fully implemented at this time.

1Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the
United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-
94AL85000



2 Overview of LayTracks

As it is easier to understand the algorithm in 2D, here we quickly recap the original 2D
LayTracks [1]. LayTracks works analogous to the formation of railway tracks by laying rails on
the ground to form a set of non-intersecting connected tracks on surfaces (see Figure 1(e)); hence,
the name LayTracks. This algorithm uses a skeletal representation of the input domain called
Medial Axis Transform (MAT) [2,3.4], which is a mathematically well-studied skeletal
representation. LayTracks is built on the mathematically sound MA and guarantees many
desirable properties such as orthogonality of mesh elements at the boundary, irregular nodes
restricted at farthest distance from the boundary, automatic conformal mesh at interface of
surfaces, and all-quad mesh.

Figure 1 (a) shows an assembly of surfaces. Figure 1 (b) shows the MA and the map from each
MA segment to the corresponding boundary segment. The points on the MA where more than
two segments meet are called Branch Points. These points represent the critical singularity
points in the interior of the domain. Figure 1(c) shows the decomposition of the original domain,
i.e., assembly of surfaces into a set of connected simpler domains using the branch points. Using
the map, the branch point is connected to its corresponding tangent points on the boundary via
line segments (see Figure 1(e) & Figure 5). These line segments propagate from one surface to
the other either from the MA to the boundary or from the boundary to the MA using the map.
The set of these connected line segments is called a Rail. Figure 1(e) shows the rails in blue,
which are mathematically defined as a bi-partite graph [5]. Each line segment of a rail (i.e. edge
of the bi-partite graph) has two end points: one on the MA and the other on the boundary. Note
that rails branch at the MA branch points and they enter and exit the boundary orthogonally. The
region between two adjacent rails’ paths [5] is called a Corridor (see Figure 1(c)).

Note that the MA skeleton representation reduces the surface meshing problem into curve
meshing. The next step is propagating the rails across the surfaces inside each corridor as the
MA curve segments are meshed by inserting nodes based on the input mesh size. Uniform node
spacing on the MA generates uniform mesh and a varying node spacing based on the radius of the
medial ball generates a geometry-adaptive mesh [6]. Figure 1(d) shows the uniform node spacing
on a MA segment of a corridor. Figure 1(e) shows all the rails generated using uniform node
spacing on the MA segments of each corridor. The region between two adjacent rails’ paths [5]
inside each corridor is called a Track (see Figure 1(e)).

A set of connected tracks is a much simpler domain to mesh compared to the input surfaces. First
the rails are meshed and then the quad elements are built inside each track. Note the rails are
symmetric on either side of the MA as they are line segments connecting the center of the
maximal ball to the tangent points as shown in Figure 5. Therefore, the total number of nodes on
the two radii is always even. Thus, a track will be bounded by an even number of edges (i.e.,
even number of edges on the two rails and two boundary edges). This provides a theoretical
guarantee for an all-quad mesh.
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Figure 1 Overview of quad meshing via LayTracks



3 Literature Review

Various hex meshing algorithms have been proposed in the literature; however there is no
automatic all-hex meshing algorithm that gives all the desirable properties such as boundary
sensitivity, orientation insensitivity, high quality mesh, sharp feature preservation and handling of
general solids. Every algorithm has its own pros and cons. In the paragraphs below, method of
decomposition and advancing front methods are discussed as they are relevant to LayTracks3D.

Method of decomposition works by decomposing a complex 3D domain into simpler meshable
subdomains. One of the most practical approaches for generating all-hex meshes involves
decomposing a complex solid into sweepable, mappable, or submappable subdomains, and then
meshing these subdomains. This technique generally gives a high-quality mesh. The main
disadvantage of this method is that it requires manual geometry decomposition, which is a very
tedious task, and not trivial on complex models even for experts. This is a major bottleneck of
this type of decomposition method.

Another decomposition-based method uses the MA. Here a quick review of the MA-based 3D
meshing algorithms is presented. Price and Armstrong [7,8] described a subdivision yielding one
subregion for each medial vertex, medial edge and medial face. The subregions are subsequently
meshed by mid-point subdivision. This method can generate poor quality elements, which are not
useful for simulation. Pete Smpl [9] presented a semi-structured meshing algorithm that
generates mixed meshes with hex percentage ranging from 10.6% to 47%. It does not consider
assembly models and therefore does not address respecting boundary imprints and obtaining
conformal meshes. Makem et al. [10] used the MA for detecting thin and thick regions while
generating a hybrid mesh, i.e., hex meshes are generated on the long slender regions and tetmesh
on the rest of the domain.

Another decomposition-based method uses frame fields to design high quality hexahedral
meshes. However, the automatic generation of frame fields that are useful for generating meshes
of good quality is a complex problem. The generation of 3D frame fields is more complex than its
2D counterpart called cross fields; thus, preventing extension of most 2D methods to 3D. Ved et
al. [11] made the first attempt to generate such a frame field using tensor metrics. The tensor
field is first initialized at the boundary of the solid and then interpolated in the interior in an
advancing front manner. This method generates a hex mesh at targeted regions and a hex-
dominant mesh in the rest of the domain. The eigenvalues of the metric order the different
directions of the tensor field. As a result, smoothing and interpolation operations treat the frame
field as a set of 3 different direction fields, preventing the intertwining naturally occurring in the
fields. Moreover, the regions surrounding umbilics, where several eigenvalues are starting to be
identical, are highly unstable, and make the resulting tensor field unusable in these regions.

To overcome these problems, a method based on an energy formulation has recently emerged
[12,13,14]. Energy formulation ensures that the order in which the directions of a frame are
considered have no impact. Using the gradient of this energy, it is then possible to globally
smooth the frame field. The initial field is computed using a given crossfield on the surface that
is transformed into a surface frame field by adding the surface normal. The smoothing operations
proposed are a massive step toward in the generation of frame fields. However, poor initial
singularity locations cannot be improved through smoothing, as these only look for the closest
local minima of the energy. The results are also very dependent on the input cross field and it is
not clear if the singularity graph can always guarantee all-hex meshes.



Kowalski et al. [1516] proposed a method of generating frame fields, which does not depend
upon the input surface crossfield. By computing streamlines of interest, a skeleton is obtained
that allows the partitioning of the domain into multiple blocks that can be easily meshed through
structured mesh generation methods. The biggest drawback of this method is dealing with
domains for which conflicting patterns of streamlines arise. Also, computing the 3D frame field
is very expensive.

Advancing front methods are popular because of their success in 2D. The extension of 2D
advancing front all-quad meshing algorithm paving [17] to 3D plastering [18] has very limited
success. Plastering starts with a pre-meshed boundary and places hex elements in an advancing-
front manner, progressing toward the center of the domain. A heuristic set of procedures for
determining the order of element formation is defined. Unconstrained paving and plastering
[19,20,21] extend respectively the paving and the plastering algorithms by starting from a domain
whose boundary is not pre-meshed. They use a background simplicial mesh to guide the
placement of entire layers of cells at a time, reducing the frequency at which unmeshable voids
appear. Plastering is automatic, produces high quality elements at the boundary, preserves sharp
features, and handles general solids. However, the major drawback of this method is that it
almost always contains interior voids that cannot be meshed through heuristics and generates
poor quality elements at the interior.

LayTracks3D combines the merits of two popular mesh generation techniques, method of
decomposition and advancing front methods. While the MAT has been used for domain
decomposition before, this is the first attempt at using the MAT for the robust subdivision of a
complex 3D domain into a well-defined simpler sub-domain called "Tracks". As the MAT exists
where the advancing fronts collide, the fronts can be terminated without complex interference
checks. Thus, LayTracks3D has the promise of generating high quality, boundary sensitive,
orientation insensitive, sharp feature preserving hex meshes on general solids without any manual
decomposition.

4 Overview of LayTracks3D

LayTracks3D works analogous to 2D LayTracks [1] in decomposing a general solid/assembly
into tunnel like tracks in 3D. Note that in 2D we discussed meshing an assembly of surfaces, but
here we discuss meshing a single solid instead of an assembly for clarity. Assembly meshing is
discussed later in Section 6.

Figure 2 shows the overview of LayTracks3D. Step 1 is to generate a 3D medial surface (see
Figure 3 (b)) and build data structures to hold a 2-way map from the MA to the B-Rep and the B-
Rep to the MA. Establishing the map is the most critical step and subsequent steps depend
heavily on the 2-way map.

In Step 2, the non-manifold MA junction curves, which represent critical singularities of the 3D
shape are used to decompose the solid into corridors. First, the MA junction curves are meshed.
Then, rails are propagated from mesh nodes to define critical partition surfaces that define
simpler meshable sub-regions called corridors (see Figure 3 (c)).



In Step 3, the 3D meshing is reduced to 2D meshing on the [
MA (see Figure 3 (d)). Meshing all the surfaces of the MA
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Figure 3 Overview of LayTracks3D



Unlike a rail, tracks do not branch. Tracks either form a closed tunnel or a tunnel with only one
entry and only one exit.

In Step 5, tracks are meshed from the boundary towards the MA in an advancing front manner
(without any interference checks) to achieve a boundary sensitive mesh. First rails are meshed
using the defined mesh size. Next, hex elements are built using the nodes of the rails. At the MA,
two wedges can be combined into a hex (e.g. at convex edge) or six tets can be combined into a
hex (e.g. at convex vertex). Non-hex elements may arise at the MA if all-hex cannot be achieved
inside each track. Section 7 gives more details on all of these cases.

5 Characteristics of LayTracks3D

As LayTracks3D is a new approach, some of the characteristics of the proposed method are

highlighted below:

* Handle General Solids
LayTracks3D can decompose any general solid into simpler tracks using a mathematically
well-defined MA skeletal representation.

* Boundary Sensitive
Rails/tracks cut through the boundary/interface orthogonally at tangent points giving a
boundary sensitive structured mesh along the surface normal.

*  Orientation Insensitive
MAT is independent of the input model orientation and hence the mesh is orientation
insensitive.

* Dimension Reduction
MAT reduces hex meshing to quad meshing on the medial or the boundary surface of
corridors.

* Feature Preservation
All the sharp boundary features are preserved in the corridors, tracks, and the final mesh.

* Sizing and Anisotropy Control
The size/anisotropy specified on the boundary surfaces can be mapped to medial surfaces,
which controls the size/anisotropy of hex elements in two directions. Node spacing along
rails controls the size/anisotropy in the third principal direction of a hex element. Note that
tracks find the shortest path and hence limit the scope of specified size to a local region,
which is quite hard to do with hex meshes.

* Conformal Mesh
The 2-way map projects and resolves all the boundary imprints on the medial. Corridors then
cut the interface of the assembly orthogonally and give an automatic conformal mesh
respecting imprints. More explanation on assembly meshing is given in Section 6.

* Geometry Adaptive
The radius function of the MAT and its gradients can be used to control element size,
anisotropy, and orientation. Rails can be used as NURBS control points to generate non-
linear tracks [2,5].

* Fast Remeshing/Refinement
Recomputing the MAT or corridors is not required for remeshing/refinement as they depend
only on geometry but not mesh size. Global or local remeshing can be performed by
remeshing the medial surfaces of the corridors with a newer mesh size.

* Mesh Morphing



Old meshes can be morphed easily to new deformed geometry whenever the MA topology
does not change.

* Parallel Friendly
Decomposition-based methods are generally parallel friendly. Meshing rails and tracks can
be easily parallelized.

* Potential All-Hex
LayTracks3D is based on the strong mathematical foundation of the MAT. Section 7
discusses extension of LayTracks3D for all-hex meshing.

6 Extension to Assembly Meshing

Meshing an assembly model is more challenging than meshing a single solid. While meshing a
single solid, the solid is decomposed into subdomains called corridors using only the non-
manifold MA curves, which are critical singularities located in the interior of the solid. While
meshing an assembly, even the imprinted boundary curves need to be taken into account in order
to obtain a conformal mesh at the interface of the solids.

Figure 4 (b) shows a cuboidal solid of an assembly with imprinted curves on the top, left, right
and front surfaces. In is not trivial to get a hex mesh of this simple cuboidal solid using existing
hex meshing algorithms. Even though grid-based algorithms do a better job on solids aligned
along Cartesian axes, they fail to respect the boundary imprints. Sweeping-based algorithms
require manual decomposition and it is not trivial to decompose this simple cuboid into
sweepable subregions. For example, sweeping the rectangular imprint on the right surface will
intersect with sweeping the semicircle from the front, hexagon from the left and semi-hexagon
from the top. Even with plastering, imprinted surfaces on the cuboid make it very difficult to
close the inner voids.

One of the original contributions of LayTracks3D is that the MA is used to resolve all boundary
imprints coming from all directions. Figure 4 shows the overview of meshing the cuboidal part
of an assembly model via LayTracks3D. As the MA is a lower dimensional skeleton
representation of the 3D solid, all the boundary imprints are mapped onto the MA (see Figure 4
(c)). The MA is then subdivided into different patches not only by non-manifold MA curves but
also by all boundary imprints coming from all directions.

It is quite trivial to subdivide a 3D solid into corridors using the map after the MA has been
subdivided into patches using imprints. Note that the corridors automatically cut the imprints
orthogonally thus giving conformal mesh at the interface. Recall that the sweeping based manual
decomposition propagates globally and thus intersects with other sweeps. Corridors are similar to
sweepable regions but they do not propagate globally. Corridors automatically find the shortest
path to enter and exit a solid orthogonally. Figure 4 (d) shows the tracks respecting all boundary
imprints in front, top, right, and left surfaces. For example, the tracks at the semicircle enter the
front surface orthogonally and then take a right turn at the MA (see Figure 4 (f)) and exit
orthogonally at the right surface. Thus, a conformal mesh has been generated by respecting all
the imprints and by ensuring the orthogonality condition at the boundary.
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Figure 4 Overview of LayTracks3D on assembly model

7 Extension to All-Hex Meshing

LayTracks3D is built on the strong mathematical foundation that is inherent in the MAT. Every
3D solid has a unique MA and that MA is a continuous rich skeleton representation of the 3D
solid. The MA reduces 3D hex meshing to quad meshing on the MA. Thus completing quad
meshing on the MA will complete hex meshing the solid. The LayTracks3D algorithm is based
on the uniqueness and continuity of the MAT as given by the following lemma [22].

Lemma 1.0 Uniqueness and Continuity of Mapping to MAT
Let A4 be an n-dimensional compact sub-manifold of R" and let MA(‘A) be its medial axis. Let P

be an open subset of 5A which is G' and piecewise C* continuous. Then for every point p € P
there is one and only one maximal ball touching p. Furthermore, the function M: P — MA(A),

which maps each point p € Pto the center of its maximal ball, is continuous.

The mapping function M: P — MA(4) in the above lemma connects a point p on the boundary to

maximal ball center Mp as shown in Figure 5. This lemma is central to LayTracks3D in (1)
creating corridors by connecting branch points with its tangent points (see Figure 3 (c)) to get



high quality boundary oriented elements, (2) creating tracks inside the corridor by placing rails
using a 1-to-1 map from the boundary to the MA and from the MA to the boundary thus
guarantying no branches inside the tracks (see Figure 5), (3) projecting imprints from all
directions onto the MA (see Figure 4 (c)), and (4) cutting the assembly interface orthogonally
respecting all imprints to guarantee conformal mesh (see Figure 4 (d)). Therefore, all the major

steps of LayTracks3D are very robust as they are derived from M: P — MA(4A).

Let us now use this map M: P —

MA(4) to prove the following two Tracks -
conditions for all-hex meshing: ﬂ@&,f/
* Condition 1: A general solid L
can be decomposed into a set of . Rails
connected 3D tracks /’ ——

e (Condition 2: A 3D track can be Tangent Points /|
meshed with all-hex elements

Therefore, if these two conditions ’ Boundary Edge
can be met, then any general solid [ ‘

can be meshed with all-hex ,,.I:‘, ) |—

elements using LayTracks3D. The | | | Small Line Segment

below sections show how these two \
conditions are met theoretically, ‘
although full implementation is not Track Direction
completed at this time.

Figure 5 Track generated using MA map

Condition 1: Decompose General Solid into Set of Connected 3D Tracks

Let us now examine Condition 1. Even though a general solid can be decomposed into a set of
connected tracks as stated in Condition 1, the tracks may not have quadrilateral cross section
everywhere. Note that the above lemma assumes that the boundary is G’ continuous (i.e. tangent
direction is continuous) and piecewise C* continuous (i.e. second derivatives are continuous). In

practice, at concave edges/vertices, where the map is 1-to-N, the statement “every point p € P

there is one and only one maximal ball touching p” does not hold. Therefore, a 1-to-1 map
between p and Mp can not be guaranteed at concave edges/vertices.

Solution for concave edge/vertex,
where the map is 1-to-N is shown
in Figure 6. The solution is to
perturb the 1-to-N map to 1-to-1
using smoothing operation. The
multiple coincident points at the
concave vertex will get spread out
locally. Note that the
orthogonality condition will be
lost locally at the convex vertex.

Figure 6 1-to-N transformed to 1-to-1 map
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The solution for the finite contact where the map is N-to-1 is shown in Figure 7. Figure 7 (a)
shows a finite contact case such as a cylinder or sphere where multiple points on the boundary
map to a single point on the MA. This single solid problem is transformed to an assembly
problem by introducing a core at the N-to-1 map of the MA regions. Figure 7 (b) shows a
cuboidal core at the center of the sphere. Note the change in the MA shown in purple. The MA,
which was a point at the center of the sphere, now becomes a sheet in between the outer sphere
and inner cuboidal core. Thus we have removed the N-to-1 map throughout the domain. Note
that there exists a 1-to-N map at the concave vertices of the outer sphere (see Figure 7 (b)). As
discussed in the above paragraph, a 1-to-N map at the concave regions can be transformed to a 1-
to-1 map by spreading the coincident nodes at the concave vertex (see Figure 7 (c)). Thus the N-
to-1 map is transformed to a 1-to-1 map and an all-hex mesh can be generated on the sphere.

(a)N-to-1 (b)1-to-N (c)1-to-1 (d)Tracks (e)Mesh
Figure 7 N-to-1 transformed to 1-to-1

Figure 8 shows all possible types of tracks that can arise from the 1-to-N and N-to-1 maps. As
discussed in the above paragraphs, 1-to-N and N-to-1 maps can be transformed to a 1-to-1 map.
The 1-to-1 map then satisfies Condition 1 and quad cross-section tracks (as shown in the first
image of Figure 8) can be generated on general solids.

1-to-1 1-to-N 1-to-N 1-to-N 1-to-N  1-to-N  N-to-1  N-to-1

fl((f/

1-to-1 1-to-1 1-to-1 1-to-N  1-to-N 1-to-N  N-to-1 N-to-1

Figure 8 Types of Tracks in 3D

Condition 2: Mesh a 3D Track with All Hex Elements

Let us now examine Condition 2, which requires us to mesh every 3D track with all-hex
elements. LayTrack3D first meshes all the rails and then meshes all the tracks. The hexes are
built in advancing front manner inside each track, i.e., hex elements are built from the boundary
towards the interior MA.
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Here the author would like to point out why the current implementation discussed in Section 4
does not guarantee an all-hex mesh and how to overcome this limitation to achieve an all-hex
mesh. In the current implementation non-hex elements can arise at the MA when the hex
elements are built inside the track in advancing front manner. This is because LayTrack3D
described in Section 4 has no control on the number of intervals present in the rails of the tracks.
The quad mesh on the medial shown in Figure 3 (d) is randomly generated using the Paving
algorithm for a given mesh size without any special attention. Paving is an unstructured meshing
algorithm and the quad nodes can exist in an unstructured manner on the medial surface. Then
the rails are generated from these quad nodes. Note that the rails on either side of a quad node
will have the same length as they are radii of a maximal ball (see Figure 5). The rail length is
then divided by the desired mesh size to set the intervals on the rails. Thus an even number of
intervals on the rails of a track is set

automatically without any special attention. Isocontour N+ 1\

Isocontour N —
In order to obtain an all-hex mesh inside a - Two Wedges
quad cross-section track, (1) all four rails must
have the same intervals or (2) two rails must
have 2N intervals and the other two rails must

have 2(N+1) intervals. With Case 1, all hex

Rail with
< 2(N+1)

elements can be easily built on equal interval intervals
rails and with Case 2, two wedges at the MA
can be merged to form a hex as shown in

Rail with

Figure 9. If the intervals on the four rails of a
track do not satisfy Case 1 or Case 2, then
non-hex elements will be generated at the Figure 9 Merge two wedges to get all-hex
MA.

~ 2N intervals

The big question is how to generate a mesh on the medial surface such that all tracks satisfy either
Case 1 or Case 27 Figure 10 (d) shows the mesh on the MA that will give an all-hex mesh by
satisfying either Case 1 or Case 2 in every track. In order to satisfy Case 1 or Case 2 in every
track, the isocontours of the radius function of the MA have been utilized. Figure 10 (b) shows
isocontours of the radius function of the MA obtained for mesh size increments. Isocontours and
non-manifold MA curves split the MA into different regions/segments as shown in Figure 10 (c).
Figure 10 (c) also shows the underlying facets of these MA segments. Figure 10 (d) shows the
quads and tris on the MA that represent the quad and tri cross section tracks in 3D, respectively.
The intervals on a rail generated at a node can be easily determined by knowing the isocontour
number (see Figure 9). Figure 10 (d) shows two regions bounded by only one isocontour and
non-manifold MA curves. These regions can be meshed using unstructured quad meshing
algorithm such as paving. All the rails at the quad nodes of this an unstructured mesh will have
the same intervals thus satisfying Case 1. The rest of the region is bounded by two isocontours N
and N+1 and non-manifold MA curves. A quad in this region is shown in Figure 9. Two quad
nodes lie on isocontour N and the two rails originated from these two quad nodes will have 2N
intervals. Similarly, the other two quad nodes lie on isocontour N+1 and the two rails originated
from these two quad nodes will have 2(N+1) intervals. Thus, the track satisfies Case 2.

In order to improve the hex quality at 3-manifold MA curves, a layer of tri elements are generated
all along the 3-manifold MA curve as shown in Figure 10 (d). Figure 11(a) shows a 3-manifold
MA curve at a convex vertex. Figure 11(b) shows a layer of tri elements all along the 3-manifold
MA curve. The tracks corresponding to the tri will have triangular cross-section. Figure 11(c)
shows how six tets form a hex at a 3-manifold MA edge and two wedges form a hex along the
two tri cross section tracks. Figure 3 (d) and Figure 3 (f) show that having a tri along the 3-
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manifold MA curve will result in high quality hex elements at the convex corner. Figure 4 (h)
and Figure 4(i) show that having quads along the 3-manifold MA curve will result in poor quality
elements at the convex vertex. Thus, using tri elements will give high quality hex elements that
are conformal with the hex elements of the adjacent quad cross section tracks.

(a) Non-sweepable solid (b) Isocontours of MA (c) MA segments
Tri along 3-manifold MA edges

.

Case 2: quad on region bounded
Case 1: unstructure quad on by N & N+1 isocontours
region bounded by one isocontour

(d) Meshing the MA using isocontours to obtain desired number of intervals on rails.
Figure 10 Meshing the MA using isocontours of radius function to achieve all-hex mesh.

J

N

(a) All-hex at 3-manifold MA (b) Top view of tri elements (c) Six tri-cross section tracks
curve along 3-manifold MA curve form an hex at MA edge
Figure 11 All-hex mesh at 3-manifold medial edge connecting a convex vertex
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The final all-hex mesh topology can be visualized using the quad mesh topology on the MA. An
unstructured hex mesh containing irregular nodes will exist in the tracks originating from the
unstructured quad mesh. Figure 10 (d) shows the unstructured quad mesh in the region bounded
by one isocontour. In Figure 10 (d), the regions bounded by two isocontours have structured
quad meshes. Therefore, the hex mesh originating from this quad mesh will have a structured
mesh.

8 Results

LayTrack3D has been implemented in CUBIT [23] using the CADFix [24] medial object library.
The author is actively working on LayTracks3D and this section shows the current results
obtained on some industrial models. The time taken to compute the MA of the below models is
on the order of minutes. It takes about half a minute on a MacBook Pro for the rest of the
process which includes importing the CAD model, importing the MA model, meshing the MA,
building corridors, building tracks, meshing tracks, and exporting the mesh. This computation
time is significantly lower than to the user time required in methods requiring manual
decomposition for hex meshing.

(a) Solid with holes (b) Mesh on MA inside corridors

(c) Tracks in 3D (d) Mesh cross section
Figure 12 Meshing a solid containing two through holes

14



Currently, hex-dominant meshes can be generated by meshing the MA using the Paving
algorithm (see Figure 3). Generation of the isocontours discussed in Section 7 has been
implemented; however, the quad meshing on the MA using the isocontours to achieve all-hex
meshes is not yet implemented. Therefore, in this section only the hex-dominant meshes are
shown, which by itself is a significant step forward in the MA-based hex meshing research.
While hex-dominant meshes are not suitable for all applications, numerous numerical simulations
can use hex-dominant meshes [25].

Figure 12(a) shows a typical industrial solid containing through holes, sharp features, fillets,
concave regions, and thin-thick cross sections. Figure 12(b) shows the corridors obtained by
propagating rails (shown in red) from the non-manifold MA junction curves, which represent
critical singularities. The MA is meshed using the paving algorithm with a layer of tri elements
along the 3-manifold MA curves touching convex vertices. Figure 12(c) shows the tracks, which
look like tunnels in 3D and are much simpler to mesh than the original solid. = An advancing
front method has been used to mesh the tracks by building high-quality (near cubical shape) hex
elements from the boundary towards the MA. Figure 12(d) shows the hex-dominant mesh
containing 10,260 hex elements and 536 non-hex elements, i.e., 5.2% of elements are non-hex
elements.

(a) Thin-wall solid (b) Mesh on MA inside corridors

(d) Mesh cross section

Figure 13 Meshing a thin walled solid
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(a) Assembly (b) Imprints on the boundary of a solid

(c) Imprints on MA (d) Corridors

(e) Tracks (f) Final mesh
Figure 14 Meshing an assembly model with imprinted interface

The proposed method can handle thin-walled solids irrespective of the relative scale between the
thin and the thick regions. Figure 13(a) shows a typical industrial thin-walled solid. Figure 13
(d) shows that the final mesh is always aligned orthogonal to the boundary. Note that currently
we get a minimum of one layer of hex on either side of the MA. Figure 13 (d) shows the mesh
cross section containing two layers of hexes at thin walls. The hex-dominant mesh contains
14,104 hex elements and 185 non-hex elements, i.e., 1.3% of elements are non-hex elements.

Figure 14 shows an assembly model with eight parts and Figure 14 (b) shows the thick cylindrical
plate in transparent mode with imprints from adjacent parts. The top surface contains a
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rectangular imprint with two inner circles. The bottom surface contains two rectangular imprints
and the lateral surfaces of the plate contain three circular imprints. These disconnected imprints -
which are located on different surfaces spatially - are resolved by transforming them from the
solid to the MA using the map. Figure 14 (c) shows all the imprints on the MA. Corridors are
then generated using the imprints and the non-manifold junction curves of the MA. Note that the
corridors pass through the boundary imprints orthogonally and are simpler subdomains with a 1-
to-1 map. Figure 14 (e) and Figure 14 (f) show tracks and the hex-dominant mesh respectively.
As the mesh respects the boundary imprints, other schemes such as sweeping can be used on
simpler parts of the assembly. The mesh quality at convex vertices can also be further improved
by having a layer of tri elements along 3-manifold MA curves as shown in Figure 12 & Figure
13.

9 Conclusion

This paper presents an extension of LayTracks to generate hex-dominant meshes of general solids
using the MAT. The algorithm first decomposes any general solid into corridors using boundary
imprints and MA junction curves. Next, corridors are further subdivided into simpler tracks that
look like tunnels in 3D. Tracks are then meshed in advancing front manner without any
interference checks to generate high-quality hex-dominant meshes. The algorithm generates
meshes on general solids and assemblies with desirable features such as boundary sensitivity,
orientation insensitivity, sharp feature and imprint preservation, and high element quality without
any manual decomposition/interaction. Work is under way to guarantee all-hex meshes using
isocontours of the MA radius function. In the near future, the generated meshes will be validated
using non-linear solid mechanics analysis codes.

Acknowledgements: The author would like to thank Henry Bucklow, Robin Fairey and Mark
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